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Abstract

Solomonoff’s central result on induction is that the prediction of a universal
semimeasure M converges rapidly and with probability 1 to the true sequence gen-
erating predictor µ, if the latter is computable. Hence, M is eligible as a universal
sequence predictor in case of unknown µ. Despite some nearby results and proofs
in the literature, the stronger result of convergence for all (Martin-Löf) random
sequences remained open. Such a convergence result would be particularly interest-
ing and natural, since randomness can be defined in terms of M itself. We show
that there are universal semimeasures M which do not converge to µ on all µ-
random sequences, i.e. we give a partial negative answer to the open problem. We
also provide a positive answer for some non-universal semimeasures. We define the
incomputable measure D as a mixture over all computable measures and the enu-
merable semimeasure W as a mixture over all enumerable nearly-measures. We show
that W converges to D and D to µ on all random sequences. The Hellinger distance
measuring closeness of two distributions plays a central role.
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1 Introduction

“All difficult conjectures should be proved by reductio ad absurdum argu-
ments. For if the proof is long and complicated enough you are bound to
make a mistake somewhere and hence a contradiction will inevitably appear,
and so the truth of the original conjecture is established QED.”

— Barrow’s second ‘law’ (2004)

A sequence prediction task is defined as to predict the next symbol xn from an
observed sequence x = x1...xn−1. The key concept to attack general prediction
problems is Occam’s razor, and to a less extent Epicurus’ principle of multiple
explanations. The former/latter may be interpreted as to keep the simplest/all
theories consistent with the observations x1...xn−1 and to use these theories to
predict xn. Solomonoff [Sol64,Sol78] formalized and combined both principles
in his universal a priori semimeasure M which assigns high/low probability
to simple/complex environments x, hence implementing Occam and Epicurus.
Formally it can be represented as a mixture of all enumerable semimeasures.
An abstract characterization of M by Levin [ZL70] is that M is a universal
enumerable semimeasure in the sense that it multiplicatively dominates all
enumerable semimeasures.

Solomonoff’s [Sol78] central result is that if the probability µ(xn|x1...xn−1) of
observing xn at time n, given past observations x1...xn−1 is a computable func-
tion, then the universal predictor Mn := M(xn|x1...xn−1) converges (rapidly!)
with µ-probability 1 (w.p.1) for n →∞ to the optimal/true/informed predic-
tor µn := µ(xn|x1...xn−1), hence M represents a universal predictor in case of
unknown “true” distribution µ. Convergence of Mn to µn w.p.1 tells us that
Mn is close to µn for sufficiently large n for almost all sequences x1x2.... It
says nothing about whether convergence is true for any particular sequence
(of measure 0).

Martin-Löf (M.L.) randomness is the standard notion for randomness of indi-
vidual sequences [ML66,LV97]. A M.L.-random sequence passes all thinkable
effective randomness tests, e.g. the law of large numbers, the law of the it-
erated logarithm, etc. In particular, the set of all µ-random sequences has
µ-measure 1. It is natural to ask whether Mn converges to µn (in difference or
ratio) individually for all M.L.-random sequences. Clearly, Solomonoff’s result
shows that convergence may at most fail for a set of sequences with µ-measure
zero. A convergence result for M.L.-random sequences would be particularly
interesting and natural in this context, since M.L.-randomness can be defined
in terms of M itself [Lev73]. Despite several attempts to solve this problem
[Vov87,VL00,Hut03b], it remained open [Hut03c].

In this paper we construct an M.L.-random sequence and show the existence
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of a universal semimeasure which does not converge on this sequence, hence
answering the open question negatively for some M . It remains open whether
there exist (other) universal semimeasures, probably with particularly inter-
esting additional structure and properties, for which M.L.-convergence holds.
The main positive contribution of this work is the construction of a non-
universal enumerable semimeasure W which M.L.-converges to µ as desired.
As an intermediate step we consider the incomputable measure D̂, defined as
a mixture over all computable measures. We show M.L.-convergence of pre-
dictor W to D̂ and of D̂ to µ. The Hellinger distance measuring closeness of
two predictive distributions plays a central role in this work.

The paper is organized as follows: In Section 2 we give basic notation and
results (for strings, numbers, sets, functions, asymptotics, computability con-
cepts, prefix Kolmogorov complexity), and define and discuss the concepts of
(universal) (enumerable) (semi)measures. Section 3 summarizes Solomonoff’s
and Gács’ results on predictive convergence of M to µ with probability 1.
Both results can be derived from a bound on the expected Hellinger sum.
We present an improved bound on the expected exponentiated Hellinger sum,
which implies very strong assertions on the convergence rate. In Section 4 we
investigate whether convergence for all Martin-Löf random sequences hold. We
construct a µ-M.L.-random sequence on which some universal semimeasures
M do not converge to µ. We give a non-constructive and a constructive proof
of different virtue. In Section 5 we present our main positive result. We derive
a finite bound on the Hellinger sum between µ and D̂, which is exponential in
the randomness deficiency of the sequence and double exponential in the com-
plexity of µ. This implies that the predictor D̂ M.L.-converges to µ. Finally, in
Section 6 we show that W is non-universal and asymptotically M.L.-converges
to D̂, and summarize the computability, measure, and dominance properties
of M , D, D̂, and W . Section 7 contains discussion and outlook.

2 Notation & Universal Semimeasures M

Strings. Let i, k, n, t ∈ IN = {1, 2, 3, ...} be natural numbers, x, y, z ∈ X ∗ =⋃∞
n=0X n be finite strings of symbols over finite alphabet X 3 a, b. We write

xy for the concatenation of string x with y. We denote strings x of length
`(x) = n by x = x1x2...xn ∈ X n with xt ∈ X and further abbreviate xk:n :=
xkxk+1...xn−1xn for k ≤ n, and x<n := x1...xn−1, and ε = x<1 = xn+1:n ∈
X 0 = {ε} for the empty string. Let ω = x1:∞ ∈ X∞ be a generic and α ∈ X∞

a specific infinite sequence. For a given sequence x1:∞ we say that xt is on-
sequence and x̄t 6= xt is off-sequence. x′t may be on- or off-sequence. We identify
strings with natural numbers (including zero, X ∗ ∼= IN ∪ {0}).

Sets and functions. IQ, IR, IR+ := [0,∞) are the sets of fractional, real, and
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nonnegative real numbers, respectively. #S denotes the number of elements
in set S, ln() the natural and log() the binary logarithm.

Asymptotics. We abbreviate limn→∞[f(n) − g(n)] = 0 by f(n)
n→∞−→ g(n)

and say f converges to g, without implying that limn→∞ g(n) itself exists. We
write f(x)

×≤g(x) for f(x) = O(g(x)) and f(x)
+≤g(x) for f(x) ≤ g(x) + O(1).

Computability. A function f : § → IR ∪ {∞} is said to be enumerable
(or lower semicomputable) if the set {(x, y) : y < f(x), x ∈ §, y ∈ IQ} is
recursively enumerable. f is co-enumerable (or upper semicomputable) if [−f ]
is enumerable. f is computable (or estimable or recursive) if f and [−f ] are
enumerable. f is approximable (or limit-computable) if there is a computable
function g : § × IN → IR with limn→∞ g(x, n) = f(x).

Complexity. The conditional prefix (Kolmogorov) complexity K(x|y) :=
min{`(p) : U(y, p) = x halts} is the length of the shortest binary program
p ∈ {0, 1}∗ on a universal prefix Turing machine U with output x ∈ X ∗ and in-
put y ∈ X ∗ [LV97]. K(x) := K(x|ε). For non-string objects o we define K(o) :=
K(〈o〉), where 〈o〉 ∈ X ∗ is some standard code for o. In particular, if (fi)

∞
i=1

is an enumeration of all enumerable functions, we define K(fi) = K(i). We
only need the following elementary properties: The co-enumerability of K, the
upper bounds K(x|`(x))

+≤`(x) log |X | and K(n)
+≤2 log n, and K(x|y)

+≤K(x),
subadditivity K(x)

+≤K(x, y)
+≤K(y) + K(x|y), and information non-increase

K(f(x))
+≤K(x) + K(f) for recursive f : X ∗ → X ∗.

We need the concepts of (universal) (semi)measures for strings [ZL70].

Definition 1 ((Semi)measures) We call ν : X ∗ → [0, 1] a semimeasure if
ν(x) ≥ ∑

a∈X ν(xa)∀x ∈ X ∗, and a (probability) measure if equality holds and
ν(ε) = 1. ν(x) denotes the ν-probability that a sequence starts with string x.
Further, ν(a|x) := ν(xa)

ν(x)
is the predictive ν-probability that the next symbol is

a ∈ X , given sequence x ∈ X ∗.

Definition 2 (Universal semimeasures M) A semimeasure M is called a
universal element of a class of semimeasures M, if it multiplicatively domi-
nates all members in the sense that

M ∈M and ∀ν ∈M ∃wν > 0 : M(x) ≥ wν ·ν(x) ∀x ∈ X ∗.

From now on we consider the (in a sense) largest class M which is relevant
from a constructive point of view (but see [Sch00,Sch02,Hut03b] for even larger
constructive classes), namely the class of all semimeasures, which can be enu-
merated (=effectively be approximated) from below:

M := class of all enumerable semimeasures. (1)
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Solomonoff [Sol64, Eq.(7)] defined the universal predictor M(y|x) =
M(xy)/M(x) with M(x) defined as the probability that the output of a uni-
versal monotone Turing machine starts with x when provided with fair coin
flips on the input tape. Levin [ZL70] has shown that this M is a universal
enumerable semimeasure. Another possible definition of M is as a (Bayes)
mixture [Sol64,ZL70,Sol78,LV97,Hut03b,Hut05]: M̃(x) =

∑
ν∈M 2−K(ν)ν(x),

where K(ν) is the length of the shortest program computing function ν. Levin
[ZL70] has shown that the class of all enumerable semimeasures is enumerable
(with repetitions), hence M̃ is enumerable, since K is co-enumerable. Hence
M̃ ∈M, which implies

M(x) ≥ wM̃M̃(x) ≥ wM̃2−K(ν)ν(x) = w′νν(x), where w′ν
×=2−K(ν).(2)

Up to a multiplicative constant, M assigns higher probability to all x than any
other enumerable semimeasure. All M have the same very slowly decreasing (in
ν) domination constants w′ν , essentially because M ∈M. We drop the prime
from w′ν in the following. The mixture definition M̃ immediately generalizes to
arbitrary weighted sums of (semi)measures over countable classes other than
M, but the class may not contain the mixture, and the domination constants
may be rapidly decreasing. We will exploit this for the construction of the
non-universal semimeasure W in Sections 5 and 6.

3 Predictive Convergence with Probability 1

The following convergence results for M are well-known
[Sol78,LV97,Hut03a,Hut05].

Theorem 3 (Convergence of M to µ w.p.1) For any universal semimea-
sure M and any computable measure µ it holds:

M(x′n|x<n) → µ(x′n|x<n) for any x′n and M(xn|x<n)
µ(xn|x<n)

→ 1, both w.p.1 for n →∞.

The first convergence in difference is Solomonoff’s [Sol78] celebrated con-
vergence result. The second convergence in ratio has first been derived by
Gács [LV97]. Note the subtle difference between the two convergence re-
sults. For any sequence x′1:∞ (possibly constant and not necessarily ran-
dom), M(x′n|x<n) − µ(x′n|x<n) converges to zero w.p.1 (referring to x1:∞),
but no statement is possible for M(x′n|x<n)/µ(x′n|x<n), since lim inf µ(x′n|x<n)
could be zero. On the other hand, if we stay on-sequence (x′1:∞ = x1:∞),
we have M(xn|x<n)/µ(xn|x<n) → 1 (whether inf µ(xn|x<n) tends to zero
or not does not matter). Indeed, it is easy to give an example where
M(x′n|x<n)/µ(x′n|x<n) diverges. For µ(1|x<n) = 1 − µ(0|x<n) = 1

2
n−3 we get

5
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µ(01:n) =
∏n

t=1(1 − 1
2
t−3)

n→∞−→ c = 0.450... > 0, i.e. 01:∞ is µ-random. On the
other hand, one can show that M(0<n) = O(1) and M(0<n1)×=2−K(n), which
implies M(1|0<n)

µ(1|0<n)
×=n3 · 2−K(n) ×≥n →∞ for n →∞ (K(n)

+≤2 log n).

Theorem 3 follows from (the discussion after) Lemma 4 due to M(x) ≥
wµµ(x). Actually the Lemma strengthens and generalizes Theorem 3. In the
following we denote expectations w.r.t. measure ρ by Eρ, i.e. for a function
f : X n → IR, Eρ[f ] =

∑′
x1:n

ρ(x1:n)f(x1:n), where
∑′ sums over all x1:n for

which ρ(x1:n) 6= 0. Using
∑′ instead

∑
is (only) important for partial functions

f undefined on a set of ρ-measure zero. Similarly Pρ denotes the ρ-probability.

Lemma 4 (Expected Bounds on Hellinger Sum) Let µ be a measure
and ν be a semimeasure with ν(x) ≥ w·µ(x) ∀x. Then the following bounds on

the Hellinger distance ht(ν, µ|ω<t) :=
∑

a∈X (
√

ν(a|ω<t)−
√

µ(a|ω<t) )2 hold:

∞∑
t=1

E

[(√
ν(ωt|ω<t)
µ(ωt|ω<t)

−1
)2
]

(i)

≤
∞∑

t=1

E[ht]
(ii)

≤ 2 ln{E[exp(1
2

∞∑
t=1

ht)]}
(iii)

≤ ln w−1

where E here and later means expectation w.r.t. µ.

The ln w−1-bounds on the first and second expression have first been derived in
[Hut03a], the second being a variation of Solomonoff’s bound

∑
n E[(ν(0|x<n)−

µ(0|x<n))2] ≤ 1
2
ln w−1. If sequence x1x2... is sampled from the probability

measure µ, these bounds imply

ν(x′n|x<n) → µ(x′n|x<n) for any x′n and ν(xn|x<n)
µ(xn|x<n)

→ 1, both w.p.1 for n →∞,

where w.p.1 stands here and in the following for ‘with µ-probability 1’.

Convergence is “fast” in the following sense: The second bound (
∑

t E[ht] ≤
ln w−1) implies that the expected number of times t in which ht ≥ ε is finite
and bounded by 1

ε
ln w−1. The new third bound represents a significant im-

provement. It implies by means of a Markov inequality that the probability
of even only marginally exceeding this number is extremely small, and that∑

t ht is very unlikely to exceed ln w−1 by much. More precisely:

P[#{t : ht ≥ ε} ≥ 1
ε
(ln w−1 + c)] ≤ P[

∑
t ht ≥ ln w−1 + c]

= P[exp(1
2

∑
t ht) ≥ ec/2w−1/2] ≤

√
wE[exp(1

2

∑
t ht)]e

−c/2 ≤ e−c/2.

Proof. We use the abbreviations ρt = ρ(xt|x<t) and ρ1:n = ρ1 · ... ·ρn = ρ(x1:n)
for ρ ∈ {µ, ν, R, N, ...} and ht =

∑
xt

(
√

νt −
√

µt)
2.

6
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(i) follows from

E[(
√

νt

µt
− 1)2|x<t] ≡

∑
xt:µt 6=0

µt(
√

νt

µt
− 1)2 =

∑
xt:µt 6=0

(
√

νt −
√

µt)
2 ≤ ht

by taking the expectation E[] and sum
∑∞

t=1.

(ii) follows from Jensen’s inequality exp(E[f ]) ≤ E[exp (f)] for f = 1
2

∑
t ht.

(iii) We exploit a construction used in [Vov87, Thm.1]. For discrete
(semi)measures p and q with

∑
i pi = 1 and

∑
i qi ≤ 1 it holds:∑

i

√
piqi ≤ 1− 1

2

∑
i

(
√

pi −
√

qi)
2 ≤ exp[−1

2

∑
i

(
√

pi −
√

qi)
2]. (3)

The first inequality is obvious after multiplying out the second expression. The
second inequality follows from 1 − x ≤ e−x. Vovk [Vov87] defined a measure
Rt :=

√
µtνt/Nt with normalization Nt :=

∑
xt

√
µtνt. Applying (3) for measure

µ and semimeasure ν we get Nt ≤ exp(−1
2
ht). Together with ν(x) ≥ w · µ(x)

∀x this implies

n∏
t=1

Rt =
n∏

t=1

√
µtνt

Nt

=

√
µ1:nν1:n

N1:n

= µ1:n

√
ν1:n

µ1:n

N−1
1:n ≥ µ1:n

√
w exp(1

2

n∑
t=1

ht).

Summing over x1:n and exploiting
∑

xt
Rt = 1 we get 1 ≥

√
wE[exp(1

2

∑
t ht)],

which proves (iii).

The bound and proof may be generalized to 1 ≥ wκE[exp(1
2

∑
t

∑
xt

(νκ
t −

µκ
t )

1/κ)] with 0 ≤ κ ≤ 1
2

by defining Rt = µ1−κ
t νκ

t /Nt with Nt =
∑

xt
µ1−κ

t νκ
t

and exploiting
∑

i p
1−κ
i qκ

i ≤ exp(−1
2

∑
i(p

κ
i − qκ

i )1/κ). 2

One can show that the constant 1
2

in Lemma 4 can essentially not be improved.
Increasing it to a constant α > 1 makes the expression infinite for some
(Bernoulli) distribution µ (however we choose ν). For ν = M the expression
can become already infinite for α > 1

2
and some computable measure µ.

4 Non-Convergence in Martin-Löf Sense

Convergence of M(xn|x<n) to µ(xn|x<n) with µ-probability 1 tells us that
M(xn|x<n) is close to µ(xn|x<n) for sufficiently large n on ‘most’ sequences
x1:∞. It says nothing whether convergence is true for any particular sequence
(of measure 0). Martin-Löf randomness can be used to capture convergence

7
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properties for individual sequences. Martin-Löf randomness is a very impor-
tant and default concept of randomness of individual sequences, which is
closely related to Kolmogorov complexity and Solomonoff’s universal semimea-
sure M . Levin gave a characterization equivalent to Martin-Löf’s original def-
inition [Lev73]:

Definition 5 (Martin-Löf random sequences) A sequence ω = ω1:∞ is
µ-Martin-Löf random (µ.M.L.) iff there is a constant c < ∞ such that
M(ω1:n) ≤ c · µ(ω1:n) for all n. Moreover, dµ(ω) := supn{log M(ω1:n)

µ(ω1:n)
} ≤ log c

is called the randomness deficiency of ω.

One can show that an M.L.-random sequence x1:∞ passes all thinkable effec-
tive randomness tests, e.g. the law of large numbers, the law of the iterated
logarithm, etc. In particular, the set of all µ.M.L.-random sequences has µ-
measure 1.

The open question we study in this section is whether M converges to µ (in
difference or ratio) individually for all Martin-Löf random sequences. Clearly,
Theorem 3 implies that convergence µ.M.L. may at most fail for a set of se-
quences with µ-measure zero. A convergence M.L. result would be particularly
interesting and natural for M , since M.L.-randomness can be defined in terms
of M itself (Definition 5).

The state of the art regarding this problem may be summarized as follows:
[Vov87] contains a (non-improvable?) result which is slightly too weak to im-
ply M.L.-convergence, [LV97, Thm.5.2.2] and [VL00, Thm.10] contain an er-
roneous proof for M.L.-convergence, and [Hut03b] proves a theorem indicating
that the answer may be hard and subtle (see [Hut03b] for details).

The main contribution of this section is a partial answer to this question. We
show that M.L.-convergence fails at least for some universal semimeasures:

Theorem 6 (Universal semimeasure non-convergence) There exists a
universal semimeasure M and a computable measure µ and a µ.M.L.-random
sequence α, such that

M(αn|α<n) 6−→ µ(αn|α<n) for n →∞.

This implies that also Mn/µn does not converge (since µn ≤ 1 is bounded). We
do not know whether Theorem 6 holds for all universal semimeasures. For the
proof we need the concept of supermartingales. We only define it for binary
alphabet and uniform measure µ(x) = λ(x) := 2−`(x) for which we need it.

Definition 7 (Supermartingale) m : {0, 1}∗→IR is a supermartingale :⇔ m(x) ≥ 1
2
[m(x0)+m(x1)] for all x ∈ {0, 1}∗

8



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

If ν is a (enumerable) semimeasure, then m := ν/λ is a (enumerable) su-
permartingale. We prove the following theorem, which will imply Theorem
6.

Lemma 8 (Supermartingale non-convergence) For the M.L.-random
sequence α defined in (4) and the enumerable supermartingale r defined in
Lemma 9 and for any η, η′ ∈ IR and any on α bounded supermartingale R,
i.e. 0 < ε < R(α1:n) < c < ∞∀n, it holds that∣∣∣∣∣R(α1:n)

R(α<n)
− η

∣∣∣∣∣ > δ or

∣∣∣∣∣R′(α1:n)

R′(α<n)
− η′

∣∣∣∣∣ > δ

(or both) for a non-vanishing fraction of n, where supermartingale R′ := 1
2
(R+

r) and some δ > 0.

Proof. We define a sequence α, which, in a sense, is the lexicographically first
(or equivalently left-most in the tree of sequences) λ.M.L.-random sequence.
Formally we define α, inductively in n = 1, 2, 3, ... by

αn = 0 if M(α<n0) ≤ 2−n, and αn = 1 else. (4)

We know that M(ε) ≤ 1 and M(α<n0) ≤ 2−n if αn = 0. Inductively,
assuming M(α<n) ≤ 2−n+1 for αn = 1 we have 2−n+1 ≥ M(α<n) ≥
M(α<n0) + M(α<n1) ≥ 2−n + M(α<n1) since M is a semimeasure, hence
M(α<n1) ≤ 2−n. Hence 2

M(α1:n) ≤ 2−n ≡ λ(α1:n)∀n, i.e. α is λ.M.L.-random. (5)

With R and r, also R′ := 1
2
(R + r) > 0 is a supermartingale. We prove that

the Theorem holds for infinitely many n. It is easy to refine the proof to a
non-vanishing fraction of n’s. Assume that R(α1:n)

R(α<n)
→ η for n →∞ (otherwise

we are done). η > 1 implies R →∞, η < 1 implies R → 0. Since R is bounded,
η must be 1, hence for sufficiently large n0 we have |R(α1:n)−R(α<n)| < ε for
all n ≥ n0.

Assume r ∈ {0, 1
2
, 1} and r(α1:n) = 1

2
for infinitely many n and r(α1:n) = 1 for

infinitely many n (e.g. take r as defined in Lemma 9). Since R stabilizes and
r oscillates, R′ cannot converge. Formally, for (the infinitely many) n ≥ n0 for
which r(α<n) = 1

2
and r(α1:n) = 1 we have

R′(α1:n)

R′(α<n)
− 1 ≡ R(α1:n)−R(α<n) + r(α1:n)− r(α<n)

R(α<n) + r(α<n)
≥

−ε + 1
2

c + 1
2

≥ δ > 0

2 Alternatively we may define αn = 0 if M(0|α<t) ≤ 1
2 and αn = 1 else.

9
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for sufficiently small ε and δ. Similarly for (the infinitely many) n ≥ n0 for
which r(α<n) = 1 and r(α1:n) = 1

2
we have

1− R′(α1:n)

R′(α<n)
≡ R(α<n)−R(α1:n) + r(α<n)− r(α1:n)

R(α<n) + r(α<n)
≥

−ε + 1
2

c + 1
≥ δ > 0.

This shows that Lemma 8 holds for infinitely many n. If we define r zero
off-sequence, i.e. r(x) = 0 for x 6= α1:`(x), then r is a supermartingale, but a
non-enumerable one, since α is not computable. In the next lemma we define
an enumerable supermartingale r, which completes the proof of Lemma 8.
Finally note that we could have defined R′ = R+γr

1+γ
with arbitrarily small

γ > 0, showing that already a small contamination can destroy convergence.
This is no longer true for the constructive proof below. 2

Lemma 9 (Enumerable supermartingale) Let M t with t = 1, 2, 3, ... be
computable approximations of M , which enumerate M , i.e. M t(x) ↗ M(x) for
t →∞. For each t define recursively a sequence αt similarly to (4) as αt

n = 0
if M t(αt

<n0) ≤ 2−n and αt
n = 1 else. For even `(x) we define r(x) = 1 if ∃t, n :

x = αt
<n and r(x) = 0 else. For odd `(x) we define r(x) = 1

2
[r(x0)+r(x1)]. r is

an enumerable supermartingale with r(α1:n) being 1 and 1
2

for a non-vanishing
fraction of n’s, where α = limt→∞ αt (αt↗ α lexicographically increasing).

The idea behind the definition of r is to define r(α<n) =
1 for odd n and if possible 1

2
for even n. The follow-

ing possibilities exist for the local part of the sequence tree:
r(x)
∧

r(x0) r(x1)
=

0
∧

0 0
, `(x) odd

1/2
∧

1 0
or

1/2
∧

0 1
or

1
∧

1 1
, and `(x) even

1
∧

1/2 0
or

1
∧

0 1/2
or

1
∧

1/2 1/2
,

all respecting the supermartingale property. The formal proof goes as follows:

Proof. r is enumerable, since αt
<n is computable. Further, 0 ≤ r(x) ≤ 1∀x.

For odd `(x) the supermartingale property r(x) ≥ 1
2
[r(x0)+r(x1)] is obviously

satisfied. For even `(x) and x = αt
<n for some t we have r(x) = 1 = 1

2
[1 + 1] ≥

1
2
[r(x0) + r(x1)]. Even `(x) and x 6= αt

<n ∀t implies xy 6= αt
1:`(xy) ∀t, y, hence

r(x) = 0 = 1
2
[0+0] = 1

2
[r(x0)+r(x1)]. This shows that r is a supermartingale.

Since M t is monotone increasing, αt is also monotone increasing w.r.t. to
lexicographical ordering on {0, 1}∞. Hence αt

1:n converges to α1:n for t → ∞,
and even αt

1:n = α1:n ∀t ≥ tn and sufficiently large (n-dependent) tn. This
implies r(α<n) = r(αtn

<n) = 1 for odd n. We know that αn = 0 for a non-
vanishing fraction of (even) n, since α is random. For such n, αt

n = 0∀t, hence
r(α<n) = r(αtn

<n) = 1
2
[r(αtn

<n0) + r(αtn
<n1)] = 1

2
[1 + 0] = 1

2
. This shows that

r(α<n) = 1 (1
2
) for a non-vanishing fraction of n, namely the odd ones (the

even ones with αn = 0). 2

10
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Nonconstructive Proof of Theorem 6. Use Lemma 8 with R := M/λ,
R′ := M ′/λ, r =: q/λ, hence q is an enumerable semimeasure, hence with
M , also M ′ = 1

2
(M + q) is a universal semimeasure. R(α1:n) ≤ 1 from (5)

and R(x) ≥ c > 0 from universality of M and computability of λ show
that the conditions of Lemma 8 are satisfied. Hence R(′)(α1:n)/R(′)(α<n) ≡
M (′)(αn|α<n)/λ(αn|α<n) 6→ 1. Multiplying this by λn = µn = 1

2
completes the

proof. 2

The proof of Theorem 6 is non-constructive. Either M or M ′ (or both) do not
converge, but we do not know which one. Below we give an alternative proof
which is constructive. The idea is to construct an enumerable (semi)measure
ν such that ν dominates M on α, but ν(αn|α<n) 6→ 1

2
. Then we mix M to ν

to make ν universal, but with larger contribution from ν, in order to preserve
non-convergence.

Constructive Proof of Theorem 6. We define an enumerable semimeasure
ν as follows:

νt(x) :=



2−t if `(x) = t and x < αt
1:t

0 if `(x) = t and x ≥ αt
1:t

0 if `(x) > t

νt(x0)+νt(x1) if `(x) < t

(6)

where < is the lexicographical ordering on sequences, and αt has been defined
in Lemma 9. νt is a semimeasure, and with αt also νt is computable and
monotone increasing in t, hence ν := limt→∞ νt is an enumerable semimeasure
(indeed, ν(x)

ν(ε)
is a measure). We could have defined a νtn by replacing αt

1:t with

αn
1:t in (6). Since νtn is monotone increasing in t and n, any order of t, n →∞

leads to ν, so we have chosen arbitrarily t = n. By induction (starting from
`(x) = t) it follows that

νt(x) = 2−`(x) if x < αt
1:`(x) and `(x) ≤ t, νt(x) = 0 if x > αt

1:`(x)

On-sequence, i.e. for x = α1:n, νt is somewhere in-between 0 and 2−`(x). Since
sequence α := limt α

t is λ.M.L.-random it contains 01 infinitely often, actually
αnαn+1 = 01 for a non-vanishing fraction of n. In the following we fix such an
n. For t ≥ n we get

νt(α<n) = νt(α<n0)+νt(α<n1︸ ︷︷ ︸
>α1:n≥αt

1:n, since αn=0

) = νt(α<n0) = νt(α1:n) ⇒ ν(α<n) = ν(α1:n)

11
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This ensures ν(αn|α<n) = 1 6= 1
2

= λn. For t > n large enough such that
αt

1:n+1 = α1:n+1 we get:

νt(α1:n) = νt(αt
1:n) ≥ νt(αt

1:n0︸ ︷︷ ︸
<αt

1:n+1, since αn+1=1

) = 2−n−1 ⇒ ν(α1:n) ≥ 2−n−1

This ensures ν(α1:n) ≥ 2−n−1 ≥ 1
2
M(α1:n) by (5). Let M be any universal

semimeasure and 0 < γ < 1
5
. Then M ′(x) := (1 − γ)ν(x) + γM(x)∀x is also

a universal semimeasure with

M ′(αn|α<n)=
(1−γ)ν(α1:n) + γM(α1:n)

(1−γ)ν(α<n) + γM(α<n)

M(α<n) ≤ 2−n+1 and M(α1:n) ≥ 0

↓
≥ (1−γ)ν(α1:n)

(1−γ)ν(α<n) + γ2−n+1

=

↑
ν(α<n) = ν(α1:n)

1−γ

1−γ + γ2−n+1/ν(α1:n)
≥
↑

ν(α1:n) ≥ 2−n−1

1−γ

1 + 3γ
>

1

2
.

For instance for γ = 1
9

we have M ′(αn|α<n) ≥ 2
3
6= 1

2
= λ(αn|α<n) for a

non-vanishing fraction of n’s. Note that the contamination of M with ν must
be sufficiently large (γ sufficiently small), while an advantage of the the non-
constructive proof is that an arbitrarily small contamination sufficed. 2

A converse of Theorem 6 can also be shown:

Theorem 10 (Convergence on nonrandom sequences) For every uni-
versal semimeasure M there exist computable measures µ and non-µ.M.L.-
random sequences α for which M(αn|α<n)/µ(αn|α<n) → 1.

5 Convergence in Martin-Löf Sense

In this section we give a positive answer to the question of predictive M.L.-
convergence to µ. We consider general finite alphabet X .

Theorem 11 (Universal predictor for M.L.-random sequences)
There exists an enumerable semimeasure W such that for every computable
measure µ and every µ.M.L.-random sequence ω, the predictions converge to
each other:

W (a|ω<t)
t→∞−→ µ(a|ω<t) for all a ∈ X if dµ(ω) < ∞.

12
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The semimeasure W we will construct is not universal in the sense of dom-
inating all enumerable semimeasures, unlike M . Normalizing W shows that
there is also a measure whose predictions converge to µ, but this measure is
not enumerable, only approximable. For proving Theorem 11 we first define
an intermediate measure D as a mixture over all computable measures, which
is not even approximable. Based on Lemmas 4,12,13, Proposition 14 shows
that D M.L.-converges to µ. We then define the concept of quasimeasures in
Definition 15 and an enumerable semimeasure W as a mixture over all enu-
merable quasimeasures. Proposition 18 shows that W M.L.-converges to D.
Theorem 11 immediately follows from Propositions 14 and 18.

Lemma 12 (Hellinger Chain) Let h(p, q) :=
∑N

i=1(
√

pi −
√

qi)
2 be the

Hellinger distance between p = (pi)
N
i=1 ∈ IRN

+ and q = (qi)
N
i=1 ∈ IRN

+ . Then

i) for p, q, r ∈ IRN
+ h(p, q) ≤ (1 + β) h(p, r) + (1 + β−1) h(r, q), any β > 0

ii) for p1, ..., pm ∈ IRN
+ h(p1, pm) ≤ 3

m∑
k=2

k2 h(pk−1, pk)

Proof. (i) For any x, y, z ∈ IR and β > 0, squaring the triangle inequality
|x− y| ≤ |x− z|+ |z − y| and chaining it with the binomial 2|x− z||z − y| ≤
β(x− z)2 + β−1(z − y)2 shows (x− y)2 ≤ (1 + β)(x− z)2 + (1 + β−1)(z − y)2.
(i) follows for x =

√
pi, y =

√
qi, and z =

√
ri and summation over i.

(ii) Applying (i) for the triples (pk, pk+1, pm) for and in order of k = 1, 2, ...,m−
2 with β = βk gives

h(p1, pm) ≤
m∑

k=2

[ k−2∏
j=1

(1+β−1
j )

]
·(1+βk−1)·h(pk−1, pk)

For βk = k(k+1) we have ln
∏k−2

j=1(1+β−1
j ) ≤ ∑∞

j=1 ln(1+β−1
j ) ≤ ∑∞

j=1 β−1
j = 1

and 1 + βk−1 ≤ k2, which completes the proof. The choice βk = 2K(k) would
lead to a bound with 1 + 2K(k) instead of k2. 2

We need a way to convert expected bounds to bounds on individual M.L.
random sequences, sort of a converse of “M.L. implies w.p.1”. Consider for
instance the Hellinger sum H(ω) :=

∑∞
t=1 ht(µ, ρ)/ ln w−1 between two com-

putable measures ρ ≥ w ·µ. Then H is an enumerable function and Lemma 4
implies E[H] ≤ 1, hence H is an integral µ-test. H can be increased to an
enumerable µ-supermartingale H̄. The universal µ-supermartingale M/µ mul-
tiplicatively dominates all enumerable supermartingales (and hence H̄). Since
M/µ ≤ 2dµ(ω), this implies the desired bound H(ω)

×≤2dµ(ω) for individual ω.
We give a self-contained direct proof, explicating all important constants.

13
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Lemma 13 (Expected to Individual Bound) Let F (ω) ≥ 0 be an enu-
merable function and µ be an enumerable measure and ε > 0 be co-enumerable.
Then:

If Eµ[F ] ≤ ε then F (ω)
×≤ ε·2K(µ,F, 1/ε)+dµ(ω) ∀ω

where dµ(ω) is the µ-randomness deficiency of ω and K(µ, F, 1/ε) is the length
of the shortest program for µ, F , and 1/ε.

Lemma 13 roughly says that for µ, F , and ε×=Eµ[F ] with short program
(K(µ, F,1/ε) = O(1)) and µ-random ω (dµ(ω) = O(1)) we have F (ω)

×≤Eµ[F ].

Proof. Let F (ω) = limn→∞ Fn(ω) = supn Fn(ω) be enumerated by an increas-
ing sequence of computable functions Fn(ω). Fn(ω) can be chosen to depend
on ω1:n only, i.e. Fn(ω) = Fn(ω1:n) is independent of ωn+1:∞. Let εn↘ ε co-
enumerate ε. We define

µ̄n(ω1:k) := ε−1
n

∑
ωk+1:n∈Xn−k

µ(ω1:n)Fn(ω1:n) for k ≤ n, and µ̄n(ω1:k) = 0 for k > n.

µ̄n is a computable semimeasure for each n (due to Eµ[Fn] ≤ ε) and increasing
in n, since

µ̄n(ω1:k)≥ 0 = µ̄n−1(ω1:k) for k ≥ n and

µ̄n(ω<n)≥

↑
Fn ≥ Fn−1

∑
ωn∈X

ε−1
n µ(ω1:n)Fn−1(ω<n) =

↑
µ measure

ε−1
n µ(ω<n)Fn−1(ω<n) ≥

↑
εn ≤ εn−1

µ̄n−1(ω<n)

and similarly for k < n − 1. Hence µ̄ := µ̄∞ is an enumerable semimeasure
(indeed µ̄ is proportional to a measure). From dominance (2) we get

M(ω1:n)
×≥ 2−K(µ̄)µ̄(ω1:n) ≥ 2−K(µ̄)µ̄n(ω1:n) = 2−K(µ̄)ε−1

n µ(ω1:n)Fn(ω1:n).(7)

In order to enumerate µ̄, we need to enumerate µ, F , and ε−1, hence
K(µ̄)

+≤K(µ, F, 1/ε), so we get

Fn(ω) ≡ Fn(ω1:n)
×≤ εn ·2K(µ,F,1/ε) ·M(ω1:n)

µ(ω1:n)
≤ εn ·2K(µ,F,1/ε)+dµ(ω).

Taking the limit Fn ↗ F and εn↘ ε completes the proof. 2

LetM = {ν1, ν2, ...} be an enumeration of all enumerable semimeasures, Jk :=
{i ≤ k : νi is measure}, and δk(x) :=

∑
i∈Jk

εiνi(x). The weights εi need to

14
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be computable and exponentially decreasing in i and
∑∞

i=1 εi ≤ 1. We choose
εi = i−62−i. Note the subtle and important fact that although the definition
of Jk is non-constructive, as a finite set of finite objects, Jk is decidable (the
program is unknowable for large k). Hence, δk is computable, since enumerable
measures are computable.

D(x) = δ∞(x) =
∑

i∈J∞

εiνi(x) = mixture of all computable measures.

In contrast to Jk and δk, the set J∞ and hence D are neither enumerable
nor co-enumerable. We also define the measures δ̂k(x) := δk(x)/δk(ε) and
D̂(x) := D(x)/D(ε). The following Proposition implies predictive convergence
of D to µ on µ-random sequences.

Proposition 14 (Convergence of incomputable measure D̂) Let µ be
a computable measure with index k0, i.e. µ = νk0. Then for the incomputable
measure D̂ and the computable but non-constructive measures δ̂k0 defined
above, the following holds:

i)
∑∞

t=1 ht(δ̂k0 , µ)
+≤ 2 ln 2·dµ(ω) + 3k0

ii)
∑∞

t=1 ht(δ̂k0 , D̂)
×≤ k7

02
k0+dµ(ω)

Combining (i) and (ii), using Lemma 12(i), we get
∑∞

t=1 ht(µ, D̂) ≤ cωf(k0) <
∞ for µ-random ω, which implies D(b|ω<t) ≡ D̂(b|ω<t) → µ(b|ω<t). We do
not know whether on-sequence convergence of the ratio holds. Similar bounds
hold for δ̂k1 instead δ̂k0 , k1 ≥ k0. The principle proof idea is to convert the
expected bounds of Lemma 4 to individual bounds, using Lemma 13. The
problem is that D̂ is not computable, which we circumvent by joining with
Lemma 12, bounds on

∑
t ht(δ̂k−1, δ̂k) for k = k0, k0 + 1, ....

Proof. (i) Let H(ω) :=
∑∞

t=1 ht(δ̂k0 , µ). µ and δ̂k0 are measures with δ̂k0 ≥
δk0 ≥ εk0µ, since δk(ε) ≤ 1, µ = νk0 and k0 ∈ Jk0 . Hence, Lemma 4 ap-

plies and shows Eµ[exp(1
2
H)] ≤ ε

−1/2
k0

. H is well-defined and enumerable for

dµ(ω) < ∞, since dµ(ω) < ∞ implies µ(ω1:t) 6= 0 implies δ̂k0(ω1:t) 6= 0. So
µ(b|ω1:t) and δ̂k0(b|ω1:t) are well defined and computable (given Jk0). Hence
ht(δ̂k0 , µ) is computable, hence H(ω) is enumerable. Lemma 13 then implies

exp(1
2
H(ω))

×≤ε
−1/2
k0

· 2K(µ,H,
√

εk0
)+dµ(ω). We bound

K(µ, H,
√

εk0
)

+≤ K(H|µ, k0) + K(k0)
+≤ K(Jk0|k0) + K(k0)

+≤ k0 + 2 log k0.

The first inequality holds, since k0 is the index and hence a description of
µ, and ε() is a simple computable function. H can be computed from µ, k0

15
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and Jk0 , which implies the second inequality. The last inequality follows from
K(k0)

+≤2 log k0 and the fact that for each i ≤ k0 one bit suffices to specify
(non)membership to Jk0 , i.e. K(Jk0|k0)

+≤k0. Putting everything together we
get

H(ω)
+≤ ln ε−1

k0
+ [k0 + 2 log k0 + dµ(ω)]2 ln 2

+≤ (2 ln 2)dµ(ω) + 3k0.

(ii) Let Hk(ω) :=
∑∞

t=1 ht(δ̂k, δ̂k−1) and k > k0. δk−1 ≤ δk implies

δ̂k−1(x)

δ̂k(x)
≤ δk(ε)

δk−1(ε)
≤ δk−1(ε) + εk

δk−1(ε)
= 1 +

εk

δk−1(ε)
≤ 1 +

εk

εO

,

where O := min{i ∈ Jk−1} = O(1). Note that Jk−1 3 k0 is not empty. Since
δ̂k−1 and δ̂k are measures, Lemma 4 applies and shows Eδ̂k−1

[Hk] ≤ ln(1+ εk

εO
) ≤

εk

εO
. Exploiting εk0µ ≤ δ̂k−1, this implies Eµ[Hk] ≤ εk

εOεk0
. Lemma 13 then

implies Hk(ω)
×≤ εk

εOεk0
· 2K(µ,Hk,εOεk0

/εk)+dµ(ω). Similarly as in (i) we can bound

K(µ, Hk, εk0/εOεk)
+≤K(Jk|k) + K(k) + K(k0)

+≤k + 2 log k + 2 log k0, hence

Hk(ω)
×≤ εk

εOεk0
·k2

0k
22kcω

×= k8
02

k0k−4cω, where cω := 2dµ(ω).

Chaining this bound via Lemma 12(ii) we get for k1 > k0:

n∑
t=1

ht(δ̂k0 , δ̂k1)≤
n∑

t=1

3
k1∑

k=k0+1

(k−k0+1)2ht(δ̂k−1, δ̂k)

≤ 3
k1∑

k=k0+1

k2Hk(ω)
×≤ 3k8

02
k0cω

k1∑
k=k0+1

k−2 ≤ 3k7
02

k0cω

If we now take k1 → ∞ we get
∑n

t=1 ht(δ̂k0 , D̂)
×≤3k7

02
k0+dµ(ω). Finally let n →

∞. 2

The main properties allowing for proving D̂ → µ were that D̂ is a measure with
approximations δ̂k, which are computable in a certain sense. D̂ is a mixture
over all enumerable/computable measures and hence incomputable.

6 M.L.-Converging Enumerable Semimeasure W

The next step is to enlarge the class of computable measures to an enumer-
able class of semimeasures, which are still sufficiently close to measures in
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order not to spoil the convergence result. For convergence w.p.1. we could
include all semimeasures (Theorem 3). M.L.-convergence seems to require a
more restricted class. Included non-measures need to be zero on long strings.
We define quasimeasures as nearly normalized measures on X≤n.

Definition 15 (Quasimeasures) ν̃ : X ∗ → IR+ is called a quasimeasure iff
ν̃ is a measure or:

∑
a∈X ν̃(xa) = ν̃(x) for `(x) < n and ν̃(x) = 0 for `(x) > n

and 1− 1
n

< ν̃(ε) ≤ 1, for some n ∈ IN .

Lemma 16 (Quasimeasures) (i) A quasimeasure is either a semimeasure
which is zero on long strings -or- a measure. (ii) The set of enumerable
quasimeasures is enumerable and contains all computable measures.

For enumerability it is important to include the measures in the definition of
quasimeasures. One way of enumeration would be to enumerate all enumer-
able partial functions f and convert them to quasimeasures. Since we need
a correspondence to semimeasures, we convert a semimeasure ν directly to a
maximal quasimeasure ν̃ ≤ ν.

Proof & construction. (i) Obvious from Definition 15.

(ii) Let ν be an enumerable semimeasure enumerated by νt↗ ν. Consider
m ≡ mt := max{n ≤ t :

∑
x1:n

νt(x1:n) > 1 − 1
n
}. mt is finite and monotone

increasing in t. We define the quasimeasure

ρt(x1:n) :=
∑

xn+1:m∈Xm−n

νt(x1:m) for n ≤ m and ρt(x1:n) = 0 for n > m.

We define an increasing sequence in t of quasimeasures ν̃t ≤ νt for t = 1, 2, ...
recursively starting with ν̃0 := 0 as follows:

If ρt(x1:n) ≥ ν̃t−1(x1:n) ∀x1:n∀n ≤ mt (and hence ∀x), then ν̃t := ρt, else ν̃t := ν̃t−1.

ν̃ := limt→∞ ν̃t is an enumerable quasimeasure. Note that m∞ = ∞ iff ν is a
measure. One can easily verify that ν̃ ≤ ν and ν̃ ≡ ν iff ν is a quasimeasure.
This implies that if ν1, ν2, ... is an enumeration of all enumerable semimeasures,
then ν̃1, ν̃2, ... is an enumeration of all enumerable quasimeasures. 2

Let ν̃1, ν̃2, ... be the enumeration of all enumerable quasimeasures constructed
in the proof of Lemma 16, based on the enumeration of all enumerable
semimeasures ν1, ν2, ... with the property that ν̃i ≤ νi and equality holds if
νi is a (quasi)measure. We define the enumerable semimeasure

W (x) :=
∞∑
i=1

εiν̃i(x), and note that D(x) =
∑
i∈J

εiν̃i(x) with J := {i : ν̃i is measure}

17
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with εi = i−62−i as before. To show W → D we need the following Lemma.

Lemma 17 (Hellinger Continuity) For hx(µ, ν) :=
∑

a∈X (
√

µ(a|x) −√
ν(a|x))2, where ρ(y) = µ(y) + ν(y) ∀y ∈ X ∗ and µ and ν are semimea-

sures, it holds:

i) hx(µ, ρ) ≤ ν(x)
µ(x)

.

ii) hx(µ, ρ) ≤ 1
4
ε2 if ν(x) ≤ ε·µ(x) and ν(xb) ≤ ε·µ(xb) ∀b ∈ X .

(ii) Since the Hellinger distance is locally quadratic, hx(µ, ρ) scales quadratic
in the deviation of predictor ρ from µ. (i) Closeness of ρ(x) to µ(x) only,
does not imply closeness of the predicitons, hence only a bound linear in the
deviation is possible.

Proof. (i) We identify X ∼= {1, ..., N} and define yi = µ(xi), zi = ν(xi),
y = µ(x), and z = ν(x). We extend (yi)

N
i=1 to a probability by defining y0 =

y −∑N
i=1 yi ≥ 0 and set z0 = 0. Also ε′ := z/y. Exploiting

∑N
i=0 yi = y and∑N

i=0 zi ≤ z and z ≤ εy and yi, zi, y, z ≥ 0 we get

hx(µ, µ+ν) ≡
N∑

i=1

(√
yi

y
−
√

yi+zi

y+z

)2

≤
N∑

i=0

(√
yi

y
−
√

yi+zi

y+z

)2

=
N∑

i=0

(
yi

y
+

yi+zi

y+z
− 2

√√√√yi(yi+zi)

y(y+z)

)
≤ 2− 2

N∑
i=0

yi√
y(y+z)

= 2− 2√
1+ε′

≤ ε′.

(ii) With the notation from (i), additionally exploiting zi ≤ εyi we get

√
yi+zi

y+z
−
√

yi

y
≤
√

yi+zi −
√

yi√
y

≤

√
yi(1+ε)−√yi

√
y

≤ ε

2

√
yi

y
and

√
yi

y
−
√

yi+zi

y+z
=

√
yi(1+ε′)−

√
yi + zi√

y(1+ε′)
≤

√
yi(1+ε′)−√yi√

y(1+ε′)
≤ ε′

2

√
yi

y
.

Exploiting ε′ ≤ ε, taking the square and summing over i proves (ii). 2

Proposition 18 (Convergence of enumerable W to incomputable D)
For every computable measure µ and for ω being µ-random, the following
holds for t →∞:

(i)
W (ω1:t)

D(ω1:t)
→ 1, (ii)

W (ωt|ω<t)

D(ωt|ω<t)
→ 1, (iii) W (a|ω<t) → D(a|ω<t) ∀a ∈ X .

18
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The intuitive reason for the convergence is that the additional contributions
of non-measures to W absent in D are zero for long sequences.

Proof. (i)

D(x) ≤ W (x) = D(x) +
∑
i6∈J

εiν̃i(x) ≤ D(x) +
∞∑

i=kx

εiν̃i(x), (8)

where kx := mini{i 6∈ J : ν̃i(x) 6= 0}. For i 6∈ J , ν̃i is not a measure. Hence
ν̃i(x) = 0 for sufficiently long x. This implies kx → ∞ for `(x) → ∞, hence
W (x) → D(x) ∀x. To get convergence in ratio we have to assume that x = ω1:n

with ω being µ-random, i.e. cω := supn
M(ω1:n)
µ(ω1:n)

= 2dµ(ω) < ∞.

⇒ ν̃i(x) ≤ νi(x) ≤ 1

wνi

M(x) ≤ cω

wνi

µ(x) ≤ cω

wνi
εk0

D(x),

The last inequality holds, since µ is a computable measure of index k0, i.e.
µ = νk0 = ν̃k0 . Inserting 1/wνi

≤ c′ · i2 for some c = O(1) and εi we get
εiν̃i(x) ≤ c′cω

εk0
i−42−iD(x), which implies

∑∞
i=kx

εiν̃i(x) ≤ ε′xD(x) with

ε′x :=
c′cω

εk0

∞∑
i=kx

i−42−i ≤ 2c′cω

εk0

k−4
x 2−kx → 0 for `(x) →∞.

Inserting this into (8) we get

1 ≤ W (x)

D(x)
≤ 1 + ε′x

`(x)→∞−→ 1 for µ-random x.

(ii) Obvious from (i) by taking a double ratio.

(iii) Since D and W−D are semimeasures and W−D
W

≤ ε′x by (i), Lemma 17(i)
implies hx(D, W ) ≤ ε′x. Since ε′x → 0 for µ-random x, this shows (iii).
|W (a|x)−D(a|x)| ≤ ε′x can also be shown.

Speed of convergence. The main convergence Theorem 11 now immediately
follows from Propositions 14 and 18. We briefly remark on the convergence
rate. For M , Lemma 4 shows that E[

∑
t ht(M, µ)] ≤ ln w−1

k0

×= ln k0 is logarith-
mic in the index k0 of µ, but E[

∑
t ht(X, µ)] ≤ ln εk0

×=k0 is linear in k0 for
X = [W, D, δk0 ]. The individual bounds for

∑
t ht(δ̂k0 , µ) and

∑
t ht(δ̂k0 , D̂) in

Proposition 14 are linear and exponential in k0, respectively. For W
M.L.−→ D

we could not establish any convergence speed.

Finally we show that W does not dominate all enumerable semimeasures, as
the definition of W suggests. We summarize all computability, measure, and
dominance properties of M , D, D̂, and W in the following theorem:
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Theorem 19 (Properties of M , W , D, and D̂)
(i) M is an enumerable semimeasure, which dominates all enumerable
semimeasures. M is not computable and not a measure.
(ii) D̂ is a measure, D is proportional to a measure, both dominating all enu-
merable quasimeasures. D and D̂ are not computable and do not dominate all
enumerable semimeasures.
(iii) W is an enumerable semimeasure, which dominates all enumerable
quasimeasures. W is not itself a quasimeasure, is not computable, and does
not dominate all enumerable semimeasures.

We conjecture that D and D̂ are not even approximable (limit-computable),
but lie somewhere higher in the arithmetic hierarchy. Since W can be nor-
malized to an approximable measure M.L.-converging to µ, and D was only
an intermediate quantity, the question of approximability of D seems not too
interesting.

Proof. (i) First sentence: Holds by definition. That such an M exists follows
from the enumerability of all enumerable semimeasures [ZL70,LV97]. Second
sentence: If M were a measure it would be computable, contradicting [Hut03b,
Thm.4(iii)] (see below).

(ii) First sentence: Follows from the definition of D and D̂ and the fact that
quasimeasures are zero on long strings: D

ν
≥ εν > 0 if ν is a computable mea-

sure. If ν is a “proper” quasimeasure, then minx∈X ∗
D(x)
ν(x)

= minx:`(x)≤mν

D(x)
ν(x)

>

0, since ν(x) = 0 for `(x) > mν < ∞, and D(x) > 0∀x. Second sentence: It
is well known that there is no computable semimeasure dominating all com-
putable measures (see e.g. [Hut03b, Thm.4]), which shows that D, D̂ and W
cannot be computable. We now show that D and W do not dominate the enu-
merable semimeasure M by extending this argument. Let ν be a nowhere 3 zero
computable semimeasure. We define a computable sequence α as follows by
induction: Given α<n, choose some αn in a computable way (by computing ν
to sufficient accuracy) such that ν(αn|α<n) < |X |−1(1+ 1

n2 ). Such an αn exists,
since ν is a semimeasure. We then define the computable deterministic measure
ν̄ concentrated on α, i.e. ν̄(α1:n) = 1 ∀n and ν̄(x) = 0 for all x which are not
prefixes of α. By the chain rule we get ν(α1:n) ≤ sinh π

π
|X |−n ≤ 4|X |−nν̄(α1:n).

This shows that no computable semimeasure ν can dominate all computable
measures, since ν̄ is not dominated. We use this construction for ν = δk:

k∑
i=1

εiν̃i(α1:n)

for sufficiently large n = nk

↓
= δk(α1:n) ≤ 4|X |−nδ̄k(α1:n)

M
×≥2−K(ν)ν
↓
×≤ |X |−n2K(δ̄k)M(α1:n)

3 M , W , D̂, D, and δk for k ≥ O(1) are nowhere zero. Alternatively one can verify
that all relevant assertions remain valid if ν is somewhere zero.
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×≤
↑

K(δ̄k)
+≤K(δk)

+≤k + 2 log k

|X |−nk22kM(α1:n) ≤
↑

for n ≥ 2
log |X |k

k22−kM(α1:n). (9)

For all x we have

D(x)− δk(x) ≤
∞∑

i=k+1

εiν̃i(x) =
∞∑

i=k+1

i−62−iν̃i(x) ≤ 2−k
∞∑

i=k+1

i−6νi(x)
×≤ 2−kM(x).

Summing both bounds we get D(α1:nk
) ≤ W (α1:nk

)
×≤(k2 + 1)2−kM(α1:nk

),
which shows that D, D̂ and W do not dominate the enumerable semimeasure
M .

Remark: Note that the constructed sequence(s) α depends on the choice
of k, so we should write more precisely α = αk. For D (but not for
W ) we can choose k = n

2
log |X | in (9) (satisfying n ≥ 2

log |X |k), leading

to D(αn
1:n)

×≤n2|X |−n/2M(αn
1:n). It is easy to generalize (9) to ∀x<t∃αt:n :

δk(x<tαt:n)
×≤|X |t−nk22kM(x<tαt:n), where t is a simple function of k. Choos-

ing t = k2 + 1 and n = (k + 1)2 and joining the results for k = 1, 2, ... and
x<t := α<t we get D(α1:n)

×≤n2−
√

nM(α1:n)∀n for the single sequence α. This
implies that (but is stronger than) α is not random w.r.t. to any computable
measure ν̃. Such α are sometimes called absolutely non-stochastic.

(iii) First sentence: Enumerability is immediate from the definition, given
the enumerability of all enumerable quasimeasures. Second sentence: Since
quasimeasures drop out in the mixture defining W for long x, W cannot be a
measure. Since W (x) 6= 0∀x it is also not a quasimeasure. Non-computability
and non-dominance of W have already been shown in (ii). 2

7 Conclusions

We investigated a natural strengthening of Solomonoff’s famous convergence
theorem, the latter stating that with probability 1 (w.p.1) the prediction of
a universal semimeasure M converges to the true computable distribution

µ (M
w.p.1−→ µ). We answered partially negative the question of whether con-

vergence also holds individually for all Martin-Löf (M.L.) random sequences

(∃M : M M.L.

6−→
µ). We constructed random sequences α for which there exist

universal semimeasures on which convergence fails. Multiplicative dominance
of M is the key property to show convergence w.p.1. Dominance over all mea-
sures is also satisfied by the restricted mixture W over all quasimeasures. We
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showed that W converges to µ on all M.L.-random sequences by exploiting

the incomputable mixture D over all measures. For D
M.L.−→ µ we achieved a

(weak) convergence rate; for W
M.L.−→ D and W/D

M.L.−→ 1 only an asymptotic
result. The convergence rate properties w.p.1. of D and W are as excellent as
for M .

We do not know whether D/µ
M.L.−→ 1 holds. We also do not know the con-

vergence rate for W
M.L.−→ D, and the current bound for D

M.L.−→ µ is dou-

ble exponentially worse than for M
w.p.1−→ µ. A minor question is whether D

is approximable (which is unlikely). Finally there could still exist universal
semimeasures M (dominating all enumerable semimeasures) for which M.L.-

convergence holds (∃M : M
M.L.−→ µ ?). In case they exist, we expect them to

have particularly interesting additional structure and properties. While most
results in algorithmic information theory are independent of the choice of the
underlying universal Turing machine (UTM) or universal semimeasure (USM),
there are also results which depend on this choice. For instance, one can show
that {(x, n) : KU(x) ≤ n} is tt-complete for some U , but not tt-complete for
others [MP02]. A potential U dependence also occurs for predictions based on
monotone complexity [Hut03d]. It could lead to interesting insights to identify
a class of “natural” UTMs/USMs which have a variety of favorable proper-
ties. A more moderate approach may be to consider classes Ci of UTMs/USMs
satisfying certain properties Pi and showing that the intersection ∩iCi is not
empty.

Another interesting and potentially fruitful approach to the convergence prob-
lem at hand is to consider other classes of semimeasures M, define mixtures
M over M, and (possibly) generalized randomness concepts by using this M
in Definition 5. Using this approach, in [Hut03b] it has been shown that con-
vergence holds for a subclass of Bernoulli distributions if the class is dense,
but fails if the class is gappy, showing that a denseness characterization of M
could be promising in general.

Acknowledgements. We want to thank Alexey Chernov for his invaluable
help.
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