Contents

What is this book about? 4
1 Plain complexity 17
1.1 The definition and main properties e 17
1.2 Algorithmic properties e e e 22
2 Complexity of pairs and conditional complexity 30
2.1 Complexityofpairs e e 30
2.2 Conditionalcomplexity e 33
2.3 Complexity as the amount of information 40
3 Martin-L 6f randomness 48
3.1 MeasureSof) e 48
3.2 The StrongLawoflLargeNumbers 50
3.3 Effectivelynullsets e 53
3.4 Properties of Martin-Lofrandomness, 60
4 A priori probability and prefix complexity 65
4.1 Randomized algorithms and semi-measureSon. 65
4.2 Maximal semimeasures e e e e 69
4.3 Prefixmachines 71
4.4 Adigression: machines with self-delimitinginput 75
4.4.1 Prefixstablefunctions 75
4.4.2 Prefixstablefunctions 77
4.4.3 Continuous computable mappings e 79
4.5 The maintheorem on prefix complexity 81
4.6 Properties of prefixcomplexity o L L 86
4.7 Conditional prefix complexity and complexity of a pairstfings 92
4.7.1 Conditional prefix complexity 92
4.7.2 Properties of conditional prefix complexity 94
4.7.3 Prefixcomplexityofapair 95
5 Monotone complexity 103
5.1 Probabilistic machines and semimeasures onthetree 103
5.2 Maximal semimeasure onthe binarytree 112
5.3 Apriory complexity and its propertieso 113
5.4 Computable mappingsoftype—> 117
5.4.1 Continuous mappingsoftype—2 117
5.4.2 Monotone machines with non-blocking read operation. 118
5.4.3 The set of continuous mappings is enumerable ... 0119
5.5 Monotonecomplexity 120

5.6 Levin—Schnorrtheorem e 124
57 Therandomnumbe& 135
5.8 Effective Hausdorffdimension 137
5.9 Randomness deficiency using a priori complexity 141
General scheme for complexities 151
6.1 Decisioncomplexity 151
6.2 Comparingcomplexities e e 154
6.3 Conditional complexities e 158
6.4 Complexitiesandoracles e 160
6.4.1 Complexity with large numbers as conditions 161
6.4.2 Limit frequencies and-a-priori-probability 166
Shannon entropy and Kolmogorov complexity 169
7.1 Shannon entropy 169
7.1.1 Codes 169
7.1.2 The definition of Shannonentropy 170
7.1.3 Huffmancode. 217
7.1.4 Kraft—McMillaninequality 173
7.2 Pairsand conditionalentropyo e 174
7.2.1 Pairsofrandomvariables. Lo 174
7.2.2 Conditionalentropy e 175
7.2.3 Independenceandentropy w. 177
7.2.4 “Relativization” and basic inequalities 179
7.3 Complexityandentropy e e 182
7.3.1 Complexity and entropy of frequencies P K 24
7.3.2 Expectedcomplexity o 184
7.3.3 Prefixes of random sequences and their complexity 185
7.3.4 The complexitydeviation. 186
7.3.5 Shannoncodingtheorem 187
7.4 Markovchains. e 188
Some applinations 189
8.1 There areinfinitely manyprimes e 189
8.2 Moving information alongthetape 189
8.3 Finite automata with severalheads 192
8.4 LawsoflLarge Numbers 194
8.5 Forbiddensubstrings 197
8.6 Aproofofaninequality e 199
8.7 Lipschitz transformations are nottransitive 202
8.8 Ergodictheorem. 203
204

10 ,, 204

What is this book about?

What is Kolmogorov complexity?

Roughly speaking, Kolmogorov complexity means “comprdssee”. Programs likeip, gzip,
etc., compress a file (text, program, or some other datagipi@sumably shorter one. The orig-
inal file can then be restored by a “decompressing” prograamésimes both compression and
decompression are performed by the same program).

A file that has a regular structure can be compressed sigmtificéts compressed size (aka Kol-
mogorov complexity) is small compared to its length. On ttieeohand, a file without regularities
hardly can be compressed, and its Kolmogorov complexitiosecto its original size.

This explanation is very informal and contains several ¢naacies—both technical and more
essential. First, instead of files (sequences of bytes) Wlecansider binary strings (finite se-
guences of bits, that is, of zeros and ones). The length ¢f 3string is the number of symbols in
it. (For example, the string 1001 has length 4, and the entptigshas length 0.)

Here are the more essential points:

e We consider only decompressing programs; we do not worry albaut compression. More
specifically, adecompressois any algorithm (a program) that receives a binary stringras
input and returns a binary string as an output. If a deconsprd3 on inputx terminates
and returns string, we writeD(Xx) = y and say thak is adescriptionof y with respect td.
Decompressors are also calléelscription modes

e A description mode is not required to be total. For saxnéhe computatiorD(x) may
never terminate and therefore produces no result. Also wetiput any constraints on the
computation time oD: on some inputs the prograbhmay halt only after an extremely long
time.

Using the recursion theory terminology, we say that a dpson mode is a partial computable
(=partial recursive) function fror& to =, where= stands for the set of all binary strings. Let us
remind that we associate with any algoritidn(whose inputs and outputs are binary strings) a
functiond computed byD; namely,d(x) is defined for a string if and only if D halts onx and
d(x) is the output oD onx. A partial function from= to = is calledcomputabléf it is associated
with (=computed by) some algorithi. Usually we use the same letter to denote the algorithm
and the function it computes. So we wridéx) instead ofd(x) unless it causes a confusion.

Assume that a description mode (a decompredsag fixed. For a string« consider all its
descriptions, that is, ajl such thaD(y) is defined and equals The length of the shortest strigg
among them is called th€olmogorov complexitgf x with respect td:

KSp(x) = min{1(y) | D(y) = x}.

Herel(y) denotes the length of the striygwe use this notation throughout the book. The sub-
scriptD indicates that the definition depends on the choice of thergié®n modeD. The min-
imum of the empty set is defined aso, thusKSp(x) is infinite for all the strings< outside the
range of the functio® (they have no descriptions).

4

At first glance this definition seems to be meaningless, adif@rentD we obtain quite differ-
ent notions, including ridiculous ones. For instanc&®) i nowhere defined, thelkSp is infinite
everywhere. ID(y) = A (the empty string) for aly, then the complexity of the empty string is 0
(sinceD(A) = A andl (A) = 0), and the complexity of all other strings is infinite.

A more reasonable example: consider a decomprd3gbat just copies its input to output,
that is,D(x) = x for all x. In this case every string is its own description &b (x) = | (x).

Of course, for any given stringwe can find a description modthat is tailored tocand with
respect to whickx has small complexity. Indeed, IB{A) = x. This impliesKSp(x) = 0.

More general, if we have some class of strings, we may look fiescription mode that favors
all the strings in this class. For example, for the class mfigé consisting of zeros only we may
consider the following decompressor:

D(bin(n)) = 000...000 (zeros)

where bir{n) stands for the binary notation of natural numhbeiThe length of the string b{m) is
about log n (does not exceed lgg+ 1). With respect to this description mode, the complexity of
the string consisting af zeros is close to log. This is much less that the length of the string (
On the other hand, all strings containing symbol 1 have i@&icomplexityKp.

It may seem that the dependence of complexity on the choidbeofiecompressor makes
impossible any general theory of complexity. However, itas the case.

Optimal description modes

A description mode is better when descriptions are shoAecording to this, we say that a de-
scription mode (decompress@) is not worsethan a description mode; if

KSp, (X) < KSp,(x) +¢

for some constart and for all string.

Let us comment on the role of the constann this definition. We consider a change in the
complexity bounded by a constant as “negligible”. One caag that such a tolerance makes
the complexity notion practically useless, as the constaran be very large. However, nobody
managed to get any reasonable theory that overcomes thicultyf and defines complexity with
better precision.

Example. Consider two description modes (decompresddisgndD». Let us show that there
exists a description mod2 which is not worse than both of them. Indeed, let

D(0y) = D1(y),
D(1y) = D2(y).

In other words, we consider the first bit of a description &siticlex of a description mode and the
rest as the description (for this mode).

If yis a description ok with respect td4 (or D), then § (respectively, §) is a description of
x with respect td as well. This description is only one bit longer, therefore vave

KSD(X) < KSDl(X) +1
KSD(X) < KSDZ(X) +1

for all x. Thus the mod® is not worse than botB1 andD».

This idea is often used in practice. For instanceip-archive has a preamble; the preamble
says (among other things) which mode was used to compresgdhiicular file, and the com-
pressed file follows the preamble.

If we want to useN different compression modes, we need to reserve initigiNblgits for the
index of the compression mode.

Using a generalization of this idea, we can prove the follmtheorem:

{intro-uni:

Theorem 1 (Kolmogorov-Solomonoff) There is a description mode D that is not worse than any
other one: for every description modé fbere is a constant ¢ such that

KSp(X) < KSpr(x)+¢
for every string x.

A description modé® having this property is calledptimal

< Recall that a description mode by definition is a computabfetion. Every computable
function has a program. We assume that programs are binamgst Moreover, we assume
that reading the program bits from left to right we can deteenuniquely where it ends, that is,
programs are “self-delimiting”. Note that every programmlanguage can be modified in such a
way that programs are self-delimiting. For instance, we aauble every bit of a given program
(changing 0 to 00 and 1 to 11) and append the pattern 01 todts en

Define now a new description modeas follows:

D(py) = p(y)

wherep is a program (in the chosen self-delimiting programmingylaage) and is any binary
string. That is, the algorithnd scans the input string from the left to the right and extracts
programp from the input. (If the input does not start with a valid pragr, D does whatever it
wants, say, goes into an infinite loop.) ThBrapplies the extracted prograpto the rest of the
input (y) and returns the obtained result. (Bds just an “universal algorithm”, or “interpreter”;
the only difference is that program and input are not sepdrand therefore we need to use self-
delimiting programming language.)

Let us show that indeeD is not worse than any other description mdeleLet p be a pro-
gram computing a functioR and written in the chosen programming languagey. if a shortest
description of the string with respect td® thenpyis a description ok with respect td (though
not necessarily a shortest one). Therefore, compar&dtite shortest description is at maosp)
bits longer, and

KSp(x) < KSp(x) +1(p).

6

The constant(p) depends only on the description md@éand not orx). >

Basically, we used the same trick as in the preceding exanmgkead of merging two descrip-
tion modes we join all of them. Each description mode is peefy its index (program, identifier).
The same idea is used in practice.sglf-extracting archivés an executable file starting with a
small program (a decompressor); the rest is consideredoas o that program. The program is
loaded into the memory and then it decompresses the rest fifeh

Note that in our construction optimal decompressor worky \@g on some inputs (some
programs have large running time), and is undefined on sopugsn

Kolmogorov complexity

Fix an optimal description mode and callKSp(x) the Kolmogorov complexitgf the stringx. In
the notatiorKSp(x) we drop the subscrifd and write justKS(x).

If we switch to another optimal description mode, the changsmplexity is bounded by an
additive constant: for every optimal description modlgsand D, there is a constard(D1, D)
such that

|KSp, (X) =KSp,(X)| < ¢(D1,D2)

for all x. Sometimes this inequality is written as follows:
KSp, (X) = KSp,(x) +O(1),

whereO(1) stands for a bounded function xf

Could we then consider the Kolmogorov complexity of a pattc stringx without having in
mind a specific optimal description mode used in the defimibKS(x)? No, since by adjusting
the optimal description mode we can make the complexityabitrarily small or arbitrarily large.
Similarly, the relation “stringcis simpler thary”, that is,KS(x) < KS(y), has no meaning for two
fixed stringsx andy: by adjusting the optimal description mode we can make arthese two
strings simpler than the other one.

One may wonder whether Kolmogorov complexity has any sehsdl.a Let us recall the
construction of the optimal description mode used in theopod the Solomonoff-Kolmogorov
theorem. This construction uses some programming langaegketwo different choices of this
language lead to two complexities that differ at most by astamt. This constant is in fact the
length of the program that is written in one of these two laaggs and interprets the other one. If
both languages are “natural”, we can expect this constdé twt that huge, just several thousands
or even several hundreds. Therefore if we speak about stwhgse complexity is, say, about>.0
(i.e., a text of a novel), or FO(DNA string) then the choice of the programming languageois n
that important.

Nevertheless one should always remember that all statemabout Kolmogorov complexity
are inherently asymptotic: they involve infinite sequenaiestrings. This situation is typical also
for computational complexity: usually upper and lower bdsifor complexity of some computa-
tional problem are asymptotic bounds.

Complexity and information

One can consider the Kolmogorov complexityxods theamount of informationn x. Indeed, a
string consisting of 0s, which has a very short descriptias little information, and a chaotic
string, which cannot be compressed, has a lot of informa@adthough that information can be
meaningless—we do not try to distinguish between meaniragfd meaningless information; so,
in our view, any abracadabra has much information unlesssigshort description).

If the complexity of a stringc is equal tok, we say thak hask bits of information. One can
expect that the amount of information in a string does noeeddts length, that iKS(x) < I(x).

This is true (up to an additive constant, as we have already.sa
{intro-len;
Theorem 2 There is a constant ¢ such that

KS(x) <I(x)+c¢
for all strings x.
< LetP(y) =y for ally. ThenKSp(x) = I(x). By optimality, there exists sormeesuch that
KS(x) < KSp(x)+c=1(x)+c

for all x. >

Usually this statement is written as followlsS(x) < I(x) + O(1). Theorem 2 implies, in par-
ticular, that Kolmogorov complexity is always finite, that every string has a description.

Here is another property of “amount of information” that ares expect: the amount of in-
formation does not increase when algorithmic transforomais performed. (More precisely, the
increase is bounded by an additive constant depending dretiformation algorithm.)

{intro-tra:
Theorem 3 For every algorithm A there exists a constant ¢ such that

KS(A(X)) < KS(x)+c¢
for all x such that Ax) is defined.

< Let D be an optimal decompressor that is used in the definitioneoKtlimogorov complex-
ity. Consider another decompres&ur

D'(p) = A(D(p)).

(We apply firstD and thenA.) If p is a description of a string with respect toD andA(X) is
defined, therp is a description ofA(x) with respect td’. Let p be a shortest description gfvith
respect td. Then we have

KSp/ (A(X)) < I(p) = KSp(x) = KS(X).
By optimality we obtain

KS(A(X)) < KSp/(AX)) +¢ < KS(X) 4 ¢

8

for somec and allx. >

This theorem implies that the amount of information “doesdepend on the specific encod-
ing”. For instance, if we reverse all bits of some string [@ep 0 by 1 and vice versa), or add a
zero bit after each bit of that string, the resulting strirag the same Kolmogorov complexity as
the original one (up to an additive constant). Indeed, thesformation itself and its inverse can
be performed by an algorithm.

Let x andy be strings. How much information has their concatenatigh\We expect that the
guantity of information inxy does not exceed the sum of thosexiandy. This is indeed true,
however, a small additive term is needed.

{intro-pai:
Theorem 4 There is a constant ¢ such that for all x and y

KS(xy) < KS(x) +2logKS(x) +KS(y) +c¢

< Let us try first to prove the statement in a stronger form, attithe term 210¢(S(x). LetD
be the optimal description mode that is used in the definioikiolmogorov complexity. Define
the following description mod®’. If D(p) = x andD(q) =y we considerpq as a description of
xy, that is, we leD’(pg) = xy. Then the complexity oky with respect tdD’ does not exceed the
length of pq, that is,I (p) +1(q). If pandq are minimal descriptions then we obtdS (xy) <
KSp(X) + KSp(y). By optimality the same inequality holds fBrin place ofD’, up to an additive
constant.

What is wrong with this argument? The problem is thais not well defined. We leb’(pq) =
D(p)D(q). HoweverD’ has no means to separgtéom g. It may happen that there are two ways
to split the input intop andq yielding different results:

P1g1 = P20z but D(p1)D(q1) # D(p2)D(02).

There are two ways to fix this bug. The first one, which we use, mmes as follows. Let
us prepend the stringq by the lengthl (p) of string p (in binary notation). This allows us to
separatep andg. However, we need to find whetép) ends, so let us double all the bits in the
binary representation dfp) and then put 01 as separator. More specifically, leflidenote the
binary representation of integkrand letx be the result of doubling each bit ¥a (For example,
bin(5) = 101, andbin(5) = 110011.) Let

D’(bin(l(p)) 01pg) = D(p)D(q).

ThusD' is well defined: the algorith®’ scansin(I(p)) while all the digits are doubled. Once it
sees 01, it determind$p) and then scanig p) digits to find p. The rest of the input ig and the
algorithm is able to compute(p)D(q).

Now we see thaKSp (xy) is at most 2(bin(l(p))) +2+1(p) +1(q). The length of the binary
representation off(p) is at most logl(p) + 1. Thereforexy has a description of length at most
2log, | (p) +4+1(p) +1(qg) with respect td’, which implies the statement of the theorem.

The second way to fix the bug mentioned above goes as follovescdMd modify the defini-
tion of Kolmogorov complexity by requiring descriptionshe “self-delimiting”; we discuss this
approach in detail in Section 4.

Note also that we can exchangeand g and thus prove thakS(xy) < KS(x) + KS(y) +
2log, KS(y) +c

How tight is the inequality of Theorem 4? C#&$(xy) be much less thaKS(x) + KS(y)?
According to our intuition, this happens wherandy have much in common. For example, if
x =Y, we haveKS(xy) = KS(xx) = KS(x) +O(1), sincexx can be algorithmically obtained from
x and vice versa (Theorem 3).

To refine this observation we will define the notion of the ditgrof information in x that
is missing iny (for every stringsx andy). This value is called théhe Kolmogorov complexity
of x conditional to y(or “giveny”). Its definition is similar to the definition of the unconidibal
complexity. This time the decompresddrhas access not only to the (compressed) description,
but also to the string. We will discuss this notion later in Section 2. Here we mamonly that
the following equality holds:

KS(xy) = KS(y) + KS(xy) + O(logn)

for all stringsx andy of complexity at mosn. The equality reads as follows: the amount of
information inxy is equal to the amount of information ynplus the amount of new information
in X ("“new” = missing iny).

The differenceKS(x) — KS(x|y) can be considered as “the quantity of informatiory iabout
X". It indicates how much the knowledge p&implifiesx.

Using the notion of conditional complexity we can ask questilike this: How much new
information has DNA of some organism compared to anothearosgn’s DNA? Ifd; is the binary
string that encodes the first DNA adglis the binary string that encodes the second DNA, then the
value in question i&S(d;|dy). Similarly we can ask what percentage of information has hest
when translating a novel into another language: this péagens the fraction

KS(originaltranslation/ KS(original).

The questions about information in different objects weuelied before the invention of algo-
rithmic information theory. The information was measursthg the notion of Shannon entropy.
Let us recall its definition. Le€ be a random variable that takesvalues with probabilities
P1,-..,Pn.- Thenits Shannon entropy (&) is defined as follows:

= pi(—log; pi).

Informally, the outcome having probability carries(—log, pi) bits of information (=surprise).
ThenH (&) can be understood as the average amount of information int@ome of the random
variable.

Assume that we want to use Shannon entropy to measure thenanfooformation contained
in some English text. To do this we have to find an ensemblextds tend a probability distribution
on this ensemble such that the text is “typical” with resgedhis distribution. This makes sense
for a short telegram, but for a long text (say, a novel) sucarssemble is hard to imagine.

The same difficulty arises when we try to define the amountfofmation in the genome of
some species. If we consider as the ensemble the set of thengerof all existing species (or even

10

all species ever existed), then the cardinality of thisseather small (it does not exceetf® for
sure). And if we consider all its elements as equiprobableafvelse can we choose?) then we
obtain a ridiculously small value (less than 1000 bits).

So we see that in these contexts Kolmogorov complexity Idikiksa more adequate tool than
Shannon entropy.

Complexity and randomness

Let us recall the inequalitiKS(x) < 1(x) + O(1) (Theorem 2). For most of the strings its left hand
side is close to the right hand side. Indeed, the followiageshent is true:

{intro-car
Theorem 5 Let n be an integer. Then there are less tf8rstrings x such that K&) < n.

< Let D be the optimal description mode used in the definition of Kadwrov complexity.
Then only stringD(y) for all y such that (y) < n have complexity less tham The number of
such strings does not exceed the number of stiyrgyech that (y) < n, i.e., the sum

14244484, . 4+271_o"_1

(there are Bstrings for each lengtk < n). >

This implies that the fraction of strings of complexity lesnn — ¢ among all strings of
lengthniis less than 2°¢/2" = 27C. For instance, the fraction of strings of complexity lesst90
among all strings of length 100 is less than'2

Thus the majority of strings (of a given length) are inconsgibkle or almost incompressible.
In other words, a randomly chosen string of the given lengtilinost incompressible. This can
be illustrated by the following mental (or even real) exp®nt. Toss a coin, say, 80000 times and
get a sequence of 80000 bits. Convert it into a file of size 00f}@es (8 bits = 1 byte). One can
bet that no compression software (existing before the efatie experiment) can compress the
resulting file by more than 10 bytes. Indeed, the probakilithis event is less tharr8° for every
fixed compressor, and the number of (existing) compressarstiso large.

It is natural to consider incompressible strings as “rantones: informally speaking, ran-
domness is the absence of any regularities that may allow aerpress the string. Of course,
there is no strict borderline between “random” and “nondian” strings. It is ridiculous to ask
which strings of length 3 (0Q0..,111) are random and which are not.

Another example: assume that we start with a “random” stoigngth 10000 and replace its
bits by all zeros (one bit at a step). At the end we get a cdytaion-random string (zeros only).
But it would be naive to ask at which step the string has becoomerandom for the first time.

Instead, we can naturally define ttedomness deficienof a stringx as the differencé(x) —
KS(x). Using this notion, we can restate Theorem 2 as follows: #melemness deficiency is
almost non-negative (i.e., larger than a constant). Tmed&esays that the randomness deficiency
of a string of lengt is less thard with probability at least - 1/29 (assuming that all strings are
equiprobable).

Now consider the Law of Large Numbers, which says that mosti@h-bit strings have fre-
quency of ones close tg/2. This law can be translated into Kolmogorov complexitygaage as

11

follows: the frequency of ones in every string with smalldamness deficiency is close tg2L
This translation implies the original statement since nodghe strings have small randomness
deficiency. We will see further that actually these formiolas are equivalent.

If we insist on drawing a strict borderline between randord aan-random objects, we have
to consider infinite sequences instead of strings. The natigandomness for infinite sequences
of zeros and ones was defined by Kolmogorov student P. MadinSweden). We discuss it
in Section 3. Later L. Levin and C. Schnorr found a charazéion of randomness in terms of
complexity: an infinite binary sequence is random if and ohtiie randomness deficiency of its
prefixes is bounded by a constant. This criterion, howewss wanother version of Kolmogorov
complexity callednonotoneeomplexity.

Non-computability of KS and Berry’s paradox

Before discussing applications of Kolmogorov compleXgy,us mention a fundamental problem
that reappears in any application. Unfortunately, the fiondS is not computable: there is no
algorithm that given a stringfinds its Kolmogorov complexity. Moreover, there is no corgtlie

nontrivial (unbounded) lower bound f&sS.
{intro-nob

Theorem 6 Let k be a computabl@got necessarily totalfunction from= to N. (In other words,
k is an algorithm that terminates on some binary strings atdms natural numbers as resujts.
If k is a lower bound for Kolmogorov complexity, that igxk< KS(x) for all x such that kx) is
defined, then k is bounded: all its values do not exceed sonstasd.

<1 The proof of this theorem is a reformulation of the so-cafl®erry’s paradox”. This paradox
considers

the minimal natural number that cannot be defined
by at most fourteen English words

This phrase has exactly fourteen words and defines that nuifiines we get a contradiction.

Following this idea consider tHest appearing binary string whose Kolmogorov complexsty i
greater than a given number NBy definition, its complexity is greater thah On the other hand,
this strings has a short description that includes some axeount of information plus the binary
notation ofN (which requires about lgdN bits), and the total number of bits needed is much less
thanN for largeN—a contradiction. How to find such a string? To this end we reeedmputable
lower bound for Kolmogorov complexity.

We proceed as follows. Consider the funct®{iN), whose argumenil is a natural number
and which is computed by the following algorithm:

perform in parallel the computatioké\), k(0), k(1),k(00),k(01),k(10),k(11),...un-
til some stringx such thak(x) > N appears; returr.

If the functionk is unbounded then the functidhis defined on alN andk(B(N)) > N by
construction. Ak is a lower bound foK, we haveKS(B(N)) > N. On the other han&(N) can
be computed given the binary representatior{inof N, therefore

KS(B(N)) < KS(bin(N)) +0(1) < I (bin(N)) + O(1) < log,N + O(1)

12

(the first inequality is provided by Theorem 3, the second isngrovided by Theorem 2; term
O(1) stands for a bounded function). So we obtain

N < KS(B(N)) <log,N+0O(1),

which cannot happen M is large enough>

Some applications of Kolmogorov complexity

Let us start with a disclaimer: the applications we will talkout are not real “practical” applica-
tions; we just establish relations between Kolmogorov demnity and other important notions.

Occam’s razor. We start with a philosophical question. What do we mean whesay that a
theory provides a good explanation for some experimentalZdAssume that we are given some
experimental data and there are several theories to expkoata. For example, the data might be
the observed positions of planets in the sky. We can expt@mtas Ptolemy did, with epicycles
and deferents, introducing extra corrections when need&d.the other hand, we can use the
laws of the modern mechanics. Why do we think that the modwezory is better? A possible
answer: the modern theory can compute the positions of fdaméh the same (or even better)
accuracy given less parameters. In other words, Keplehigeaement is a shorter description of
the experimental data.

Roughly speaking, experimenters obtain binary stringsthedrists find short descriptions for
them (thus proving upper bounds for complexities of thosagt); the shorter the description is,
the better is the theorist.

This approach is sometimes called “Occam’s razor” andiiated to the philosopher William
of Ockham who said that entities should not be multiplieddrelynecessity. It is hard to judge
whether he would agree with such interpretation of his words

We can use the same idea in more practical contexts. Assanedhdesign an automaton that
reads handwritten zip codes on envelopes. We are looking ifole that separates, say, images of
zeros from images of ones. An image is given as a Booleanxi(atria binary string). We have
several thousands of images and for each image we know whetheans O or 1. We want to
find a reasonable separating rule (with the hope that it caappked to the forthcoming images).
What means “reasonable” in this context? If we just list b# tmages in our list together with
their classification, we get a valid separation rule—attlgagorks until we receive a new image—
however, the rule is way too long. It is natural to assume @h@asonable rule must have a short
description, that is, it must have low Kolmogorov complgxit

Foundations of probability theory. The probability theory itself, being currently a part of
measure theory, is mathematically sound and does not ngeskma “foundations”. The difficult
guestions arise, however, if we try to understand why thesity could be applied to the real world
phenomena and how it should be applied.

Assume that we toss a coin thousand times (or test some atware random number gener-
ator) and get a bit string of length 1000. If this string camsaonly zeros or equals 0101010101
(zeros and ones alternate), then we definitely will conctbhd¢the generator is bad. Why?

Usual explanation: the probability of obtaining thousaatbs is negligible (21°°9) provided
the coin is fair. Therefore the conjecture of a fair coin isited by the result of the experiment.

13

On the other hand, we do not always reject the generatore tslsould be some sequence
a of thousand zeros and ones which is consistent with thisectumje. Note, however, that the
probability of obtaining the sequenceas a result of fair coin tossing is also®%. So what is
the reason of our complaints? What is the difference betwsesequence of thousand zeros and
the sequencea?

The reason is revealed when we compare Kolmogorov com@sxif these sequences.

Proving theorems of probability theory. As an example, consider the Strong Law of Large
Numbers. It claims that for almost all infinite binary seqoemthe limit of frequency of 1s in their
initial segments equals/2 (according to the the uniform Bernoulli probability dibtrtion).

In more detail: LetQ be the set of all infinite sequences of zeros and ones. Theromif
Bernoulli measure o is defined as follows. For every finite binary stringonsider the se@y
consisting of all infinite sequences that start withH-or exampleQa = Q. The measure dy is
equal to 2'™®. For example, the measure@f;, which consists of all sequences starting with 01,
equals ¥4.

For each sequenae = wywi . .. consider the limit of the frequencies of 1s in the prefixes
of w, that s,

lim W+ +...+wh-1

N—oco n
We say thatw “satisfies” the Strong Law of Large Numbers (SLLN) if this linexists and is
equal to ¥2. For instance, the sequence 010101having period 2, satisfies the SLLN and the
sequence 011011011, having period 3, does not.

The Strong Law of Large Numbers says that the set of sequémaiedo not satisfy SLLN has
measure 0. Recall that a s&tC Q has measure O if for at > 0 there is a sequence of strings
X0, X1, X2, ... such that

AC QuUQUQU. ..

and the sum of the series
27100) 4 =10a) L p=100)

(the sum of the measures Qf) is less thare.

One can prove SLLN using the notion of a Martin-Lof randomusnce mentioned above. The
proof consists of two parts. First, we show that every Maldiirandom sequence satisfies SLLN.
This can be done using Levin—Schnorr randomness criteffiding(limit does not exist or differs
from 1/2, then the complexity of some prefix is less than it shoulddbefrandom sequence).

The second part is rather general and does not depend orettiés|aw of probability theory.
We prove that the set of all Martin-Lof non-random sequentas measure zero. This implies
that the set of sequences that do not satisfy SLLN is inclunl@dset of measure 0 and hence has
measure 0 itself.

The notion of a random sequence is philosophically intergsh its own right. In the be-
ginning of XXth century Richard von Mises suggested to userbtion (he called it in German
“Kollektiv”) as a basis for probability theory (at that tintee measure theory approach was not
developed yet). He considered the so-called “frequendyilgyé as a main property of random
sequences. We will consider von Mises’ approach to the dieimof a random sequence (and the
subsequent developments) in Sectih

14

Lower bounds for computational complexity. Kolmogorov complexity turned out to be a
useful technical tool in proving lower bounds for compugatl complexity. Let us explain the
idea using the following model example.

Consider the following problem: Initially a stringof lengthn is located in than leftmost cells
of the tape of a Turing machine. The machine has to coflyat is, to gekx on the tape (the string
X is intact and its copy is appended) and halt.

Since the middle of 1960ies it is well known that (one-tape)ifig machine needs time pro-
portional ton? to perform this task. More specifically, one can show thaefa@ry Turing machine
M that does copying (for all stringg there existE > 0 such that for alh there is a string of
lengthn whose copying requires at least® steps.

Consider the following intuitive argument supporting tbigim. The number of internal states
of a Turing machine is a constant (depending on the machiing) is, the machine can keep in its
memory only a finite number of bits. The speed of the head mewtm also limited: one cell per
step. Hence the rate of information transfer (measurdiitircell/step is bounded by a constant
depending on the number of internal states. To copy a strofdengthn, we need to mova bits
by n cells to the right, therefore the number of steps should bpgational ton? (or more).

Using Kolmogorov complexity, we can make this argumentnogs. A string is hard to copy
if it contains maximal amount of information, i.e., its colaty is close ton. We consider this
example in detail in Section 8.

A combinatorial interpretation of Kolmogorov complexity. We consider here one example
of this kind. One can prove the following inequality for colexty of three strings and their
combinations: {intro-trij

2KS(xy2 < KS(xy) +KS(x2) +KS(yz) + O(logn)

for all stringsx, y, z of length at mosh.

It turns out that this inequality has natural interpretasiohat are not related to complexity at
all. In particular, it implies the following geometricalda

Consider a bod$ in a three-dimensional Euclidean space with coordinats @€ OY and
OZ. LetV beB's volume. ConsideB’s orthogonal projections onto coordinate plaesY, OXZ
andOY Z LetS,y, Sz andS,; be the areas of these projections. Then

V2< Sy Se- Sz

Here is an algebraic corollary of the same inequality. FerggroupG and its subgroupX,
Y andZ we have
IXNY[-|XNZ|-[YNZ]|

IXNYNZP?2> ,
G|

where|H| denotes the number of elementdHn

Godel incompleteness theoremFollowing G. Chaitin, let us explain how to use Theorem 6
in order to prove the famous Godel incompleteness theoiidns. theorem states that not all true
statements of a formal theory that is “rich enough” (the fak@rithmetic and the axiomatic set
theory are two examples of such a theory) are provable imthery.

Assume that for every string and every natural number, one can express the statement
KS(x) > nas a formulain the language of our theory. (This statemeysttbeat the chosen optimal

15

decompressob does not outpuk on any input of length at most, one can easily write this
statement in the formal arithmetic and therefore in therssany.)

Let us generate all the proofs (derivations) in our theooking for the proofs of statements of
the formKS(x) > n wherex is some string and is some integer (statements of this type have no
free variables). Once we have found a new theorem of this typeomparen with all previously
foundn’s. If the newn is greater than all previouss we write the newn into the “records table”
together with the corresponding.

There are two possibilities: either (1) the table will growfimitely, or (2) there is the last
statemenKS(X) > N in the table which remains unbeaten forever. If (2) happiese is an entire
class of true statements that have no proof. Namely, alktatements of the foridS(x) > n with
n > N have no proofs. (Recall that by Theorem 5 there are infinitedyly such statements.)

In the first case we have infinite computable sequences oigstxp, X1, X2... and numbers
No < N1 < np < ... such that all statemenksS(x;) > n; are provable. We assume that the theory
proves only true statements, thus all the inequalKi®sx;) > n; are true. Without loss of generality
we can assume that &llare pairwise different (we can omitif there exists) < i such thakj = Xx;;
every string can occur only finitely many times in the seqee@cxy, Xz . . . Sincen; — o asi — o).
The computable functiok, defined by the equatidk(x;) = nj, is then an unbounded lower bound
of Kolmogorov complexity. This contradicts Theorem 6.

16

1 Plain complexity

1.1 The definition and main properties

{simpledf}
Let us recall the definition of Kolmogorov complexity fromethntroduction. This version of
complexity was defined by Kolmogorov in his pioneer pagérlin order to distinguish it from later
versions we call it thglain Kolmogorov complexity. Later we will consider also othersiens
of Kolmogorov complexity, including the prefix one and thermotone one. In this section by
Kolmogorov complexity we always mean the plain one.

Recall that adescription modeor adecompressoiis a partial computable functidd from the
set of all binary string& into =. A patrtial functionD is computabléf there is an algorithm that
terminates and returri3(x) on every inpuk in the domain oD and does not terminate on all other
inputs. We say that is adescriptionof x with respect to Of D(y) = x.

The complexity of a string with respect to description modei®defined as

KSp(x) = min{l(y)|D(y) = x}.

The minimum of the empty set iso.

We say that a description mody is not worsethan a description mod8, if there is a con-
stantc such thakSp, (x) < KSp,(x) + ¢ for all x and write this a¥Sp, (x) < KSp, (x) + O(1).

A description mode is calledptimal if it is not worse than any other description mode. By
Kolmogorov—Solomonoff universality theorem (Theorem J6yoptimal description modes exist.
Let us remind shortly its proof. L&l be an interpreter of a universal programming language, that
is,U (p, x) is the result of the programon inputx. We assume that programs and inputs are binary
strings. Let

D(ﬁx) =U (p,X).

Here p — p stands for any computable mapping having the following prop givenp we can
effectively find p and also the place whepeends (in particular, ipis a prefix ofq, thenp = q).
This property implies thab is well defined. For any description mo& let p be a program of
D’. Then

KSpr(x) < KSp(x) +1(p).
Indeed, for every descriptignof x with respect td’ the stringpyis a description ok with respect
toD.

Fix any optimal description mode and letKS(x) (we drop the subscript) denote the complex-
ity of x with respect td.

As the optimal description mode is not worse than the idgfibction x — X, we obtain the
inequalityKS(x) < 1(x) +O(1) (Theorem 2, p. 8).

Let A be a partial computable function. Comparing the optimatdpson modeD with the
description modg — A(D(y)) we obtain the inequalitiKS(A(x)) < KS(x) + O(1), which can be
interpreted as the non-growth of complexity under algamithtransformations (Theorem 3, p. 8).

Using this inequality, we can define Kolmogorov complexityther “finite objects” like nat-
ural numbers, graphs, permutations, finite sets of strieigs, which can be naturally encoded by
binary strings.

17

For example, let us define the complexity of natural numbésatural numbemn can be
written in binary notation. Another way to represent a nuntlyea string is as follows. Enumerate
all the binary strings in the lexicographical order

A,0,1,00,01,10,11,000,001 010,011 100....

using the natural numbersD2,3,... as indexes. This enumeration is more convenient compared
to binary representation, as it is a bijection. Every stiag be considered as an encoding of its
index in this enumeration. Finally, a natural numheran be represented by a string consisting of
nones.

Using either of these three encodings we can define the caityptd n as the complexity of
the string encodingn. Three resulting complexities aof differ at most by an additive constant.
Indeed, for every pair of these encodings there is an alguoritanslating the first encoding into
the second one. Applying this algorithm, we increase theptexity at most by a constant. Note
that anyway the Kolmogorov complexity of binary strings éfided up to an additive constant.

As the length of the binary representation of a natural numbe equal to logn+ O(1), the
Kolmogorov complexity oh is at most logn+ O(1).

Here is another application of the non-growth of compleuitger algorithmic transformations.
Let us show that deleting the last bit of a string changesadtapiexity at most by a constant.
Indeed, all three functions— x0, X — x1, X — (X without the last bit are computable.

The same is true for the first bit. However this does not applgvery bit of the string. To
show this, consider the stringconsisting of 2 zeros, its complexity is at mo&tS(n) + O(1) <
logn+ O(1). (By log we always mean binary logarithm.) There afed#fferent strings obtained
from x by flipping one bit. At least one of them has complexitgr more. (Recall that the number
of strings of complexity less thamdoes not exceed the number of descriptions of length less tha
n, which is less than2 Theorem 5, p. 11.)

Incrementing a natural numbeiby 1 change&S(n) at most by a constant. This implies that
KS(n) satisfies “Lipschitz property”: for some and for allm,n we have| KS(m) — KS(n)| <
cm—n|.

Prove a stronger inequalitykS(m) — KS(n)| < |m—n| + ¢ for somec and for allm n € N,
and, moreovel,KS(m) — KS(n)| < 2log|m— n| + c (the latter inequality assumes thmat# n).

We have used several times the upper bouhtb2the number of stringg with KS(x) < n.
Note that, in contrast to other bounds, it involves no carmtsta Nevertheless this bound has a
hidden dependence on the choice of the optimal descriptmaemf we switch to another optimal
description mode, the set of stringsuch thaKS(x) < n can change!

Show that the number of strings of complexity less thasin the rangé2"~¢; 2"] for some (4; stribut-
constant for all n. [Hint: the upper bounds proved in Introduction, the lower bound is implieé
by the inequalityKS(x) < |(x) +c: the complexity of all the strings of length less than cis less
thann.]
Show that the number of strings of complexity exactlgioes not exceed"dut can be much
less: e.g., it is possible that this set is empty for infiitelanyn. [Hint: Change an optimal
description mode by adding 0 or 11 to each description, dathdescriptions have even length.]

18

Prove that the average complexity of strings of lengtis equal ton+ O(1). [Hint: let
ay denote the fraction of strings of complexity- k among strings of length. Then the average
compexity is bys kay less tham. Use the inequalityr, < 2K and the convergence of the series
s k/2K]

In the next statement we establish a formal relation betwg@er bounds of complexity and
upper bounds of cardinality.

{average-p:

{simple-upj
Theorem 7 (a)The family of sets;S= {x| KS(x) < n} is enumerable an{,| < 2" for all n. Here
|Sy| denotes the cardinality of,S
(b) IfV, (n=0,1,2,...) is an enumerable family of sets of strings awgl < 2" for all n, then
there exists c such that K®) < n-+c for all n and all xe V.

In this theorem we use the notion of an enumerable family &f deis defined as follows. A
set of strings (or natural numbers, or other finite objestshumerablé=computably enumerable
if there is an algorithm generating all elements of this setdme order. This means that there is
a program that never terminates and prints all the eleménkeset in some order. The intervals
between printing elements can be arbitrarily large; if theisfinite, the program can print nothing
after some time (unknown to the observer). Repetitions lboe/@d but this does not matter since
we can filter the output and delete the elements that havadyliegeen printed.

For example, the set of afl such that the decimal expansiong® has exactlyr consecutive
nines is enumerable. The following algorithm generatesstite compute decimal digits af2
starting with the most significant ones. Once a sequence rifemnitiven nines surrounded by
non-nines is found, prirmt and continue.

A family of setsV, is called enumerable if the set of pa{i&),x) | x € V} is enumerable. This
implies that each of the se¥4 is enumerable. Indeed, to generate elements of the,sketr a
fixed n we run the algorithm enumerating the $éb,x) | x € i3} and print the second components
of all the pairs that hava as the first component. However, the converse statement isu®
For instance, assume thét is finite for everyn. Then every, is enumerable, but at the same
time it may happen that the sétn,x) | x € i} is not enumerable (say, = {0} if n € Sand
Vi, = @ otherwise, wheré& is any non-enumerable set of integers). One can verify tliamaly
is enumerable if and only if there is an algorithm that givag afinds a program generating,.

A detailed study of enumerable sets can be found in everpaoekton computability theory, for
instance, inP].

< Let us prove the theorem. First, we need to show that thé(sex) | x € S} = {(n,x) |
KS(x) < n}, wheren is a natural number andis a binary string, is enumerable.

Let D be the optimal decompressor used in the definitioK®f Perform in parallel the com-
putations ofD on all the inputs. (Say, fat=1,2,... we makek steps ofD onk first inputs.) If
we find thatD halts on somg and returns, the generating algorithm outputs the pgily) + 1,X).
Indeed, this implies that the complexity »fs less tharn(y) + 1, asy is a description ok. Also it
outputs all the pairgl (y) + 2,x), (I(y) + 3,x) ... in parallel to printing of other pairs.

For those familiar with computability theory, this proofiche compressed to one line:

KS(x) < n< 3y(l(y) < nAD(y) =X).

19

(The set of pairgx,y) such thaD(y) = xis enumerable, being the graph of a computable function.
The operations of intersection and projection preservenemability.)

The converse implication is a bit harder. Assume Wats an enumerable family of finite
sets of strings an@,| < 2". Fix an algorithm generating the sgfn,x) | x € Via}. Consider the
description mod®y, that deals with strings of lengthin the following way. Strings of length
are used as descriptions of stringsvn More specifically, letx, be thekth string inV, in the
order the pairgn,x) appear while generating the sgh,x) | x € \,,}. (We assume there are no
repetitions, sop, X1, X% . .. are distinct.) Lety be thekth string of lengthn in the Iexicographical
order. Thenyy is a description of, that is,D(yk) = Xk. As |Vn| < 2", every string inV, has a
description of lengtim with respect tdD.

We need to verify that the description mddeg defined in this way is computable. To compute
Dy (y) we find the index of y in the lexicographical ordering of strings of lendtly). Then we
run the algorithm generating paifs, x) such thak € V,, and wait untilk different pairs having the
first component(y) appear. The second component of the last of thely/(y/).

By construction, for alk € V, we haveKSp, (x) < n. ComparingDy with the optimal descrip-
tion mode we see that there is a constastich thatKS(x) < n+c for all x € V,. Theorem 7 is
proven.>

The intuitive meaning of Theorem 7 is as follows. The assesti‘the number of strings with
certain property is small” (is less thah) and “all the strings with certain property are simple” (eav
complexity less thar) are equivalent provided the property under considerasienumerable and
provided the complexity is measured within to an additivestant (and the number of elements is
measured within to a multiplicative constant).

Theorem 7 can be reformulated as follows. [£ét) be a function defined on all binary strings
and taking as values natural numbers and a special vatuéNe call f upper semicomputahler
enumerable from aboyé there is a computable functiofx, k) — F(x, k) defined on all stringg
and all natural numbeissuch that

F(x,0) > F(x,1) > F(x,2) > ...

and
f(x) = lim F(x,k),

k— o0

for all x. The values of are natural numbers as well aso. The requirements imply that for
everyk the valueF (x,k) is an upper bound of (x). This upper bound becomes more precis& as
increases. For evewythere is & for which this upper bound is tight. However, we do not know
the value of thak. (If there is an algorithm that given amyfinds suchk, then the functionf is
computable.) Evidently, any computable function is upgenisomputable.

A function f is upper semicomputable if and only if the set

Gr = {(xn) | f(x) <n}

is enumerable. This set is sometimes called the “upper goagh, which explains the strange
names “upper semicomputable” and “enumerable from above”.

20

Let us verify this. Assume that a functiohis upper semicomputable. L&t(x k) be the
function from the definition of semicomputability. Then wavie

f(x) <n< IKF(xK) <n.

Thus, performing in parallel he computationsFofx, k) for all x andk, we can generate all the
pairs in the upper graph df.

Assume now that the s&; is enumerable. Fix an algorithm enumerating this set. Tiedinel
F(x,k) as the best upper bound bfobtained aftek steps of generating elements@j. That is,
F(x,k) is equal to the minimah such that the paifx,n+ 1) has been printed aftérsteps. If there
is no such pair, IeF (x, k) = +oo.

Using the notion of an upper semicomputable function we eformulate Theorem 7 as fol-
lows.

{simple-upj
Theorem 8 (a)The function KS is upper semicomputable &hd KS(x) < n}| < 2" for all n.

(b) If a function KS is upper semicomputable andlx | KS'(x) < n}| < 2" for all n, then

KS(x) < KS'(x) + ¢ for some c and for all x.

Note that the upper bound Bf the cardinality of {x | KS'(x) < n}| in item (b) can be replaced
by a weaker upper bour@(2").

Theorem 8 allows to define Kolmogorov complexity as a miniogalto an additive constant)
upper semicomputable functi¢hthat satisfies the inequalityx | K(x) < n}| = O(2"). One can
replace the requirement of minimality in this definition bynge other properties &S. In this
way we obtain the following “axiomatic” definition of Kolmagov complexity.

{simple-ax:
Theorem 9 Let K be any function defined on binary strings and taking ratvalues. Assume
that K satisfies the following properties:

(a) K is upper semicomputabléenumerability axiom]

(b) for every partial computable function A fromto = the inequality KA(x)) < K(x) +c is
valid for some c¢ and all x in the domain of fsomplexity non-increase axiom]

(c) the number of strings x such thatX < nis in the rangg2"°; 2] for some g, c, and
for any n.[calibration axiom]

Then K(X) = KS(x) +O(1), that is, the differencé (x) — KS(x)| is bounded by a constant.

< Theorem 8 implies thaS(x) < K(x) +0O(1). So we need to prove th&i(x) < KS(x) +
O(1).
Lemma 1. There is a constamtand a computable sequence of finite sets of binary strings

MoCMi1CMoC...

with the following properties: the séf; has exactly 2strings and< (x) < i + ¢ for all x € M; and
alli.

Computability ofMg, M1, My, ... means that there is an algorithm that given acgmputes the
list of elements ofV;.

21

Proof. By axiom (c) there exists a constansuch that for ali the setA; = {x | K(x) <i+c}
has at least'2lements. By item (a) the famil is enumerable. Remove frof all the elements
except 2 strings generated first. L&; denote the resulting set. The list of the element8iof
can be found givein we wait until the first 2strings are generated. The 8tis not necessarily
included inB; ;. To fix this we defineV; inductively. We letMy = By, and we letV; .1 be equal
to M; plus any d elements 0B that are outsid®l;. Lemma 1 is proved.

Lemma 2. There is a constamtsuch thak (x) < [(x) 4 c for all x (recall thatl (x) denotes the
length ofx).

Proof. Let Mg, M1,Ma, ... be the sequence of sets from the previous lemma. There isa com
putable one-to-one functiof defined on the union of aM; that mapavi;, 1 \ M; onto the set of
binary strings of length. (Recall that the se¥;,1 \ M; has exactly 2strings.) By item (b) we
haveK (A(y)) < K(y) +c for somec’ and allx. For allx of lengthi there isy € M;; 1 \ M; such that
A(y) = xhenceK(x) < K(y) +c <i+cfor somecand alli. Lemma 2 is proved.

Let us finish the proof of the theorem. LBtbe the optimal description mode and [ebe a
shortest description ofwith respect td. ThenK(x) = K(D(p)) < K(p)+0(1) <1(p)+0O(1) =
KS(x) +O(1). Note that we have used twice the property (b): in the prodfeshma 2 and just
now.

Assume that strings over the alphal@il, 2, 3} are used as descriptions. Prove that in this
case the Kolmogorov complexity, defined as the length of floetest description (with respect to
an optimal description mode) is equal to the half of the ragabmplexity.

(Continued.) Formulate and prove a similar statement fenttetter alphabet.

[6] Assume thatf: N — N is a total computable increasing function and limfif + {complexity
1)/f(n) > 1. LetA, be an enumerable family of finite sets such ti#at < f(n) for all n. Prove
that there is a constantsuch thaKS(x) < log f(n) +c for all nand allx € A.

Prove that for some constaatand for everyn the following holds. For every string
of lengthn one can flip a bit inx so that the resulting string satisfies the inequaliti(S(y) <
n—logn+c. [Hint. For a given naturak consider a Boolean matrix of siZex (2" —1) whose
columns are all nonzero strings of lendgth(Such matrix is used for Hamming codes.) Consider
the linear mapping?—1 — BX defined by this matrix, wher® denotes the field0, 1}. It is easy
to verify that for every vectox one can flip one bit ixx so that the resulting stringis in the kernel
of this mapping, and the elements of the kernel have comtylakimost # — k+O(1). This gives
the desired result fan = 2K — 1; if n has not the form'2— 1 we can flip one of the first2- 1 bits
for an appropriaté.]

1.2 Algorithmic properties
{simpleal}
The functionKS is upper semicomputable. On the other hand, it is not conbfeitand, moreover,
it has no unbounded computable lower bounds (Theorem 6 o 1iglg
This implies that all optimal description modes are nea@ygsaon-total, that is, some strings
describe nothing. Indeed, if a description mdalés total then we can comput€Sp(x) just by
trying all descriptions in the lexicographical order umi# find a shortest one.

22

At first glance, this contradicts to our intuition: the bigglee domain oD is, the betteD is.

If optimal decompressdD is undefined on some stringthen we can define another description
modeD’ as follows. LetD’(y) be equal to a stringof complexity (with respect t®) greater than
I(y) and letD’ coincide withD on all other strings. The description moBeéis a bit better than
D, as the complexity of all strings exceptemains the same while the complexityzifias been
decreased.

There is no formal contradiction here, Bsis still not worse tharD’ (the difference is only
for one point, bounded by a constant, and bbttand D’ are optimal). However, this is still
a bit strange. This observation was made by Yu. Manin in hiskbComputable and non-
computable” P] (by the way, in this book he also discussed the power of quartomputers
long before quantum computing became fashionable).

Note that the domain of every optimal description mode isagrthble. (The set of strings is
calleddecidabléf there is an algorithm that for any given string decides thkeit belongs to the
set or not.) Indeed, if there were an algorithm deciding WedD(x) is defined or not, then there
would be a total computable extension®{sayD(x) = O for all x outside the domain dd). This
extension would be a total optimal description mode, bt thimpossible as we have seen.

As a byproduct we get an algorithm whose domain is undecgdabhis is one of the central
theorems in computability theory (see, for examph). [

Below we consider other applications of Kolmogorov compiex Computability theory.

Simple strings and simple sets

In this section, the word “simple” has two unrelated measingirst, when applied to strings,
it means that the Kolmogorov complexity of the string is dm&lecond, it is applied to sets of
strings. The notion of a simple set was introduced by an Araerlogician Emil Post and has no
relation to Kolmogorov complexity.

Definition. An enumerable se&i is simple(according to Post) if its complement is infinite but
has no infinite enumerable subsets.

Call a stringx “simple” if KS(x) < 1(x)/2.

{simple-set
Theorem 10 The set of all “simple” strings is simple in the sense of Post.

< That setSof all “simple” strings is enumerable. Indeed, the functi® is upper semicom-
putable. Run an algorithm that generates all the pains) such thatKS(x) < n. Once we see a
pair (x,n) with n < 1(x) /2 we printx.

The number of strings of complexity less thaf2 does not exceed'Z. Therefore the fraction
of “simple” strings among strings of lengthis negligible, and the complement &fs infinite.

Assume now that the complement®has an infinite enumerable sub&etWe can us€ to
obtain a computable unbounded lower bound8t To find a string of complexity greater than
we can generate elements@intil we find a stringc; of length greater thant2 As C is infinite,
there is such string. The complexity gfis greater tham, otherwisec; is simple. Without loss of
generality we can assume that the strings = 1,2,... are pairwise different. Thus the function

23

¢ — t is a computable unbounded lower bound@&. This contradicts to Theorem 6 (page 12).
Theorem 10 is proved-

Note that the choice of the bout¢k) /2 in the definition of a simple string was not essential.
The proof Theorem 10 would work as well witfx) — 1 or loglod (x) in place ofl (x)/2.

Complexity of large numbers

Let us identify a natural numben with the binary string having indem in the standard enumer-
ation of binary strings. In this wal{S becomes a function of a natural argument. The function
KS(m) goes to infinity asn — . Indeed, for alin there are only finitely many integers of com-
plexity less tham. However the convergence is not effective. That is, thereiglgorithm that
for every givenn finds a numbeN such that the complexity dil and of all larger numbers is
bigger tham. Indeed, such an algorithm would provide an effective wagldscribe the number
N, whose complexity is at leasfin logn+ O(1) bits. We have seen this in the proof of Theorem 6
on page 12.

In this section, we study in detail the rate of convergendé®fo infinity. For every naturah
consider the largest numbBIi(n) whose complexity is at most

B(n) =max{me N | KS(m) < n}

The functionn — B(n) may be called the “regulator” of the convergencek&(m) to infinity.
Indeed K (x) > nfor all x > B(n). It can happen, for small values ofthatKS(m) > n for all m.
In this case we leB (n) = —1.

KS(m),

Figure 1: The definition 0B (n): the valueKS(m) does not exceed— 1 form= B (n—1) (the case
whenKS (B (n—1)) =n—1is shown), an&kS(m) > nfor allm> B (n—1). Atthe pointm=B (n)
the value ofKS does not exceed (the case wheKS(B (n)) = n is shown), andKS(m) > n for
all m> B(n). The case wheKS(m) is even greater than+ 1 for all m > B (n) is shown, thus
B(n+1)=B(n). Forme (B(n—1),B(n)] the value of the functioKS- (m) is equal ton.

The functionB is in a sense an inverse function to the functi@ (N) = min{KS(m) | m>
N}. The functionKS increases very slowly. It takes the valuen the segmenB (n—1),B(n)].
The slow increase dfkS- corresponds to the fast increaseBof The latter can be illustrated by
the following

24

Theorem 11 Let f be a computable function frobito N. Then B(n) > f(n) for all but finitely
many n.

Note thatf may be a partial function. In this case we claim tB&nh) > f(n) for all sufficiently
largen that are in the domain of.
<1 As algorithmic transformations do not increase complefattysome constard for all n we
have
KS(f(n)) <KS(n)+0(1) < logn+-c.

On the other hand, the definition Bfand the inequalityf (n) > B (n) imply KS(f(n)) > n. Thus
n< KS(f(n)) <logn+c

wheneverf (n) > B (n). This can happen only for finitely mamy >

Let us reformulate the definition & (n) as follows. LetD be the optimal description mode
used in the definition of Kolmogorov complexity. ThBrin) is the maximal value ob on strings
of length at mosh:

B (n) = max{D(x) | |(x) < n}.

Recall that we identify natural numbers and binary stringd eonsider the values &f as natural
numbers. The minimum of the empty set is defined-as

Consider now any partial computable functibn= — N in place ofD and let

Bg(n) =max{d(x) | I(x) < nandd(x) is defined.

Next theorem shows that the functi@his the largest function among all functiolg, in the
following sense:

Theorem 12 For every function d there is a constant ¢ such that® < B (n+c) for all n.

< For everyx of length at mosh the complexity ofd(x) is less tham+- ¢ for some constart.
Indeed, the complexity afi(x) exceeds at most by a constant the complexity,ofhich is less
thann+ O(1). Henced(x) does not exceed the largest number of complexityc or less, i.e.,
B(n+c). >

This observation is useful in the following particular caket M be an algorithm an& a set
of binary strings. Ahalting problemfor M restricted taX is the following problem: given a string
x € X, find out whetheM terminates orx or not.

A classical result in computability theory states that fome algorithmM the unrestricted
halting problem X = =) for M is undecidable.

We are interested now in the case whérs the set of all strings of bounded length. Fix some
algorithmM and consider the running timeéx) of M for some inputx. If M does not halt orx,
thent(x) is undefined. Thus the domainstadndM coincide. By definitionB¢(n) is the maximal
running time ofM on inputs of length at most. If we know B¢(n) or any larger numbem, we
can solve the halting problem fof and every inpuk of length at mosh: RunM on inputx if the
computation does not terminate afteisteps, it never terminates.

We have seen thd&(n) < B(n+ c) for some constant (depending orM). Therefore the
knowledge ofB (n+ c) or any greater number is enough to solve the halting problei on
inputs of length at most. In other words, the following holds:

25

Theorem 13 For every algorithm M there is a constant ¢ and another algon A having the
following property. For every n and for every number B (n+ c) the algorithm A, given n and t,
produces the list of all strings x of length at most n such Mdtalts on input x.

This theorem says that the halting problem for inputs of flereg mostn is reducibleto the
problem of finding a number greater thBiin+ c).

If M is the optimal decompressbrthen the converse is also true: giveand the list of all
stringsx of length at mosh in the domain oD we can findB (n).

Continuing this argument, we can show the following:

{b-versus-1

Theorem 14 Let BB(n) denote the largest running time of the optimal decompreBsom strings
of length at most ifin the domain of). Then

BB(n) <B(n+c) and B(n)<BB(n-+c)
for some c and all n.

< Let an be the most time-consuming description of length at nmpshat is, the string of
length at mosh in the domain ofD that maximizes the running time &f on x. The list of all
strings of length at mostin the domain oD, and hence the numbBB (n), can be found given
andap. This information can be encoded in one string of lengthl, the string 0..01a,, (there
aren—I(ap) zeros in the beginning). Thus Kolmogorov complexityBd (n) is at mosin+ O(1),
and thereforéB (n) < B (n—+ c) for somec and alln.

Let us prove the second inequality of the theorem. GiventamyBB (n) andn we can find
a string of complexity bigger tham we runD on all inputs of length at most within t steps to
find the list of all strings of complexity at mostand then take the first string that is not listed.
SoKS(t) bits plus 2log bits for self-delimiting description afi are enough to specify a string of
complexity greater than. ThereforeKS(t) > n—2logn—O(1) for all t > BB(n). This implies
thatBB (n) > B (n—2logn—c).

This inequality is weaker than claim@&B (n) > B (n—c). To get rid of the term 2log note
that actually we do not need to knawexactly. It is enough to know any > n. Indeed, we can
run D on all inputs of length at most within t steps and then take the first string that has not
appeared as the output bf

As suchn’ we can take itself. Indeed, we have> BB(n) > B (n—2logn—c) >> n provided
nis large enough. Thus given evary- BB (n) we can find a string of complexity bigger than
therefore the complexity dfis at leash— O(1). HenceBB(n) > B(n—0O(1)). >

This theorem shows that, within to an additive constant enatgumentB(n) is the maximal
running time of the optimal decompressor on descriptioriemjth at mosh. A similar function
appeared in the literature under the name of “busy beavetiani. It is defined as the maximal
number of 1s on the tape of Turing machine witktates and binary tape alphabet (1 and blank)
after it terminates (starting with blank tape).

More generally, givem and any object from the following list we can find any otheremb
from the list for a little bit smaller value af:

26

(a) the list of all strings of Kolmogorov complexity at mastvith their Kolmogorov complexities;
(b) the number of such strings;

(c) the numbeB (n);

(d) the numbeBB (n);

(e) the list of all strings of length at mostin the domain of the optimal decompressor (the halting
problem for the optimal decompressor restricted to inptitsr@th at mosn);

() the number of such strings;
(g) the most time-consuming description of length at nmpst
(h) the graphry, of the functionKS(x) on stringsx of lengthn;

(i) the lexicographically first string, of lengthn with Kolmogorov complexity at least (it exists
since the number of strings of complexity less tinda less than 2).

More specifically, the following statement holds.

{quasi-ome;

Theorem 15 The complexity of all objects in itere)—(i)is equal to i+ O(1). They are equivalent
to each other in the following sense: Laf ahd ¥, are objects from any two of itenfg)—(i). Then
there is a constant ¢ and an algorithm that given n apdixds ¥,_c.

< The equivalence of (d), (e), (f) and (g) is easy. Each of theatb (d), (e), (f) and (g)
together withn determines the list of all terminating computations of tipéirnal decompressor
D on strings of length at most Indeed, knowindB (n) we can rurD on all inputs of length at
mostn for BB (n) steps. Knowing (e), that is, the list of strings of length a&tstm in the domain
of D, we can rurD on all those strings until all the computations terminated(ave know that this
happens). Knowing (f), the number of strings on whizlherminates, we ru on all strings of
length at mosh until the desired number of computations do terminate. Kingwhe string (g),
we runD on that string, count the number of steé@sd then rurD on all other strings of length at
mostn for t steps.

Conversely, the list of all halting computations of the ol decompressdD on strings of
length at mosh together withn identifies each of the objects (d)—(g), as well as the objagtfc).
Therefore, by transitivity (which is easy to check) all thgexts (d)—(g) are equivalent.

Let us prove now that (a)—(c) are equivalent to each otheegnd/alent to (d)—(g). Given the
list of strings of complexity at most we can find the number of them ((a(b)) and the largest
number of complexity at most ((a)—(c)).

It is not that easy to find (a) given (b) and Givenn and the number of strings of complexity
at mostn we can reconstruct the list of these strings (generating tinatil we obtain the desired
number of strings). But we still do not know Kolmogorov comty of the generated strings.
We will prove the implication (¢}+(a) indirectly, by showing (¢):(d); we know already that (d)
implies (a). This will prove that all objects (a)—(g) are aglent.

27

The implication (c}-(d) follows from Theorem 14. GiveB (n), we can find an upper bound
for BB(n— c) (for appropriatec). Thus we can findBB (n— c) as follows: runD on all inputs of
length at mosh — c within B (n) steps. Then findB (n— c) as the number of steps in the longest
run.

It remains to consider the objects (h) and (i). The implmaga)—(h) is easy. Indeed, for some
constant the complexity of every string of lengtih— ¢ does not exceed. If we know the list (a)
andn, then removing all the strings of length different frem c from the list, we get (h) fon—c.

The conversion (k) (i) is straightforward.

Thus it remains to prove (»(a). It is enough to show that given the lexicographicallgtfir
string y, of lengthn and complexity at least we can findBB(n— O(1)) or a number greater
thanBB (n—O(1)). This can be done as follows.

Giveny, find nand for each string of lengthn precedingy, in the lexicographical order find a
descriptionpy of x that has lengtim or less, and find out the running timyeof D on py. (Note that
px may be not the shortest descriptiorxgfLet T be the maximum df for thosex. We claim that
T > BB(n— c) for somec that does not depend an Assume that this inequality is false, that is,
T < BB(n—c). We will prove that thert is small. Consider the most time-consuming description
0nh—c of length at mosh — c; let n— c—d be its length. Giverm,_c andc+ d we can findn and
BB (n—c). From this we can fingi,: runD on all strings of length at mostwithin BB (n—c) steps.
Consider all the strings of lengtifor which we have found descriptions of lengtbr less. Thery,
is the lexicographically first remaining string (sinte< BB (n— c) according to our assumption).
As the complexity ofy, is at leash we haven < KS(y,) < (n—c—d)+2log(c+d)+0O(1), hence
(c+d)=0(1).

We have thus proved the equivalence of objects (a)—(h)nlanes to prove that complexity of
each of them i+ O(1).

Let X, be one of objects (a)—(h). We have just proved ¥yatan be obtained frormg.c andn
(actually, we do not nee asn = | (yn+¢) —). ThereforeKS(Xn) < KS(¥htc) +0O(1) <n+0(1).

To prove the lower bound &S (X,) letn—d be the complexity oK. For some constaitthe
string yh_c can be obtained from the shortest descriptioXpbf lengthn—d and fromd (note that
n can be retrieved from the length of the shortest descrigimhd). Thus,n—c < KS(yh—¢) <
(n—d)+2logd+O(1). Therefored < 2logd +c+ O(1) and hencel = O(1). >

The objects in Theorem 15 depend on the choice of the optig@rdpressor. In the proof
we assumed that the same optimal decompressor is used ireatems (a)—(h). Prove that the
statement of the theorem remains true if different decosgmes are used.

@ Prove that the complexity of all the objects in Theorem 1%bsesO(logn), if we relativize
the definition of Kolmogorov complexity b/, that is, if we allow the decompressor to query the
oracle for the halting problem.

We have seen that there exist a constaantd an algorithnf\ that given the stringy, solves the
halting problem for the optimal decompressor on inputs pgte at mosh — c. This means that
given an “oracle” that findg, for every givem we can solve the Halting problem. The same can be
done given an oracle deciding whether a given striig“incompressible”, that iS(x) > [(x).
Indeed, using that oracle we can fipdby probing all strings of length.

28

Using the terminology of computability theory, we can sagtthalting problem isTuring
reducibleto the set of incompressible strings. This implies thatihglproblem is also reducible
to the “upper graph” oKS, that is, to the sef(x,k) | KS(x) < k}. Using the terminology of
computability theory we can say that the set of compresstrlags isTuring completan the
class of enumerable sets (this means that it is enumerabléhanthe halting problem is Turing
reducible to it).

Find an upper bound for the number of oracle queries (for étd (x,k) | KS(x) < k})
needed to solve the halting problem for a fixed macivhand for all strings of length at most

Let f be a computable partial function fromto N. Prove that there is a constansuch
that for alln such thatf (B (n)) is defined we havB (n+c) > f(B(n)). [Hint: the complexity of
f(B(n)) is at mosin+O(1).]

Call a setU r-separable[?] if every enumerable sat disjoint with U can be separated
from U by a decidable set, that is, there is a decidabl&gsbat included/ and is disjoint withJ.

(a) Prove that the the sétx k) | KS(x) < k} (the upper graph oKS) is anr-separable set.
[Hint: assume that this set is disjoint with an enumerabl&/sd@ he set of the second components
of pairs inV is finite, otherwise we get an unbounded computable lowentddor KS. That is,V
is included in a horizontal strip of finite height. The intecton of the strip with the upper graph
is finite.]

(b) We say that a seif; is mrreducible to a set), if there is a total computable functioh
such thatu; = f‘l(Uz). Prove that ifU, is r-separable ant; is mrreducible toU, thenU; is
r-separable as well. [Hint. ¥ is an enumerable set disjoint with thenf (V) is an enumerable
set disjoint withU,. If Ris a decidable set separatifigv) andU, then f ~1(R) is a decidable set
separatiny andU1.]

(c) Prove that there is an enumerable set that ig +safparable (such set does neteduce to
the upper graph dkS). [Hint: there is a pair of disjoint enumerable inseparaats.]

This problem shows how Kolmogorov complexity can be usedaiestruct an enumerable
undecidable set that is notcomplete.

Theorem 15 selects some very special objects among alltsly&écomplexityn (in fact, one
object up to equivalence described above). At first glartde,deems strange: our intuition says
that all “random” strings of length should be indistinguishable. (A string of lengtlrs “random”
ifits complexity is close tm.) If there is a property that distinguishes a string of léngirom other
strings then this property can be used to compress the sHimgever we have found a very special
random stringy, of lengthn. This paradox can be explained as follows: the individuapprty
of y, does allow to find a short description gf but we need the oracle f@ to decompress that
description.

We will come back to this question in Section 5.7 discussiihg ‘number of wisdomQ and
in Section?? studying two-part descriptions.

Finally, let us note that although all the objects in TheodBrare equivalent, they have very
different lengths. The lengths of (a), (b), (e)—(i) is abowvhile the length of (c¢) and (d) grows
faster than every computable functionrof

29

2 Complexity of pairs and conditional complexity
{condition:

2.1 Complexity of pairs
{conditp}
As we have discussed, we can define complexity of any consteuabject using (computable)

encodings by strings. In this section we deal with pairs ohgs. A pairx,y can be encoded,
e.g., by a strindx,y] = x01y; hereXx stands forx with doubled bits. Any other computable en-
codingx,y — [x,y] could be used (of course, we need thay| # [X,y] if x# X ory #Y). Any
two encodings of this type are equivalent (there are tréinslalgorithms in both directions), so
Theorem 3 (p. 8) guarantees that complexities of the difftszacoding of the same pair differ by
O(1).

So let us fix some encoding, y|. Kolmogorov complexity of a pair,xis defined a&S([x,y]).
Notation:KS(x,y). Here are some evident properties:

o KS(x,X) = KS(x) +0O(1);
e KS(x,y) = KS(y,x) +O(1);
e KS(x) <KS(x,y)+0(1); KS(y) < KS(x,y) +O(1).

The following theorem gives an upper bound for the compyexdta pair in terms of complex-

ities of its components:
{condit-pa:
Theorem 16

KS(x,y)
KS(x,y)
KS(x,y)

KS(x) 4+ 21ogKS(x) + KS(y) + O(1);
KS(x) 4+ logKS(x) + 2loglogKS(x) + KS(y) + O(1);
KS(x) +logKS(x) + loglogKS(x) 4 2logloglogkS(x) + KS(y) + O(1);

NN N

(We can continue this sequence of inequalities indefinitllyo, one can exchangeandy.)

< This proof (for the first inequality) was already explainedhe Introduction (Theorem 4,
p. 9). The only difference is that we considered the conedit@nxy instead of a pair. Let us repeat
it for pairs.

A computable mapping+— X (herex andxare binary strings) is called@efix-free encoding
if for any two different string< andy the stringx’is not a prefix of the string. {In particularx=y
if X y.) This guarantees that boxtandy can be uniquely reconstructed from ~

An examplex — X01, wherex stands forx with doubled bits, is a prefix-free encoding. Here
the block 01 are used as a delimiter. However, this encodimpi the most space-efficient one,
since it doubles the length. A better prefix-free encoding:

X — X = bin(I(x)) 01x
(bin(l(x)) is the binary representation of the lengtk) of the stringx). Now

I (X) =1(x) +2logl (x) + O(1).

30

This trick can be “iterated”: for any prefix-free encodixg- X we can construct a new (and also
prefix-free) encoding

X~ bin(I (x))x.

Indeed, if a stringbm))x is a prefix oibm))y, then one of the stringﬁm)) andbm))
is a prefix of the other one, and therefore (bix)) = bin(l(y)). Thereforex is a prefix ofy, and
[(x) =1(y), sox=y. (In other terms, we uniquely determine the length of thagtrsince a
prefix-free code is used for it, and then get the string itsetfiwing where it ends.)

In this way we get a prefix-free encoding such that

I(X) = 1(x) +logl (x) + 2loglogl (x) + O(1),
then (one more iteration)
| (X) = I(x) +logl(x) + loglogl (x) + 2logloglodl (x) + O(1)

etc.
Now we return to the proof. LeD be the optimal decompressor used in the definition of
Kolmogorov complexity. Consider a decompresBbodefined as follows:

D'(pa) = [D(p),D(q)];

wherep’is a prefix-free encoding ard -] is the encoding of pairs (used in the definition of pairs
complexity). Sincepis a prefix-free encodind)’ is well defined (we can uniquely extraptolt
of pQ).

Let p and g be the shortest descriptions wfandy. Thenpg is a description ofx,y|, and
its length is exactly as we need in our theorem. (The moratitar we use for the prefix-free
encoding, the better bound we have.)

Theorem 16 implies that

KS(x,y) < KS(x) +KS(y) + O(logn)

for stringsx andy of length at mosh: one may say that the complexity of a pair does not exceed
the sum of the complexities of its component with logaritbipriecision.

A natural question arises: is it true tHé6(x,y) < KS(x) + KS(y) + O(1)?

A simple argument shows that this is not the case. Indeed, iti@quality would imply
KS(x,y) < I(x)+1(y)+0O(1). Consider somdl. For eacmn=0,1,2,...,N we have 2 stringsx of
lengthn and V=" stringsy of lengthN —n. Combining them, we (for a givem) obtain 2 different
pairs(x,y). The total number of pairs (afi=0,1,...,N give different pairs) igN + 1)2N.

Assume that indeel{ (x,y) < I(x) +1(y) +O(1) = N+ O(1) for all these pairs. Then we get
(N+1)2N different stringgx, y] of complexity at mosN +O(1), but this is impossible (Theorem 7,

p. 19, gives the upper bour@(2V)).

Prove that there is no constansuch that {condi tp-n¢

KS(x,y) < KS(X) 4 logKS(x) +KS(y) +c¢

31

for all xandy. [Hint: ReplaceKS in the right hand side blyand count the number of corresponding
pairs.]

Give a (natural) definition of complexity for triples of stgs (instead of pairs). Prove that
KS(x,y,z) < KS(x) +KS(y) + KS(z) + O(logn) for stringsx, y, z of length at mosh.

(a) Prove that
224(2) <1
Xe=
for any prefix-free encoding— X (here= is the set of all binary strings).
(b) Prove that if a prefix-free encoding increases the leagtimost byf(n) (wheren is the
initial length), i.e., ifl (R) <1(x) + f(I(x)), theny 2~ < oo,
This problem explains why a coefficient 2 appears in the Témaadt6 (p. 30): the series

1 1 1
zﬁ’ Zn(logn)z’ znlogn(loglogn)z"”

are convergent, while the series

1 1 1
Zﬁ’ z nlogn’ z nlognloglogn’ ™

are divergent.

Prove that all the inequalities of Theorem 16 become falieeifcoefficient 2 is replaced
by 1, but remain true with the coefficienttle for any € > 0. [Hint: the first inequality was
considered in Problem 13.]

Prove that

KS(x,y) < KS(x) +logKS(x) +KS(y) +logKS(y) + O(1).

(Continued) Prove a stronger inequality:
KS(x,y) < KS(x) + KS(y) +log(KS(x) + KS(y)) + O(1).

(note thatkKS(x) + KS(y) can be replaced by méxS(x),KS(y)), this gives a factor at most 2,
which maked(1) after taking logarithms).

Prove thatKS(x, KS(x)) = KS(x) + O(1). [Hint: Obviously,KS(x,KS(x)) > KS(x)

A+ _ T {complexit:
O(1). On the other hand, the shortest descriptior détermines botlk andKS(x).]

32

2.2 Conditional complexity
{condit-c}

When transmitting a file, one could try to save communicatibarges by compressing it. The
transmission could be made even more effective if and olsieeof the same file already exists at
the other side. In this case we need only to describe the elsangde. This could be considered
as a kind of motivation for the definition of conditional col@ty of a given stringx relative to
(known) stringy.

A conditional decompressas any computable functioD of two arguments (both arguments
and the value oD are binary strings). ID(y, z) = x we say thay is a (conditionaldescription of
x when z is knowffor relative to 2 The complexityKSp(x|2) is then defined as the length of the
shortest conditional description:

KSp(X|2) = min{l(y) | D(y,2) = X}
We say that (conditional) decompresgnris not worsethanD, if
KSp, (X|2) < KSp,(X|z) +cC

for some constant and for allx andz. A conditional decompressor gptimalif it is not worse
than any other conditional decompressor.

_ _ N {condit-un:
Theorem 17 There exist optimal conditional decomressors.

< This “conditional” version of Kolmogorov—Solomonoff thesan can be proved in the same
way as the unconditional one (Theorem 1, p. 6).

Fix some programming language where one can write programsofnputable functions of
two arguments, and let

D(py,2) = p(y;2),
wherep(y,) is the output of programp on inputsy andz, andp'is the prefix-free encoding qf.
It is easy to see now that’ is a conditional decompressor apds a program foD’, then

KSp(X|2) < KSp/(X[2) +1(P).

Theorem is proved:>
Again, we fix some optimal conditional decompresBand omit indeXD in the notation.

Several easy facts about conditional Kolmogorov compjexit
{condit-ba:s
Theorem 18

KS(xly) < KS(x) +0O(1);

KS(x|x) = O(1);
KS(f(x,y)y) < KS(x]y) +O(1);
KS(xly) < KS(x/g(y)) +0O(1).

Hereg and f are arbitrary computable functions (of one and two argumestspectively); the
inequalities are valid if (x,y) andg(y) are defined.

< First inequality: any unconditional description mode candonsidered as a conditional
mode that ignores the second argument.

The second inequality: consider the conditional desaipthodeD such thaD(p,z) = z

Third inequality: LetD be the optimal conditional description mode used in the dexily
definition. Consider another description mdalesuch that

D'(p,y) = f(D(p,y),y)

and apply the optimality property.
Similar argument works for the last inequality, litshould be defined in a different way:

D’'(p,y) = D(p,9(y))-

Theorem is proved:>

Prove that conditional complexity is “continuous as a fiumtof its second argument”:
KS(xly0) = KS(xly) + O(1); KS(xly1) = KS(x]y) + O(1).

Prove that for any fixeg the functionx — KS(x|y) differs fromKS at most by XS(y) +
O(1).

Prove thaKS([x, Z|[y,7) < KS(x]y) + O(1) for any stringsx,y, z (here[-, -] stands for the
computable encoding of pairs).

Fix some “reasonable” programming language. (Formallyregiire the correspondingycond; tion:
universal function to be a Godel one; this means that tatiosi algorithm exists for any other
programming language, see, e.@].] Show that conditional complexitiKS(x|y) is equal (up
to O(1) additive term) to the minimal complexity of a program thabguces outpux on inputy.

[Hint: Let D be an optimal conditional decompressor. If we fix its firstuangntp, we get a
program of complexity at mos{p) + O(1). On the other hand, if program mapsy to x, then
KS(xly) =KS(p(y)ly) < KS(p) +0O(1)]

This interpretation of conditional complexity as a minimamplexity of a program with some

property will be considered in Chapte®.

Many properties of unconditional complexity have condiibcounterparts with essentially
the same proofs. Here are some of these counterparts:

e FunctionKS(:|-) is upper semicomputable (this means that the set of tr{glgsn) such that
KS(x]y) < nis enumerable).

e For anyy andn the set of all stringg such thaKS(x|y) < n has cardinality less theri'2

e For anyy andn there exists a string of lengthn such thaKS(x|y) > n.

Prove that for any stringgandz and for any numben there exists a string of lengthn
such thalKS(xJy) > n—1 KS(x|z) > n— 1. [Hint: both requirements are violated by a minority
of strings.]

34

{condit-ub
Theorem 19 Let (x,y) — K(x|y) be an upper semicomputable function such that the set

{x] K(xly) <n}

has cardinality less tha@" for any string y and integer n. Then K8y) < K(x]y) 4 ¢ for some ¢
and for all x and y.

Using conditional complexity, we get a stronger inequditythe complexity of pairs (com-

pared with Theorem 16, p. 30):
{condit-pa:
Theorem 20
KS(x,y) < KS(X) + 210gKS(x) + KS(y|x) + O(1)

< Let D1 be an optimal unconditional decompressor anddgtbe an optimal conditional
decompressor. Construct a new unconditional decompré&ss follows:

D’(pg) = [D1(p),D2(q,D1(p))]-

Here p stands for the prefix-free encoding pfand|-,-| is a computable encoding of pairs used
in the definition of pair complexity. Lep be the shortedd;-description ofk andq be the shortest
D,-description ofy conditional tox. Then the stringpqis aD3-description oflx,y|. Therefore,

KS(x,y) < KSpr(x,y) +0(1) < 1(p) +1(g) + O(1).

As we have seen, one can choose a prefix-free encoding in suehthat () <I(p)+2logl (p)+
O(1) (see the proof of Theorem 16, p. 30), and we get a desired atiggu>

As before, we can improve the bound by replacing H8gx) by logKS(x) + 2loglogKS(x)
etc. We also can use conditional complexity in the addifiteran and write

KS(x,y) < KS(X) 4+ KS(y|x) +21ogKS(y|x) +O(1).

(In the proof we should replad®’(pq) by D'(Gp).)

Prove that
KS(x|z) < KS(Xly) + 21ogKS(x|y) + KS(y|z) + O(1)

for all x,y,z (a sort of a “triangle inequality”).

If we are not interested in the exact form of the additionghlgthmic term, the statement of
Theorem 20 can be reformulated as follows:

KS(x,y) < KS(X) + KS(y|x) +O(logn).

for all stringsx, y of length at mosh.
It turns out (and this is the first nontrivial statement irstbihapter) that this inequality is in fact
an equality:

35

yA

Figure 2: The sectioA of the setA of all simple pairs. {condit-c.

{condit-pa:
Theorem 21 (Kolmogorov — Levin)

KS(x,y) = KS(x) +KS(y|x) + O(logn).
for all strings xy of length at most n.

< Since we already have one inequality, we need to prove omyKB(x,y) > KS(x) +
KS(y|x) + O(logn) for all x andy of length at mosh.

Let x andy be some strings of length at most Let a be the complexity)KS(x,y) of the pair
(x,y). Consider the seA of all pairs whose complexity does not exceeedThenA is a set of
cardinalityO(2?) (in fact, at most 2+1) and(x,y) is one of its elements.

For each string consider the “vertical sectior; of A:

A ={u| (t,u) e A}

(Fig. 2). The sum of the cardinalities of @ (over all stringg) is the cardinality ofA and does
not exceedd(22). Therefore there are few “large” sectioAg and this is the basic argument we
need for the proof.

Let m be equal tglog, |Ax|| wherex is the first component of the pafx,y) we started with.
In other terms, assume that cardinalityAgfis between 2 and 2*1. Let us prove that

(1) KS(y|x) does not exceenh significantly;

(2) KS(x) does not exceed— m significantly.

We start with (1). Knowinga, we can enumerate the skt If we know alsox, we can select
only pairs whose first component equaldn this way we get an enumerationAf. To specifyy,
it is enough to tell the ordinal number gin this enumeration (ofy). This ordinal number takes
m-+ O(1) bits, and together witla we getm-+ O(logn) bits for the conditional description of
givenx. Note thata = KS(x,y) does not excee®(n) for stringsx andy of lengthn. Therefore,
we need onlyO(logn) to specifya andn, and

KS(y|x) < m+O(logn).

Now let us prove (2). Consider the $&0f all stringst such that cardinality ofy is at least 2.
The cardinality ofB does not exceed®2! /2™, otherwise the surA| = 5 |A| would be greater

36

than 21, We can enumerat if we know a andm. Indeed, we should enumeraieand group
together the pairs with the same first coordinate; if we fifidoairs with the same value of the
first coordinate, we put this value inB Therefore the string (as well as any element &) can
be specified bya— m) 4+ O(logn) bits: a— m+ 1 bits are needed for ordinal numbenoin the
enumeration oB, andO(logn) are used to specifg andm. So we get

KS(x) < (a—m)+O(logn),

and it remains to add this inequality and the preceding pne.

This theorem can be considered as the complexity countevptre following combinatorial
statement. LeA be a finite set of pairs, angdandqg be some numbers such that cardinalityfof
does not excee@g. Then we can spliA into partsP and Q with the following properties: the
projection ofP onto the first coordinate has at mgselements, while all the sectio of Q (the
first coordinate equale) have at mosg elements. (Indeed, |t be the union of all sections that
have more thaig elements. The number of such sections do not expedflemaining elements
form Q.) We return to this combinatorial translation in Chag@r

Note that in fact we have not used the lengthg ahdy, only their complexities. So we have
proved the following statement:

{condit-pa:
Theorem 22 (Kolmogorov — Levin, complexity version)

KS(x,y) = KS(X) + KS(y|x) + O(logKS(x,y))

for all strings x and y.

Give a more detailed analysis of the additive terms in thefsad show that

KS(x) +KS(y|x) < KS(x,y) + 31ogKS(x,y) + O(loglogKS(x,y)).

Show thatO(logn) terms are unavoidable in Kolmogorov-Levin theorem in batead
tions: for eacm there exist stringg andy of length at mosh such that

KS(x,y) > KS(x) + KS(y|x) +logn—O(1),
as well as stringg andy of length at mosh such that
KS(x,y) < KS(x) +KS(y|x) —logn+O(1).

[Hint: For the first inequality we can refer to the remark afféeorem 16 (p. 30). For the second
one we can take assome number betweer'2 andn such thakkKS(x) = logn+ O(1) and the let
y be a string of length such thaKS(y|x) = x+ O(1).]

Prove that changing one bit in a string of lengtithanges its complexity at most by
logn+ O(loglogn).

37

Fix some unconditional decompresdor Prove that for some constaatand for all - yper—of-
integersn andk the following statement is true: if some strinchas at least'2descriptions of
length at mosh, thenKS(x|k) < n—k+c. [Hint: Fix somek. For eachn consider all strings
that have at least‘@lescriptions of length at most The number of these strings does not exceed
2"k and we can apply Theorem 19, p. 35.]

Using this problem, we can prove the following statemenuglbaconditional complexity:

Let D be some optimal unconditional decompressor. Then thestsesome constaiat
such that for any string the number of shortef-descriptions ok does not exceed [Hint: The
previous problems show th&S(x) < n—k+2logk+ O(1), so forKS(x) = n we get an upper
bound fork.]

Prove that there exists a constanwith the following property: if for some andn the
probability of the evenKS(x]y) < k (all stringsy of lengthsn are considered as equiprobable here)
is at least 2!, thenKS(x|n,1) < k-1 +c. [Hint: Connect each stringof lengthn to all stringsx
such thaKS(xly) < k. We get a bipartite graph that h@$2"k) edges. In this graph the number
of verticesx that have degree at leadt2 does not excee®(2<"'). Note thatkS(x|n,|) does not
includek—this is not a typo!]

This problem could help us to find the average valuK®tx|y) for givenx and all stringy of
some lengt. It is evident thatKS(x]y) < K(x|n) +O(1) sincen=1(y) is determined by. It
turns out that for most strings(of given length) this inequality is close to an equality:

Prove that there exists some constastich that for any string and for all natural num-
bersn andd the fraction of stringy such thakS(x|y) < KS(x|n) —d (among all strings of length)
does not exceedd?/29. Using this statement, prove that the average valu€Sgk|y) taken over
all stringsy of a given lengtm equalskKS(x|n) + O(1) (the constant if©(1) does not depend on
andn).

Prove thatKS(x) = KS(x|KS(x)) + O(1). [Hint: Assume thai has a conditional de-
scriptiong with conditionKS(x) that is shorter thaKS(x). Then one can specifyby providing
g and the differenc&S(x) —1(q), and we get a description ofthat is shorter thaiKS(x)—a
contradiction.]

Prove that for some constaatfor any stringx and for every numben there exists & (;ncreasin,
stringy of lengthn such that
KS(xy) > KS(x|n) +n—c.

[Hint: For a givenn the number of strings such thatKS(xy) < k for anyy of lengthn, does not
exceed ¥/2", and this property is enumerable. So we can apply Theorem.135}.]

Prove that an infinite sequenggxix2 . .. of zeros and ones is computable if and only if the
setKS(Xp...Xn—1|n) (the complexities of its prefixes conditional to their lemgitis bounded by a
constant.

[Hint: Consider an infinite binary tree. L&be the enumerable set of vertices (binary strings)
that have conditional complexity (w.r.t. their length)ddban some constaat The “horizontal”
sections ofS have cardinalityO(1). We need to derive from this that each infinite path that lies

38

entirely insideS, is computable. We may assume tlgas a subtree (only strings whose prefixes
are inB, remain inS).

Let w be an infinite path that goes throu§lonly. At each leveh we count vertices itfs on
the left of w (I, vertices) and on the right @b (r,, vertices). LetL = limsupl, andR = lim supry,.
Let N be the level such thdt andR are never exceeded after this level. KnowindRr andN we
can compute arbitrarily large prefixes@f We should look for a patirin a tree such that at some
level aboveN there are at leadt elements oS on the left ofrr, and at some (possibly other) level
aboveN there are at leaf® elements on the right af. When such a patlr is found, we can be
sure that its initial segment (up to the first of those two lgveoincides withw.]

Prove that in the previous problem a weaker assumption iBcigumit: instead of
KS(Xo...%h—1|n) = O(1) we can require thaS(Xg...%,—1) < logn+-c for somec and for alln.
[Hint: In this case we get an enumerable Seff strings (=tree vertices) with the following prop-
erty: the number of vertices on all levels beldhis O(N). This means that the average number
of vertices per level is bounded by a constant. To use thaqus\problem, we need a bound for
all levels and not for the average value. We can achievefttis consider only vertices € Sthat
have a extension of length(Z) that goes entirely insid8]

Consider strings of lengththat have complexity at least(incompressiblatrings).

(a) Prove that the number of incompressible strings of lemgthbetween 2-¢ and 2" — 2"—¢
(for somec and for alln)

(b) Prove that the cardinality of the set of incompressiblengs of lengthn has complexity
n—O(1) (note that this implies the statement (a));

(c) Prove that if the string of length Zhis incompressible, then its halvesandx; (of lengthn)
have complexityn — O(1).

(d) Prove that if a string of lengthn is incompressible, then each its substring of lerigtias
complexity at leask — O(logn).

(e) Prove that for any constawct< 1 all incompressible strings of sufficiently large length
contain a substring gfclog, n| zeros.

[Hints: (a) There is at most™2- 1 descritions of length les tham and part of them is used for
shorter strings: any string of length— d (for somed) has complexity less tham This gives a
lower bound for the number of uncompressible strings. Te@tbe upper bound, note that strings
of lengthn that have prefix ok zeros, could be described by 2log (n— k) bits.

(b) Lett be the number of incompressible string written in binaryt lasn — k bits, then
knowingt and logk additional bits we can reconstruct firsiand then the list of all incompress-
ible strings of lengtm, so the first incompressible string has complexity less thawhich is
impossible.

(c) If one part of the string is has a short description, thirestring has a short description
that starts with prefix-free encoding of the difference kestw the length and complexity of the
compressible part.

(d) If a string has a simple substring, then the entire stdag be compressed (we need to
specify the substring, its position and the rest of the gjrin

(e) Let us count the number of strings of lengtifnat do not contaik zeros in a row; a recurrent
relation shows that this number grows like a geometric secgigvhose base is the maximal real

39

root of the equatiox =2 — (1/x"), and we can get a bound for complexity of strings that do not
havek zeros in a row.]

Prove that (for some constaal for any infinite sequencixixz ... of zeros and ones ¢,nqit-c-;
there exist infinitely many such thaKS(xoxz ... Xn—1) < n—logn+-c.

Prove that there is a constamand the sequenogxiXz... such thatKS(xoxy...Xp—1) > Nn—
2logn —c for all n. [Hint: The seriesy 1/n diverges while the serieg(1/n?) converges. For
details see Theorem 87 afi@]

For a stringx of lengthn let us defined(x) andd;(x) as follows:d(x) = n—KS(x) and r;44ition:
dc(X) = n—KS(x|n). Show that they are rather close to each other:

de(x) — 2logde(x) — O(1) < d(X) < de(x) + O(1).

[Hint: We need to show that KS(x|n) = n—d, thenKS(x) < n—d+2logd + O(1). Indeed,
let us take the conditional description wfof lengthn—d and put it after the self-delimiting
description ofd that has size 2log+ O(1). Knowing this string, we can reconstruttthenn and
finally x.]

(The intuitive meaning of the difference between the lergfth string and its complexity is
discussed in Chapter 5 and Cha&r)

2.3 Complexity as the amount of information
{conditi}
As we know (Theorem 18), the conditional complex{$(y|x) does not exceed the unconditional

oneKS(y) (up to a constant). The differen&S(y) — KS(y|x) tells us how much the knowledge
of y makesx easier to describe. So this difference can be callecatheunt of information in x
about y Notation:I(x:y).
Theorem 18 says th&tx : y) is non-negative (up to a constant): there exists sosech that
| (x:y) > cfor all xandy.
Recall that
KS(x,y) = KS(X) + KS(y|x) + O(logKS(x,y)),

(Theorem 22, p. 37). This allows us to express conditionaiflexity in terms of unconditional
one:KS(y|x) = KS(x,y) — KS(x) + O(logKS(x,y)). Then we get the following expression for the
information:

1(x:y) = KS(y) —KS(y|x) = KS(x) +KS(y) —KS(x,y) + O(logKS(x,y)).
This expression immediately implies the following theorem

{condit-syr
Theorem 23 (information symmetry)

(x:y) =1(y:x)+O(logKS(x,y))

40

So the difference betwedrix : y) andl(y: x) is logarithmically smaller thaiS(x,y). The
following problem shows that at the same time this diffeeeoguld be comparable with the values
I (x:y) andl(y: x) if they are much less thagS(x,y).

Letx be a string of lengtim such thaKS(x|n) > n. Show that (x: n) = KS(n) +0O(1) and
I(n:x)=0(1).

The property of information symmetry (up to a logarithmicég explains whyl (x:y) (or I (y:
X)) is sometimes callethutual informatiorin two stringsx andy. The connection between mutual
information, conditional and unconditional complexitasd pair complexity can be illustrated by
a (rather symbolic) picture (Fig. 3).

Figure 3: Mutual information and conditional complexity {condit-i.:

It shows that strings andy havel (x:y) ~ | (y: X) bits of mutual information. Addin&S(x|y)
bits (information that is present ibut absent iry, the left part), we obtain

L(y: X) +KS(x]y) = (KS(x) — KS(xly)) + KS(xly) ~ KS(x)

bits (matching the complexity of). Similarly, the central part together witkS(y|x) (the right
part) giveKS(y). Finally, all three parts together give us

KS(x]y) +1(x:y) + KS(y|x) = KS(X) + KS(y|x) = KS(x]y) + KS(y) = KS(X,y)

bits (all equalities are true up @(logn) for stringsx andy of length at mosh).

In some cases this picture can be understood quite litet@ysider, for instance, an incom-
pressible string =r1...r, of lengthn such thaKS(r1...ry) > n. Then any substring of x has
complexityl(u) up to O(logn) terms. Indeed, sinca is a substring of, we haver = tuv for
some stringg,v. Thenl(r) = KS(r) < KS(t) +KS(u) + KS(v) <I(t) +1(u)+1(v) =1(r) (up
to a logarithmic error) and therefore all the inequalities @qualities (with the same logarithmic
precision).

Now take two overlapping substringsandy (Fig. 4). ThenKS(x) is the length ok, KS(y) is
the length ofy (up toO(logn)).

The complexityKS(x,y) is equal to the length of the union of segments (since the(pajy is
equivalent to this union plus information about lengthsichihis of sizeO(logn)).

Therefore, conditional complexitidsS(x|y), KS(y|x) and the mutual informatioh(x : y) are
equal to the lengths of the corresponding segments (@gltgn)).

However, not always the mutual information can be extragtddrm of some string (like it
happened in our example, where this common informationshtjue intersection of stringsand
y). As we will see in Chapte??, there exist two strings andy that have large mutual information

41

X y

L[y [xy [ox] |
Xy
Figure 4: Common information in overlapping substrings {condit-i.;

| (x:y) but there is no string that represents (“materializes”) this information in tlodldwing
senseK(zx) ~ 0,KS(z]y) ~ 0 (all information that is present inis also present both and in
y) andKS(z) =~ I (x:y) (all mutual information is extracted). In our last example @an take the
intersection substring far

Prove that for any string of length at mosh the expected value of the mutual information
I (x:y) in xand random string of lengthn is O(logn).

Now we move to triples of strings instead of pairs. Here weehaw important tool that can
be calledrelativization most of the results proved for unconditional complexitieshain valid
for conditional complexities (and proofs remain valid withnimal changes). Let us give some
example of this type.

A theorem about the complexity of pairs (p. 30) says #&tx,y) < KS(x) + 2logKS(x) +
KS(y) + O(1). Replacing all complexities by conditional ones (with tlzeng conditiorz in all
cases), we get the following inequality:

KS(x,y|z) < KS(x|z) + 2logKS(X|z) + KS(y|z) + O(1),

By conditional complexity of a paix,y relative toz we mean, as one can expect, the conditional
complexity of its encodingKS(x,y|z) = KS([x,y]|z). As for unconditional complexity, the choice
of encoding is not important (the complexity changesyy)).

The proof of this relativized inequality repeats the probthe unrelativized one: we combine
descriptionp for x (with conditionz) and descriptiorg for y (with conditionz) into a stringpq
which is a description offp,] (with conditionz) relative to some suitable conditional decompres-
sor.

So this is nothing really new. However, we may express all dbrditional complexi-
ties in terms of unconditional ones: recall thé&®(x,y|z) = KS(x,y,2z) — KS(z) andKS(x|z) =
KS(x,2) — KS(2z), KS(y|z) = KS(Y, z) — KS(2) (with logarithmic precision). Then we get the fol-
lowing theorem:

{condit-ba:s
Theorem 24
KS(x,y,2) + KS(z) < KS(x,2) + KS(y, z) + O(logn)

for all strings xy,z of complexity at most n.

Sometimes this inequality is called thasicinequality for complexities.
The same relativization can be applied to Theorem 21 (p.tg8)relates the complexity of a
pair and conditional complexity. Then we get the followirtgtesment:

42

{condit-pa:
Theorem 25
KS(x,y|2) = KS(x2) + KS(y]x,2) + O(logn),

for all strings xy,z of complexity at most n.

<1 We can follow the proof of theorem 21, replacing uncond#ilaatescriptions by conditional
ones (withz as the condition). Doing this, we replab&(y|x) by KS(y|x,z). One can say that
now we work in three-dimensional space with coordinatgsz and apply the same arguments
simultaneously in all planes parallelxg plane.

If this argument does not look convincing for you, there is@@formal one. Express all the
conditional complexities in terms of unconditional ones:

KS(x,y12) = KS(x,y.2) ~ KS(2),
and for the right-hand side
KS(X|z) + KS(y|x,z) = KS(X,z) — KS(2) + KS(Y, X,z) — KS(X, 2).

We see that both sides coincide (upQ@dogn)). (A pedantic reader may note that this simplified
argument gives larger hidden constant®itiogn)-notation.)r>

Proof that in Theorem 25 a weaker assumptiki$(x|z) andKS(y|x, z) do not exceea”
is sufficient.

We also relativize the definition of mutual information ared i(x : y|z) be the difference
KS(y|z) — KS(y|x,z). As for the case of (unconditional) information, this quinis non-negative
(up toO(1) precision). Replacing conditional complexities by thereggions involving uncondi-
tional ones (with logarithmic precision), we can rewrite thequalityl (x : y|z) > 0 as follows:

KS(y|z) — KS(y|x,z) = KS(y,z) — KS(z) — KS(y, X, z) + KS(x,z) > 0.

So we get the basic inequality of Theorem 24 again.

In fact, almost all known equalities and inequalities thmalve complexities (unconditional
and conditional) and information (and have logarithmiacs®n) are immediate consequences of
Theorems 21 and 24. Let us give two examples of this type.

Independent strings. We say that stringg andy are “independent” if (x : y) ~ 0. We need
to specify what we mean by=”, but we always ignore the terms of ord®(logn) wheren is the
maximal length (or complexity) of the strings involved.

Independent strings could be considered as some court@fpdre notion of independent
random variables, which is crucial in the probability theofhere is a simple observation: if a
random variablé€ is independent with the pair of random variables), thené is independent
with a and with3 (separately).

The Kolmogorov complexity counterpart of this statemehg(stringx is independent with
a pair (y,2), thenx is independent witly andx is independent wittz) can be expressed as an
inequality:

(x:(y,2)) > 1(x:y)

43

(and the similar inequality for instead ofy). This inequality is indeed true (with logarithmic
precision), and it is easy to see if we rewrite it in terms afamditional complexities:

KS(X) + KS(y,z) — KS(x,Y,2) > KS(x) + KS(y) — KS(x,y),

which after cancellation of similar terms gives a basic urediy (Theorem 24).
Complexity of pairs and triples. On the other hand, to prove the following theorem (which
we have already mentioned on p.15), it is convenient to oeplanconditional complexities by
conditional ones:
{condit-tr:
Theorem 26
2KS(x,Y,2) < KS(x,y) +KS(x,2) + KS(y,z) + O(logn),

for all strings xy, z of complexity at most n

< Moving KS(x,y) KS(x,2z) to the left-hand side and replacingS(x,y,z) — KS(x,y) and
KS(x,y,z) — KS(x,z) by conditional complexitie&S(z|x,y) KS(y|x,z), we get the following in-
equality:
KS(zlx,y) + KS(y|x,2) < K(y,z) + O(logn).

It remains to rewrite the right-hand side &S (y) + KS(z)y), and note thakKS(z|x,y) < KS(z]y)
andKS(y|x,z) < KS(y). >

Instead we could just add two inequalities (the basic ondlaathequality for the complexity
of a pair):

KS(X,Y,2) + KS(y) < KS(x,y) +KS(y,z) + O(logn),
KS(x,Y,2) < KS(y) + KS(x,2) + O(logn),

and then cancekS(y) in both sides. (This proof, as well as the previous one, havienportant
esthetic problem: both treaty,z in a non-symmetric way while the statement of the theorem is
symmetric.)

We return to the inequality of Theorem 26 and to its geometritsequences in Chapte?.

We can provide a more systematic treatment of the differentpdexity quantities related to
three strings as follows. There are seven basic quantitiese of them are complexities of indi-
vidual strings, another three are complexities of pairs@m@more is the complexity of the entire
triple. Other quantities such that conditional complexitid mutual information can be expressed
in terms of these seven complexities. To understand bettat eonditions these seven quantities
should satisfy, let us make a linear transformation in titlénfensional space and switch to new
coordinates. Consider seven varialdesa, . . . ,ay that correspond to 7 regions shown in Fig. 5.

44

xy

Figure 5: New coordinates, ay, .. ., ay. {condit-i.:

Formally, the coordinate transformation is given by théofelng equations:

KS(X) = a1 +az+as+as,
KS(y) = az +ag+as+ as,

)

KS(z) = a4+ a5+ as+ay,

KS(x,y) = a; +az +ag+ a4 + as + as,
KS(x,z) = a1+ ax + a4+ as + ap + ay,

KS(y,z

)=ax+azt+as+as+as+ay,
KS(x,y,2)

=t taztagt+as+agt+ay.

Indeed, it is easy to see that these equations determinevertilite linear transformation dR’:
each 7-tuple of complexities corresponds to unique valuaoéblesa, . .., a;.

Conditional complexities and mutual informations couldezpressed in terms of complexities
and therefore could be rewritten in new coordinates. Fomgte, | (x:y) = KS(x) + KS(y) —
KS(x,y) = ap + as andKS(x|y) = KS(x,y) — KS(y) = a1 + a4.

What is the intuitive meaning of these new coordinates? éasy to see that; = KS(x|y, 2)
(with logarithmic precision). The meaning af (anday) is similar. The coordinate; is (with the
same precisionl)(x : y|z); coordinatesy andag have similar meaning (see Fig. 6). In particular,
we conclude that for any stringsy, z the corresponding values of coordinatesay, az, as, ag, az
are non-negative (up 1O(logn) for stringsx,y, z of complexity at mosh).

The coordinates is more delicate. Informally, we would like to understandstthe “amount
of common information in three stringsy, Z'. Sometimes the notatidr{x:y: z) is used. However,
the meaning of this expression is not quite clear, espgadfalVe take into accout thads can be
negative.

Consider the following example wheag < 0. Letx andy be two halves of an incompressible
strings of length 8 ThenKS(x) = n, KS(y) = n, KS(x,y) = 2nandl (x:y) = 0 (up toO(logn)).
Consider a string of lengthn which is a bitwise sum modulo 2 of andy. Then each of the
stringsx,y,z can be reconstructed if two others are known; therefor tmepdexities of all pairs
KS(x,y),KS(y, z), KS(x,z) are equal to & (again up toO(logn)), and the complexitKS(x,y, z)
is alson. The complexity ofzis equal ton (it can not be larger, since the lengtmison the other
hand, it cannot be smaller, sineandy form a pair of complexity 8).

So we get the following values @i, . .., a; for this example (Fig. 7):

45

Figure 6: The complexity interpretation of new coordinates {condit-i.!

Figure 7: Two independent incompressible strings of lemgihd their bitwise sum mod 2. {condit-i.-

Note that even ifs is negative, the sunes;+ ap, a5 + a4 andas + ag, being mutual informations
for pairs, are non-negative. (In our examples these sumsoara to 0.)

This example corresponds to the simple case of secret ghafrsecretz between two people:
if one of them knows and the other one knows then none of them has any information about
zin isolation (sincd (x: z) ~ 0 andl (y : z) = 0)), but together they can reconstrads a bitwise
sum ofx andy.

One can check that we have already given a full list of inatjaalthat are true for complexities
of three strings and their combinations @llexcept foras, are non-negative, as well as three sums
mentioned abovew). We return to this question in Chapter

Our diagram is a good mnenonic tool. For example, consid@nage inequality

KS(x,Y,z) < KS(x,y) +KS(x,2) + KS(y, z).

In our new variables it can be rewrittenast a4+ as +ag > 0 (you can easily check it by counting
the multiplicity of eachg; in both sides of the inequality). It remains to note gt as > 0,a4 >0
andag > 0. (Alas, the symmetry is broken again!)

Prove that (xy: z) = 1(x: z) +1(y: z]x) + O(logn) for stringsx, y, zof complexity at mosh.
[Hint: Use the diagram.]

46

This problem shows that infromation Ky aboutz can be somehow split into two parts: in-
fromation inx aboutz and information iny aboutz (whenx is known). This is somehow similar
to the equalityKS(x,y) = KS(x) + KS(y|x), but now complexity is replaced by the quantity of
information aboutz. As a corollary we immediately get that xfy is independent wittz thenx
in independent witlz and, at the same timgis independent witlz whenx is known. (Here in-
dependence means that mutual information is negligiblesymametric argument shows thats
independent witly andx is independent witlza wheny is known.

Show that propertiesx‘is independent witly” and “x is independent witty whenz is
known” are quite different: any one of them can be true wherotiher one is false.

We say that stringg,y,z t form aMarkov chain(a well known notion in the probability
theory now transferred to the algorithmic information thgaf | (x: zly) and1({x,y) : t|z) are
negligible. (Of course, we need to specify what is “negligilio get a formal definition.) Show
that the reversed sequence of strings also forms a Markom,dhe, thatl (t : y|z) andl ((t,2) : X|y)
are negligible. [Hint: Sincé((x,y) :t|z) = I(y:t|z) +1(x:t]y,z), the left-hand side in this equality
is zero if and only if both terms on the right-hand side ar@zand the second term in the right-
hand side does not change when the ordes nfz t is reversed.]

47

3 Martin-L of randomness

{random}
Here we interrupt the exposition of Kolmogorov complexihdats properties and define another
basic notion used in the algorithmic information theory,,ithe notion of Martin-Lof random (or
typical) sequence. This chapter does not refer to the pregethe and is not used until Chapter 5
where we characterize randomness in terms of Kolmogoroptonty.
Let us remind some basic facts of measure theory for the dasdirote sequences of zeros
and ones.

3.1 Measures o2
{randomcl}

Consider the se@ whose elements are infinite sequences of zeros and ones.séths called
Cantor spaceFor a binary stringgc we consider a sey of all infinite sequences that have initial
segmenix. For exampleQqo is the set of all sequences that start with two zeros, Qrd= Q
(whereA is an empty binary string).

The set)y are calledntervals All intervals and all unions of arbitrary families of intes
are calledopensubsets of2. In this way we get a topology of2, and this topology corresponds
to a standard distance function @ndefined as follows: the longer common prefix two sequences
have, the smaller the distance between them is:

dlw,w)=2",

wheren is the smallest index such that, # «y,. (Herew, stands for theith term of the sequence
W= WwW ;. ..)

Prove that topological spa&e is homeomorphic to the Cantor set on the real line. (This
set is obtained fronfi0, 1] by deleting the middle third, then the middle thirds of twenggning
segments and so on.)

However, we are interested in measure theory rather thaidgy A family of subsets o€
is called ac-algebraif it is closed under finite or countable unions and intersast and negation
(taking the complement).

A minimal g-algebra that contains all intervads, (and therefore all open sets) is called the
algebra oBorel sets.

Consider an arbitrarg-algebra that contains all intervals. Lete a function that maps every
set in thisg-algebra into a non-negative real number, and has the folpywroperty (calledo-
additivity):

if a setA is a union of a countable or finite family of disjoint s&g, A1, A, ... that
belong to theo-algebra on whiclu is defined, then

H(A) = H(Ao) + U(AL) + H(A2) + ...

(the right-hand side is a finite sum or a converging seriels main-negative terms).

48

Theny is called ameasureon Q, and the valugi(A) is called the measure of the et
A measureu such thafu(Q) = 1 is called gorobability distributionon Q. Elements of the-
algebra that is the domain pfare calleceventsandp(A) is called theprobability of the eventA.
Any measure in monoton@(C Bimpliesu(A) < u(B)). Indeedu(B) — u(A) = u(B\A) > 0.
Another important property of measures is continuity: ifedB is a union of increasing se-
guence of sets
BopcBi1CByC...,

thenu(By) tends tou(B) asn — . (Indeed, let us apply the additivity property to all sats=
Bi \ Bi_1 and then to all set4; such that < n.) The similar property holds for decreasing sequences
of sets.

For any measurg on Q let us consider a functiop defined of binary strings as follows:

PO = K(Qx).

This function has non-negative real values and satisfie®tlosving additivity property:

p(x) = p(x0) + p(x1)

for any stringx. (Indeed, the intervaQ)y is the union of its two halveQy and Qy;, which are
disjoint sets.)

As we know from measure theory (Lebesgue theorem), an ieveessition is possible.
Namely, for any additive functiop on binary strings that has non-negative real values, Lelssg
theorem provides a measyresuch thafu(Qy) = p(x) for all binary stringsx.

The measure provided by Lebesgue theorem has the followligig@nal property: ifu(A) =0
for some sef andB C A, thenu(B) is defined (and therefoge(B) = 0). In the sequel we consider
only measures that have this additional property.

We do not explain Lebesgue’s construction here and refeetter to any textbook in measure
theory, e.g.,?, ?]. However, let us recall the definition of sets having meafyisince Martin-Lof
definition of randomness uses its effective version.

Let p be an additive nonnegative real-valued function on strivgs call p(x) the measure of
the intervalQy. A subsefA C Q is anull set(a setof measurd) if for any € > 0 there exist a finite
or countable family of intervals that covArand have total measure at mast

In other words, a sék is a null set if there exists a functida, i) — x(&,i) (first argument is a
positive real, the second argument is a non-negative integkies are binary strings) such that

e AC QX({-;O) U QX(S,l) U QX(£72) .
* p(x(£,0)) +p(x(e,1)) +p(X(£,2)) +... < €

for any positives. Note that the family of intervals can be finite, since we do meguire the
functionx to be total (undefined values are skipped both in the unionratite sum).
Here are some simple but useful observations:

e The definition does not change if we restrict ourselves tiomat values ofe (or even let
£ = 2 Kfor integerk).

49

e Any subset of a null set is a null set.

¢ Afinite or countable union of null sets is a null set. (Indeted;over the union by the family
of intervals of total measure less thanwe combine the coverings of its parts of measure
less thare/2,¢/4,¢/8 etc.).

e Assume thap is chosen in such a way that any singleton is a null set (it isvatent to the
following property: for any infinite sequenee = wywi @y . .. the limit of p(wy...wn) (as
n — o) equals 0). Then any finite or countable set is a null set.

A uniform measuren Q assigns to each interv@ly the number 219:
p(x) = 2" for all stringsx of lengthn.

The uniform measure is closely related to the standard measiR (or, more precisely, of0, 1]).
Formally, the measure of a sAtC Q is equal to the measure of the set of reals whose binary
expansions are elementsAf (In fact, the correspondence between binary fractionsraals in
0,1] is not a bijection, since numbers of the foki2' for integerk andl have two representations:
e.g., 001111 .. =0.10000... But this happens only for a countable family of reals andsuea
theory ignores this.)

Indeed, the reals whose binary expansions start xyitbrm an interval, and the length of this
interval is just 2" wheren is the length ofx. This implies that for any interval C [0,1] the
uniform measure of the sequences that represent rehls gqual to the length of the intervial

Probability theory describes the uniform distributionlae probability distribution for the out-
comes of independent fair coin tossing. Indeed,nfardependent fair coins all"Zinary strings
of lengthn appear with the same probability2 The setQy is the event “a random sequence of
zeros and ones starts with and this event has probability #¥).

Similarly, we can consider a biased coin, where coin tosanegstill independent. The corre-
sponding measure (probability distribution) is calernoulli measuréor Bernoulli distributior)
with parameters, p (probabilities of 0 and 1 respectively; we assume that> 0 andp+qg=1). {nonuniforr

With respect to this distribution, the event “sequencstarts with a string” has probability
g"p" whereu andv are the numbers of zeros and oneg.iln other terms, we consider a function

X — ' p"
whereu(x) andv(x) stand for the numbers of zeros and oneg, irespectively. (It is easy to check
that this function has the additivity property.)

3.2 The Strong Law of Large Numbers

_ _ _ {random-11:
To see all these notions in action, let us state and proveoticalfedStrong Law of Large Numbers

Fix somep,q > 0 such thap+q = 1. LetAp be the set of all infinite sequencegw, w; . . . of
zeros and ones such that limit frequency of ones exists agglial top, i.e.,

i 0@t Gh

Nn—oo n

p.

50

) S) {randomcl-:
Theorem 27 The set A has measurd with respect to Bernoulli distribution with parameters p

and g.

In other terms, the complement 8%, i.e., the set of all sequences that either do not have
limit frequency at all or have a limit frequency differenbin p, is a null set (according to this
distribution).

<1 We prove this theorem for the uniform case (i.e.,fior q= 1/2) by an explicit calculation.
The general case is left as an exercise (see also Bct.

Let us consider first a finite number of coin tossings and fixesor\ll binary strings of length
n have the same probability. We claim that most of them havecpatelyn/2 ones. Assume
that some thresholdis fixed. How many sequences have more tflgf2 + £)n ones? The answer
can be found using the Pascal triangle: we have to sum upeatiétins in theath row starting from
some point that is slightly on the right of the midpoint. Imstpart we have a decreasing sequence
of less tham terms, so the sum in question is bounded by the first term phielti by n. (We don't
need to be very accurate in our bounds and ignore factorswane polynomial im. So we can
omit the factom in our bound.)

The first term of the sum is the binomial coefficient

n!
kl(n—k)!’

wherek is the smallest integer not less th@y'2+ €)n. We use the Stirling’s approximation:

m = vrromm(%)",

whereeis the base of natural logarithms. Ignoring polynomialn(ifiactors and using the notation
u=k/n,v=(n—Kk)/n, we get

n! (n/e)" n"

~ — ~
~

kl(n—k)! = (k/e)k((n—k)/e)"—k — kk(n—k)n—k ~

—~ n" _ 1 _ 2H(u,v)n
~ (un)un(vn)vn Togunwvn T ’

where
H(u,v) = —ulogu—vlogv.

The valueH (u, V) is called theéShannon entropgf the random variable that has two values whose
probabilities arau v. (We study the Shannon entropy in Chapter 7.) Figure 8 shbevgdrre-
sponding graph (note that=1—u). It is easy to check tha (u,1— u) achieves its maximal value
(equal to 1) only ati=1/2.

Now we see that the number of binary strings of lengthat have frequency of ones greater
than (1/2+ €) does not exceed pdly)2(1/2+&.1/2-6)n and therefore is bounded by,
wherec is some constant less than 1 (dependingshn Therefore, the fraction of this strings

51

Figure 8: Shannon entropy as a functioruof {randomcl-

(among all strings of length) exponentially decreases whitancreases. The same is true for the
strings that have frequency of ones less tfBf2 — ¢).

Let us see where we are. For each fixed O we have proved the following statement:

Lemma. The fraction of strings of length where frequency of ones differs fromf2 at least
by € (among all strings of length) does not exceed sonmdg that decreases exponentially ms
increases.

This lemma (without any specific claims for the fast convag, — 0) is called thd_aw of
Large NumbersTo prove theStrongLaw of Large Numbers we need to know that the sefigé,
is convergent.

We need to prove that the skt /, of all sequences that have limit frequency of ones equal to
1/2 has measure 1. In other terms, we need to prove that the eomapt of this set (we denote
this complement byg) is a null set.

According to the definition of limit the sd& is the union (over alE > 0) of the set®8;. Here
Be is the set of all sequences such that frequency of ones inglefixes exceeds/2 + € (or is
less than 12 — ¢) infinitely many times.

Evidently, we can consider only a countable set of diffee(e.g., only rational values), and
the countable union of null sets is a null set. Thereforentams to prove that the sBt is a null
set for eaclz.

The seB; consists of the sequences that have arbitrarily long “baefixes. Here “bad” prefix
is a string where the frequency of ones differs frof2 inore than by. Therefore, for eacN the
setBg is covered by the family of interval®y wherex ranges over all bad strings of length at least
N. The total (uniform) measure of all this intervals does naieed

6N+5N+1+5N+2+...,

and this sum can be made small since the sériésis convergent.

(Probability theorists call this argumebrel-Cantelli lemmaln its general form this lemma
says that if the sum of measures of some #gtg\;,... is finite, then the set of all points that
belong to infinitely manyA is a null set.)>

One can get a bound for the number of bad strings of lengtithout Stirling’s approximation.
We do it separately for bad strings that have too many anddaodnes. For example, let us

52

consider the set of all “bad” strings that have frequency gsogreater than/2+¢. To get a
bound for the cardinality of this set, consider two disttibns (measures) on the set of all strings
of lengthn. The first one, called, is the uniform distribution: all strings have probabil&y". The
second one, calleg is biased (ones are more likely than zeros) and corresgondsdependent
coin tossing where 1 appears with probabifity- 1/2+ €. In other termsS(x) = g“p" for a string

x that hasu zeros ands ones (hereg = 1/2— ¢ is the probability of zero outcome). The ratio
S(x)/L(x) increases when the number of onesimcreases, and for all bad strings this ratio is
at least 2/24(PAN_ Therefore, the total-measure of all bad strings does not exceed their total
Smeasure divided by this expression. Recalling that thel ®tneasure of all bad strings does
not exceed 1, we conclude that the tdtaineasure (i.e., the fraction) of all bad strings does not
exceed 2(PAN /2" So we get another proof of our bound, which is less techntbaugh more
difficult to find). This proof works not only for the uniform Beoulli measure|f = 1/2), but also

for arbitrary p (after appropriate changes).

Prove the Strong Law of Large Numbers for arbitrgxy[Hint: Let po andqo be fixed (non_ynitos
positive reals such thagtg + go = 1. Then the expressionpglogp — gologq, wherep,q are
arbitrary positive reals such thpt+- g = 1, is minimal wherp = pg, g = qo. See also Sectio??.]

People often say that “the Strong Law of Large Numbers gteesrthat in any random (with
respect to uniform Bernoulli measure) sequence the frexyuefils tends to 12”. (The the case of
nonuniform Bernoulli measures is similar.) However, irsthéntence the word “random” shouldn’t
be understood literally: the phrase “any random sequeritsfisaa” (for some conditiomn) is an
idiomatic expression that means that the set of all seqeahe¢ do not satisfy is a null set.

A natural question arises: can we define the notion of randmyuence in such a way that this
idiomatic expression can be understood literally? Let usdime distribution o1f2, say, the uni-
form Bernoulli distribution. We would like to find some subséQ and call its elements “random
sequences”. Our goal would be achieved if for any conditidhe following two statements were
equivalent:

¢ all random sequences satisfy the conditign
¢ the set of all sequences that does not satisiy a null set.

In other terms, the sets of measure 1 should be exactly treisetigat contain all random
sequences (and, may be, some nonrandom ones).

One more reformulation: the set of all random sequenceddiheuthe smallest (with respect
to inclusion) set of measure 1, and the set of non-randomesegs should be the largest (with
respect to inclusion) null set. Now it easy to see that out gaanot be achieved. Indeed, any
singleton inQ is a null set. However, the union of all these singletonseésdhtire space.

In 1965 Per Martin-Lof (a Swedish mathematician, who wasntGmorov’s student at that
time) found that we can save the game if we restrict oursetvéffectively null sets”. There exist
a largest (with respect to inclusion) effectively null sahd therefore we can define the notion
of a random sequence is such a way that any conddios satisfied for all random sequences
if and only if the set of all sequences that do not satsfis an effectively null set. Martin-Lof
construction is explained in the next section.

53

3.3 Effectively null sets

{randomml}
Let a measure of2 be fixed an lep(x) be the measure of the inten@y.

We say that a sét C Q is an effectively null set (with respect to the given meagififer every
€ > 0 one can effectively find a family of intervals that coveand whose total measure does not
exceeck.

Some details should be specified in this definition. Firstcaasider only rational values af
(otherwise it is not clear how could be given to an algorithm). Second, we need to specify ho
the sequence of intervals (that coveris generated. We do this as follows:

Definition. A setA C Q is called areffectively null sef{with respect to a given measure) it{effective_
there exists a computable functigfi, -) whose first argument is a positive rational number, second
argument is a natural number and values are binary stringh,that:

1. AC QX(&)O) U QX(S,l) U QX(£72) e
2. p(X(£,0)) + PX(E,1)) + p(x(£.2) + .. < £

for any rationale > 0. Note that we do not require the functito be total; ifx(¢,i) is undefined,
the corresponding term (in both conditions) is omitted.

Show that we get an equivalent version of the definition if wasider an algorithm that
getse > 0 as an input and enumerates a set of binary strings (bympgiitt elements with arbitrary
delays between elements) such that interggl$or generated coverA and have total measure at
moste.

Show that we get an equivalent definition if we consider oational numbers of the form
2K (for integerk) instead of all rationat. Show that the definition does not change if we replace
the sign< by < in the second inequality.

Show that we get an equivalent definition if we require thatefache > 0 the domain of
the functioni — X(&,i) is an initial segment o (or N itself).

Show that we get an equivalent definition if we require thatfdmily of intervals is de-
cidable (instead of enumberable). [Hint: An interval carspht is small parts, so we may assume
that intervals in the sequence have non-increasing leragtti,the family of intervals becomes
decicalbe.]

Let us give some examples of effectively null subsetQdfvith respect to the uniform mea-
sure).

A singleton whose only element is a sequence of zeros, isfactigely null set. Indeed, for
everye > 0 we find an integek such that 2K < &, and consider a covering that consists of one
intervalQqg_ o (corresponding to the string &fzeros).

Formally speakingx(g,0) = 0¥, where ¢ stands for the sequence formedlkogeros, and is
the smallest integer such that'2< e. The valuex(g, i) are undefined for > 0.

In this example the (identically) zero sequence can be cedlay any computable sequence of
zeros and ones; we need only to consider its prefix of lekgtktead of 6.

However, we cannot replace it by any binary sequence, astiogfng problem shows:

54

Prove that there exists a sequenge Q such that singletofiw} is not an effectively null
set. [Hint: Consider all computable functiorshat satisfy the second condition of the definition
of effectively null set. There are countably many such fiomg. For each of them consider the
largest sefA that satisfies the requirement (1) of the definition (i.eg, ititersection of unions of
coverings over alk). This set is an (effectively) null set, and the union of ardable family of
those sets is null set. Therefore, there exists a sequemdach does not belong to this union.]

(Note that the statement of this problem is a straightfodwarollary of the Martin-Lof the-
orem on the existence of the largest effectively null see@em 28, p. 56)) proved later in this
section, and the hint just follows the proof of the Martiofitfieorem. As we see later, the $et}
is an effectively null set if and only if the sequenwas not “Martin-Lof random”.)

It is easy to construct a non-computable sequensech that the singletofrw} is an effective
null set. Indeed, consider any sequence of the farea 0?0?070.. (each second term is zero, the
rest is arbitrary). Let us show thétv} is indeed an effectively null set. To find a covering with
total measure 2", consider all strings of lengthnzhat are formed by arbitrary bits interleaved
with n zeros (as inw). There are 2 strings of this form, and each corresponds to an interval of
length 2-2", so the total measure is 2.

In fact we have proved a bit more: the set of all sequenceshtna only zeros at even posi-
tions, is an effectively null set. Therefore, each of itsstb (in particular, every singleton) is an
effectively null set.

Let us now return to the definition of an effectively null setlaseparate the requirements used
in this definition. We say that a computable functias “regular” if is satisfies the requirement (2).
The requirement (1) then says that for every ratianalO the sefA is a subset of the union

Qx(e,O) U Qx(s,l) U Qx(e,Z) s

Therefore, a regular function “serves” all the subsets efsit

ﬂ (QX(E,O) U Qx(ze,l) U Qx(s,Z) .) = n UQx(s,i)

e>0 e>0 i

So for each (computable) regular functiowe get an effectively null set (defined by the formula
above), and effectively null sets are all these sets (foregjular functions) and all their subsets,
and that’s all.

Before we formulate Martin-Lof theorem, let us give the dition of acomputable measure
on the seQ.

A real numbera is calledcomputabldf there exists an algorithm that computes rational ap-
proximations toa with any given precision. Formallyy is a computable real if there exists a
computable functiom — a(¢) defined on all positive rational numbers and having ratioahles
such that

la—a(e)| <€

for all rationale > 0.

Show that we get an equivalent definition if we additionadigjuire that all approximation
given bya are approximations from below, i.@(€) < a for all €. [Hint: we can transform any
approximation to the approximation from below losing ordgtbr 2 in precision.]

55

Prove that the sum, difference, product and quotient of tasmputable reals are com-
putable reals.

Prove thatk (the base of natural logarithms) andare computable.

Prove that elementary function (roots, sine, exponenéritlgn etc.) preserve computabil-
ity, i.e., have computable values for computable argumé€nte assume, of course, that the base
is computable in case of logarithm and exponent.)

A measureu on Q is computable if measures of all intervals are computal@dksyand, more-
over, we can effectively find an approximation algorithm faiQy) givenx. Here is a formal
definition:

Definition. A measureu on the setQ is computablef there exists a computable function
(x,€) — a(x, &), defined for all stringg and all positive rational numbees such that

[H(Qx) —a(x)| <€

for all xande.
This definition does not assume that the measure of the ep@@ equals 1, but in fact we
will use it only in this case (i.e., for probability distribans).
{randomml-1
Theorem 28 Let u be a computable measure @h Then there exists a largest effectively null set
with respect tqu. In other words, the union of all effectiveliynull sets is an effectively-null set.

<1 As we have seen, for each regular functiowe get a corresponding effectively null set.
Since there is countably many regular functions, we get atadaly many effectively null sets and
their union contains every effectively null set. Therefdhee union of all effectively null sets is a
null set. (When speaking about null sets and effectivelyseik we have in mind measuue)

However, we need more: we have to prove that this union sf@atively null set. To achieve
this goal, we enumerate all regular functions and then useffiective version of the theorem that
says that the countable union of null sets is a null set.

For technical reasons it is convenient to change a bit thanitlefi of a regular function.
Namely, we now say that a computable functigrn -) is regular if all the finite partial sums of
the series

p(X(€,0)) + p(x(g,1)) + p(x(g,2)) + ...

are less tham (note the strict inequality). Herp(x) stands foru(Qy). This makes our require-
ments for regular functions a bit stronger (if all partiahmiare less thaa, the sum of the series
does not exceed, but the reverse is not always true). However, the notiomefeffectively null
set is not affected, since we always can repbg (say)e/2.

In the sequel the regular functions are understood in thidifled sense (in fact, regular func-
tions are used only locally, in the proof of Martin-Lof threm).

The following Lemma allows us to enumerate all regular fions.

Lemma. There exists a computable (partial) function

(0,€,i) — X(q,¢&,i)

56

(whereq andi are natural numbers, is a positive rational number) such that for any fixgde
get a regular functioiXy (of two remaining arguments) and all regular functions carobtained
in this way.

Proof. Let us enumerate all programs for the functions of two argpis) (whether these func-
tions are regular or not); we get a computable sequence gfgmts, andjth term of this sequence
is called ‘gth program” in the rest of the proof.

Then we defineX(q, ,i) as the output of theth program on input,i, assuming that some
conditions are met; otherwis€(q, €,i) is undefined. The conditions guarantee that@llare
regular, and that regular functions are untouched.

To computeX(q, &,i), we apply in parallel the program numbzgto all pairs

(g,0),(g,2),...,

(starting with one step of the first computation, then makmgsteps of the first two computations
etc.)

When some computation terminates with some output, werugethis process to verify that
strings obtained so far do not violate the regularity canditThis means that we start to compute
more and more precise approximationgpta) for all these strings until we could guarantee that
the sum of all thes@(z) is less there (this happens if the sum of approximations is less than
minus the sum of approximation errors). (Sincés computable, we can compute approximations
to p(z) for anyz with any precision.)

It is possible that we do not return from this interrupt; thagopens if the sum of measures is
not less tharz.

Now X(q, €,i) is defined as the output gth program or{&, i) if this output appears and passes
the test during the process described.

If gth program computes a regular function, the verification méver fail andX, coincides
with this function. On the other hand, for everyhe functionX, is regular: if for somes the gth
program (appliedt@ and alli = 0,1, 2, ...) generates strings whose total measure is too large, only
finitely many of the strings will be let through, and theirgbimeasure is still less tham Lemma
is proved.

Explain why we need to change the definition of correctnesss\ver: if the sum consists
of final number of nonzero terms and their sum is exagthywe will newer know this.]

Now we finish the proof of Martin-Lof theorem. L&tbe the function provided by the Lemma.
Forallg=0,1,2,... consider the effectively null sé, that corresponds to the regular function
Xq- Every effectively null set by definition is a subsetAyffor someg. It remains to show that the
unionZgUZy U... is an effective null set.

We do the same trick that is used to prove that a countablenwfiaull sets is a null set. To
find a covering of total measure less tlaebr UgZgq, we combine thée/2)-covering forZg with
(e/4)-covering forZy, etc.

More formally, we consider a functiox(e, i), that is defined as follows:

X(87 [qv k]) = X(qv 8/2q+17 k)

57

Here [g,k] stands for the number of paifk under some computable bijection betwééhand
N. >

Now we are ready to give the definition of Martin-Lof randosgeence. Assume that some
computable measuye on the sef is fixed.

Definition. A sequencew is calledMartin-Lof random(ML-randomn) with respect tau if w
does not belong to the largest effectively null set (withpees tou) provided by Theorem 28.

Reformulation: a sequence is Martin-Lof random if it doe$ Ibelong to any effectively null
set.

One more version: a sequenoés Martin-Lof random if the singletofiw} is not an effectively
null set.

A digression: terminology. The notion of Martin-Lof randomness is a refinement of the
intuitive idea of a “typical sequence”. One could say thatguence is “typical” if it does not have
any regularities or special features which separatesnit friost sequences. (If somebody says that
“Mr. X is a typical math professor” she means that Mr. X has pecsal characteristics that make
him different from the most math professors.) A “speciatde@’ is a feature that is posessed only
by a negligible fraction of the objects considered (seqashd-or example, if a sequenaestarts
with 0, this is not a special feature, since half of the seqastave start with 0 On the other hand,
if each second term ab is zero, this is indeed a special feature.

This informal idea is implemented in the Martin-Lof definit: a special feature is a feature
that corresponds to an effectively null set, and therefgpécal sequences are sequences that do
not belong to any effectively null set, i.e., Martin-Loin@dom sequences.

It would be more logical to use the word “typical” for Martltdf’s definition and reserve the
word “random” for more general intuitive notion that can loenfialized in different ways (and
the idea of a typical sequence is one of them). However, tieenats to introduce a new, more
logical, terminology often make the situation worse (authtave to confess that this can be said
about their own attempts!). And there is already a lot of maéerstanding: the words “random
sequence” are already used in different ways.

So we keep the term “Martin-Lof random sequence” for theriledin given above (and some-
times use the name “Martin-Lof typical sequence”) keepimg name “random sequence” for a
vague philosophical notion of randomness that needs additclarification to become a mathe-
matical notion. (End of digression.)

The following statement is a trivial corollary of Martinelt theorem; however, it deserves a
careful thinking since it looks counter-intuitive.

{randomml-
Theorem 29 A set AC Q is an effectively null set if and only if all its element ard Martin-Lof

random(are non-typical.

In particular, the set of all non-typical sequences is tingdst effectively null set, and the set
of all typical sequences has measure 1.

< Indeed, any element of any effectively null set is non-tgpiy definition; on the other hand,
if all elements of some s&& are non-typical, the’ is a subset of the largest effectively null set
and thereford\ is an effectively null set>

58

What is strange here? A s&is a null set if it has “few elements”; the nature of these elpta
does not matter much. Any singletd} C Q is a null set and this does not depend on the
properties of the sequence

On the other hand, now we see that if we replace null sets gt@fély null sets, the situation
changes drastically: we may put as many non-typical seeseinca set as we wish, and it would
remain an effectively null set, but any one typical (ML-rand) sequence added destroys this
property.

For example, recall that any computable sequence formsfaatigély null singleton (with
respect to uniform measure). We immediately get the folhggorollary:

{computable
Theorem 30 The set of all computable sequences of zeros and ones iseativadfy null subset

of Q (with respect to the uniform measire

It is interesting to note that this observation was maderedftartin-Lof gave the definition of
randomness, while developing the constructive versioralmutus (“Zaslavsky construction” used
for many counterexamples; it deals with real numbers insté®it sequences).

In the next section we explore the properties of ML-randoousaces (with respect to the
uniform measure). We end this section with the followingergaterion for ML-randomness which
is attributed to R. Solovay irf].

{solovay-c:
Theorem 31 A sequencew is no ML-random with respect to a computable measurg and

only if there exists s computable sequence of intervals fimite sum of measures that coveuos
infinitely many times, i.e., a computable sequences of histaings ¥, X1, Xz, ... such that

}ELKf%q)<1“

andw € Qy, for infinitely many 1i.

< Assume thatw is not ML-random. Then for each we can effectively find a computable
sequence of intervals that cover®} and has the sum of measures less thahhen we combine
these sequences fer=1,1/2,1/4,1/8,... and get a computable sequence of intervals with sum
of measures not exceeding 2 that cowemfinitely many times (at least once for eagh).

On the other hand, assume that there exists a computablerssEgof stringsg, X1, X2, . . .
such that the sum of measures of corresponding intervals dokeexceed some constanand
infinitely many of these intervals contain. We may assume without loss of generality thas
a rational number. To find a covering far that has sum of measures less tlzarwe consider
the setMy of all sequences i@ that are covered at leakktimes. HereN is a positive integer
such thatc/N < €. It is easy to see thad¥ly can be represented as the union if a computable
sequence of disjoint intervals (while readixgxy, . . ., we see more and more elementdvf and
add respective intervals when necessary). Therefore thiegeis an effectively null set and the
sequencev is not ML-random.>

Remark. Thisresult is a constructive version of Borel-Cantellnraa (if the sum of measures
of setsAg, A, ... is finite, then the set of all points that belong to infinitelamy A; is a null set),

59

and our argument is an effective version of a classical pob&orel-Cantelli Lemma. However,
we should be careful since not any classical proof can betefieed. The standard proof (since
the series is converging, its tails could be made as smadladed) does not work here, since there
is no way to find an appropriate tail given

3.4 Properties of Martin-L 6f randomness

{randomun}
The Strong Law of Large Numbers also provides an example effantive null sets (with respect

to the uniform measure).

{randomml-
Theorem 32 A set of all bit sequences that do no have limit frequeby®is an effectively null

set with respect to the uniform measure.

< Itis enough to prove that for every ratioreal> O the set of all sequences such that frequency
of ones is greater thary2 -+ ¢ infinitely many times (or less thary2 — ¢ infinitely many times) is
an effective null set.

Indeed, the upper bound for the measure of this set achievbe iproof of the Strong Law of
Large Numbers in the previous section (Theorem 27, p. 51ffesteve: the set of intervals was
the set of all sufficiently long strings with large frequerdgviation, and its total measure was
effectively bounded by a tail of the converging geometritcese >

The statement of this theorem can be reformulated as thesgyopf individual ML-random
sequences:

{random-11:
Theorem 33 Let w = wpw; ... be a ML-random sequence with respect to the uniform measure.

Then
. Wt ...+ 1
lim =_,
n—o0 n 2

The similar statement is true for arbitrary Bernoulli measulLet p and q be computable
positive reals such thgi+q = 1. Consider the Bernoulli measure with parametpasd p (the
sequence of independent coin tossing with success pralgghil It is easy to check that this us a
computable measure (sinpeandq are computable).

Theorem 34 Any ML-random sequence with respect to Bernoulli measutie @amputable pa-
rameters ¢p has limit frequency p.

< Indeed, the upper bound for the probability of large dewradi(obtained by comparing the
given Bernoulli measure with the other one, with shiffgdee Problem 47, p. 53), gives an explicit
bound and an explicit set of intervals, so we get an effelstivell set. >

There are several other properties of typicalness (ML-wamtkss) with respect to the uniform
measure:

Theorem 35 Let w be a typical (=ML-random) sequnce with respect to the umifaneasure.
Then any other sequence which is obtained frorby a finite number of insertions / deletions /
changes, is also typical (ML-random).

60

< Itis enough to show that adding a zero/one in the beginnirgtgbical sequence or deleting
the first term of a typical sequence gives a typical sequence.

Indeed, assume that sequenees not typical, i.e., forms an effectively null singletion: for
eache one can effective construct a covering by intervals witlaltoteasure less tham Let us
add zero at the beginning of all these intervals (i.e., theesponding strings). We get a covering
for Ocw whose measure is twice smaller. This argument shows thaisfnot typical, then @ is
not typical either. (Similar argument works fotl)

On the other hand, if we delete the first bit of all strings loatn a covering forw, we get a
family of intervals of twice larger measure that covers(obtained fromw by first bit deletion).
Therefore ' is not typical.>>

Prove that replacing all zeros by ones and vice versa in adaypequence (with respect to
the uniform measure) we get a typical sequence.

The folllowing problem shows that a computable subsequehadypical sequence is typical.

Let ng,ng, Ny, ... be a computable sequence of different integersAn; if i # j). Let
W= wpwiwy ... be atypical (=ML-random) sequence. Then its subsequence

W|N = Wny Why W, - - -

is typical (ML-random). [Hint: any intervaQ)y in a cover forw|n produces a finite family of
intervals whose union is the set of sequences witag®s, ..., Nn;_1)-subsequence coincides with
x (herei is the length of the string). The total measure of these intervals equals the measure
of Qx.]

More general selection rules are consider in Chap®p. ??) where a frequency approach to
the notion of randomness (von Mises’ approach) is consitlere

Let w be a typical (=ML-random) sequnce with respect to the umfoneasure. Let us
split w into two-bit blocks and then replace blocks 00 by zeros andks 01, 10 and 11 by ones.
Prove that the resulting sequence is typical with respe&eimoulli measure with parameters
1/4,3/4. [Hint. We described a transformation@finto itsef. The preimage of any open &kis
open, and the uniform measure of that preimage equaldljf#e3/4)-measure of the sét.]

(Continued.) Prove that any typical (=ML-random) sequemdth respect to the
(1/4,3/4)-measure can be obtained in this way from a sequence thapisaty=ML-random)
with respect to the uniform measure. [Hint: For any openBset Q consider the seB’ of all
sequenceso such thatF ~({w}) c B (the set of sequences that do not have a preimage outside
B, i.e., the complement to the image of the complemer®)ofThe image of a compact set is a
compact set, therefo® is open. Show that iB is a union of an enumerable family of intervals,
thenB' is also a union of enumerable family of intervals, and Belinoweasure ofB’ does not
exceed the uniform measure Bf See also the proof of a more general statement (Theorem 99,
p. 142).]

What can be said about the “complexity” of a ML-random se@eefwith respect to the uni-
form measure) from the viewpoint of the recursion theory? Rivew already that ML-random
sequence is not computable. It also cannot be a charamtdusttion of an enumerable (recur-
sively enumerable, computably enumerable) set.

61

Theorem 36 Let A be an enumerable set of natural number. Consider itsagteristic sequences
apaiay... (a =0fori ¢ Aand a=1fori € A). This sequence is not ML-random.

< Letk be an arbitrary natural number. Let us enumerate thA aet see what happens with
k first bits of its characteristic sequences. As (currentigarsf) A increases, we get more and
more ones in thig-bit prefix. In this way we get at mo&t+ 1 candidates; at some point we come
to a final (true) one, but we never know that this happene@ayteAnyway, the set of candidates
is enumrable and the number of candidates does not ekeegdsincek-bit prefix can have 0..k
ones). The total measure of these intervalgkis- 1)/2¢ and therefore can be made arbitrarily
small. (Note that the definition of the effectively null sbers us to enumerate the intervals that
form a covering, and this is exactly what we can do in our ¢ase.

A natural question arises: in what sense one can providecgkph ML-random sequence?
As we have seen, neither computable nor characteristiesegs of enumerable sets are random.
If you are familiar with the basics of the recursion theorggse.g., 7]), you may appreciate
the following result: there exist a ML-random sequence Hedbngs to the class, NIy of the
arithmetic hierarchy (this class can be also describedeasléiss of allY-computable sequences).

Theorem 37 There exists a0’-computable sequence that is ML-random with respect to tie u
form measure.

< Itis enough to show that for any enumerable set of stripgsxy, ...} such thaty 2~ <
1/2 there exists & -computable sequence that does not have any a$ a prefix. (Indeed, the
largest effective null set has such a covering with total snealess than /2, and any sequence
that is not covered is ML-random.)

The intervalXQy, are divided into two groups: some of them belong to the leftdfe (i.e., x;
starts with 0) and some belong to the right half. Total measfiboth groups at most/2. There-
fore, at least one of the group has total measure at m@st However, looking at the sequence
Xi, we cannot find out which half has this property (since at amyn@nt new large interval can
arrive).

However,0'-oracle allows us to make this choice, since the event “nteasxceeds 1/4” is
enumerable. Then we divide this half into two parts of siZd @ach and choose one of them
where the total measure of corresponding intervals doesxueted 18, and so on.

In this way we get @'-computable sequence with the following property: eaclpitfix is
at most half-covered by our intervals. In particular, nofigref this sequence can appear in the
sequence;, and this is what we need-

(See Section 5.7 (p. 135) for an alternative proof.)

In fact our argument uses a relativized version of the folhgwesult:

Assume thakg, X1, X2, ... IS a computable sequence of binary strings and the sum

2—1(x)
2

is less than 1 and is a computable real number. Then thens excomputable sequence of zeros
and ones that has neithergfas its prefix.

{schnorr-n

62

[Hint: Let this sum be less than some ratio& 1. By induction construct a computable
sequenceww wy . .. With the following property: the fraction of the set = UQy among the
sequences that have prefis. . . x is less thar§]

This problem is related to the definition of randomness ssiggieby C. Schnorr?]. He gave a
more restrictive definition of an effectively null set. Tragitional requirement: for every (rational)
€ > 0 the total measure of corresponding intervals is not ordyg thare but also is a computable
real (and the approximation algorithm computably depemds)oThis requirement is equivalent
to the following one: for everg > 0 andd > 0 one can effectively find out how many terms in the
seriesy; p(X(&,i)) are needed to make the tail less tian(For a series with non-negative terms
the computability of sum is equivalent to computable cogeace.)

By Schnorr effectively null setse mean the effectively null sets according to this modified
definition. (Schnorr calls themotal rekursive Nullmengesee Definition 8.1 in7)]; effectively null
sets are callecekursive Nullmengesee Definition 4.1.)

Let us change the definition of an effectively null set in &@otway: now we require that
the total measure of all intervals in the covering@isctlys. Show that this definition is equivalent
to the definition of Schnorr effectively null set. (One cascatonsider the measure of the union of
all intervals instead of the sum of measures.)

Problem 62 shows that for every Schorr effectively null bet¢ exists a computable sequence
outside this set. (For simplicity let us consider the caseriform measure.) On the other hand,
every computable sequence (i.e., the singleton made afatdchnorr effectively null set. There-
fore, none of the Schnorr effectively null sets is the latge® in the class (in other words, the
union of all Schnorr effectively null sets is not a Schnoffeefively null set). Nevertheless we
can call a sequence which does not belong to any SchnorretwdlSchnorr random sequence
Schnorr typical sequence

Since now we have less effectively null set, we may get thadeoclass of random sequences,
and it is indeed the case. The following problem (togethén tie results of Chapter 5) guarantees
that there exist Schnorr random sequences that are notrMastirandom.

Prove that there exists a Schnorr random sequescesw @, . .. whose prefixes have
logarithmic complexity, i.e KS(ay. .. wh-1) = O(logn).

[Hint: The previous problem shows how one can construct goeiable sequence that does not
belong to a given Schnorr effectively null set. At some pointhis construction we can take into
account another Schnorr effectively null set and get a caatghe sequence that does not belong to
both. (Indeed, we need to take a sufficiently small coverangte second set that does not go out
of the safety margin in the construction form the first set.gr&bver, we can consider infinitely
many Schnorr effectively null sets in this way (adding theme after another). This will not give
us a computable Schnorr random sequnce (it does not exifl),abvecause we need additional
information that says us which algorithms correspond tan8oheffectively null set and which do
not. But if we postpone the introduction of a new algorithnthte moment when the constructed
prefix of our sequence is rather long, this additional infation is logarithmic compared to the
prefix length.]

We return to Schnorr definition of randomness in SectiBmvhere it is reformulated in terms
of computable martingales.

63

Prove that a sequence is not Schnorr random if ans only if there exists a computablg yjorr-s.
sequence of stringsg, X1, . .. such that the serieg; p(x;) computably converges (has a computable
sum) and infinitely many ok; are prefixes otw (this is a version of Theorem 31 statement for
Schnorr randomness). [Hint: In this case even the standadnf pf Borel-Cantelli lemma works.]

64

4 A priori probability and prefix complexity

{prefix}

4.1 Randomized algorithms and semi-measures adN

{prefix-pp

In this section we consider algorithms (=programs, mad)ieguipped with a random number
generator. That is, algorithms may perform instructiongheffollowing form:

b :=random

This instruction assigns to the variable (memory cblf random bit (O or 1), both values are
assigned with equal probabilities. To perform this indiarc we toss a fair coin and write its
outcome in the memory celtl. Algorithms including such instructions are callethdomizedor
probabilistic

The result (output) produced by a randomized algorithm dép@ot only on its input but also
on the result of the coin tossing. That is, for every fixed inthe output of a randomized algorithm
is a random variable.

Speaking formally, the probability that a randomized aildpon A prints a resulk is defined as
follows. Consider the uniform Bernoulli distribution oretlspace? of all infinite 0-1-sequences.
The measure of the s&, of all infinite continuations of a finite stringis equal to 2'W).

Let x be an input for a randomized algorithiand letw € Q be an infinite sequence of zeros
and ones. We denote #(x, w) the output ofA on inputx, if random bits used by the algorithm
are taken from the sequenae More specifically, each call of a random generator returasiext
bit of w. If the algorithmA does not halt (for giver andw), then the valué\(x, w) is undefined.

Lety be a possible output &&. Consider the sefw | A(x, w) =y}. This set is the union of
intervalsQ; over all outcomeg of coin tossing that guarantee thafprintsy havingx as input.
The probability tha#h on inputx outputsy is equal to the measure of this set.

In this section, we consider machines without input whodeuts are natural numbers. Here
is an example of such machine. It tosses a coin until a 1 ap@ed outputs the number of Os
preceding the first 1. The probabilify of the event “the output i§ is equal to 2 (+1), Indeed,
the algorithm outputsif and only if the firsti random bits are zeros and tfiet 1)st bit is 1. This
happens with probability 2i+1).

The sum of the serie$ p;j is equal to 1 in this example. Indeed, the algorithm does afvtih
and only if all random bits are zeros and this happens with pevbability.

We assign to every probabilistic machine (having no input producing natural numbers) a
sequencey, p1, .. . of real numbersp; is the probability that the machine prints the numibét/e
say that the probabilistic machigenerateshe sequenceo, p1,.... Which sequencepg, p1, . ..
can be obtained in this way? There is an obvious necessadjticon p; < 1 (since the machine
cannot produce two different outputs). However, this iraddy is not sufficient, as there are
countably many randomized algorithms and uncountably ,sagyences satisfying this condition.

Let us answer first a simplified question. Consider the hglgrobability of a randomized
machine without input, i.e., the probability that the maehhalts. Which real numbers can be
halting probabilities of probabilistic machines withonput? To answer this question we need to
introduce the notion of a lower semicomputable real number.

65

A real numbera is lower semicomputablef it is equal to the limit of a computable non-
decreasing sequence of rational numbers.

Prove that ifa is a computable real number (i.e., there is an algorithmftivaany given
rationale > 0 computes a rational approximationaawith precisione) is lower semicomputable.
[Hint: We can construct an increasing sequence using appatons from below.]

Show that a real number is computable if and only if both numbessand—a are lower
semicomputable.

A real numbera is lower-semicomputable if and only if the set of rationahthers that are
less thara is enumerable. (It explains why lower semicomputable rasdslso calleénumerable
from below)

Indeed, leta be the limit of a non-decreasing computable sequenceg a; < ap < ... of
rationals. For eachenumerate all rational numbers that are less thaAll rational number less
thana (and no other) will appear in the enumeration, and only suchbyers.

Conversely, assume that we can enumerate all rational mgrte are less tham. Omitting
in this enumeration all numbers that are less than prewoust ones, we obtain a non-decreasing
sequence whose limit 3.

Using the notion of a lower semicomputable real, we obtagfeiiowing answer to the above

guestion:
{enumerable

Theorem 38 (a) Let M be a probabilistic machine without input. The haltimglpability of M is
a lower semicomputable real number.
(b) Every lower semicomputable real is the halting probabititysome probabilistic machine.

< (a) Letpp stand for the probability tha#! halts withinn steps. The numbey, is rational: the
algorithm can toss a coin at mastimes withinn steps, thus the halting probability is a multiple
of 1/2".

We can findp, by simulating the run of the machine and probing all possthlecomes of
the coin tossing. The sequenpeg p1,... IS non-decreasing and its limit is equal to the halting
probability of M.

(b) Assume that a rea] is lower semicomputable. That is, there is a computable esezpl
Jo,ds, - .- Of rational numbers such thgt= lim g, and

Qo< <<....

We have to construct a probabilistic machine whose haltirdpability is equal tog. Let the
machine toss a coin and lbg, by, by, ... be the obtained random bits. Consider the real number
B = 0.bgbiby. . .; it is uniformly distributed in[0, 1]. Let the machine (in parallel to coin tossing)
compute the rational numbeagg, g1, o, The machine halts when it finds out thak q. That
is, the machine halts if for soméhe rational numbe; = 0.bgb; ... bj111... (the currently known
upper bound op) is less tham; (the currently known lower bound). See Fig. 9 for a symbolic
representation of this argument.

The constructed machine halts if and onlik g. Indeed, assume thftis less tharg. The
numbersy; tend tog and the lower boundg; of 8 tend tof3, asi — «. Therefore for somethe
numberg; is greater thaifs;. On the other hand, if the machine halts tiffer g by construction.

66

o Q102 ...

Figure 9: Comparin@ = 0.bgb1b,... andg=Ilim g;. {prefixpp.:

Thus the halting probability of the machine is equal to thabability of the evenf3 < g. The
latter probability equals the length of the segmi@ng), that is, tog. (Recall that is uniformly
distributed in the segmeif, 1].) >

Let us return to probability distributions that can by gexted by probabilistic machines. We
need a new notion. A sequenpg p1, Pz, - . . islower semicomputabiéthere is a functiorp(i, n),
wherei, n are integers ang(i, n) is either a rational number ere, with the following properties:
the function p(i,n) is non-decreasing in the second argument:

p(i,0) < p(i,1) < p(i,2) <...,

and
pi = lim p(i,n)

for all 1.

One could say that the sequengds lower semicomputable if the numbegpg, p1, p2... are
“uniformly lower semicomputable”. The next theorem prasdan alternative way to define lower
semicomputable sequences.

Theorem 39 A sequence@pi, p2.- .- is lower semicomputable if and only if the set of pdits),
where i is a natural number and r is a rational number less tipgris enumerable.

<1 Recall that a set is enumerable if there is an algorithm thatsall its elements in some
order and with arbitrary delays between consecutive elésr(#me algorithm may not halt even if
the set is finite).

Assume that a sequeng®, p1, P2, ... IS lower semicomputable. Lgi(i,n) be the function
from the definition of the lower semicomputability @§, p1, p2,.... Arrange all the pairsr,i)
in a sequence so that every pair appears in the sequenceelgfimany times. The algorithm
enumerating all the pairg,i) with r < p; works in steps. On stepcomparer and p(i,n) where
(r,i) is thenth pair in the chosen sequencer K p(i,n) then print the paitr,i), otherwise proceed
to the next step. By definitiom,< limp p(i, n) iff there existsn such thatr < p(i,n). Thus we will
print all the pairs we have to print, and no other pairs.

Conversely, assume that the property p; is enumerable and l& be an algorithm enumer-
ating all such pairsgr,i). To computep(i,n) we maken steps of the run oA. Consider all the

67

pairs that appeared withimsteps and havieas the second component. @i, n) be equal to the
largest first component of such pairs. If there are no suats,pat p(i,n) = —c. Asnincreases,
new pairs may appear ami,n) may increase. The limit ligp(i, n) is equal top;, since all the
rational numbers less tham will appear in the enumeration-

This theorem explains why lower semicomputable sequeneesiso callecenumerable from
below

We are now able to characterize probability distributioeseyated by probabilistic machines.

{semimeasu
Theorem 40 (a) Let M be a probabilistic machine without input that outpugsural numbers. Let

pi denote the probability that the machine outputs i. The secgief p is lower semicomputable
andy;pi < 1.

(b) Let p, p1, - - - be alower semicomputable sequence of non-negative reddensrauch that
Yipi < 1. There is a probabilistic machine M that prints every i witllpability exactly p.

< The proof of item (a) is similar to the proof of correspondstgtement in the previous
theorem. We lep(i, n) be the probability tha! outputsi within n steps.

The proof of item (b) is also similar to the proof of corresdmmy assertion in the previous
theorem. This time we assign to each natuebubset 0f0, 1] and the machine printdf the real
numberf = 0.bgb1bs... belongs to the set assigneditdrhe sets assigned to differaigt do not
overlap. They may not cover the entire segmént|. The set assigned to everys a finite or
countable union of half-open intervaks b) of total lengthp;.

In parallel, we toss a coin and obtain digits of the randompenf3. When we are sure th#t
gets into the set assigned to some natural number we prirmtinaber.

Here is a formal argument. Let(i,n) be the function of two variables from the definition of
lower semicomputability of, p1, Without loss of generality we may assume thétn) >0
for all i,n. Indeed, we can replace all negative values by zeros. We s&yree also that for
all n only finitely many value9(i,n) are positive (letp(i,n) = 0 for all i > n). The probabilistic
algorithm we construct runs in steps. On each step we alamnhe space inside, 1]. Our goal
is that after thenth step the total length of intervals allocateditis equal top(i,n) (for all i).
This requirement is easy to keep: going from left to right,stepn we allocate for each(such
thatp(i,n) > p(i,n— 1)) a new interval of lengthp(i,n) — p(i,n—1). We need to do this only for
finitely manyi, as fori > nwe havep(i,n) = p(i,n—1) = 0.

The total length of intervals used does not exceed p(as) < p; andy p; < 1. Thus we will
always be able to allocate the space we needed (at the |&fe dfte space).

In parallel, the probabilistic machine tosses a coin, olitgi a random bib, on stepn. It
halts on stem and outputs if it is known for sure thaf3 = 0.bgb1b,... belongs to the (interior)
of the space allocated i9i.e., if the closed interval consisting of all real numbetsose binary
expansion starts withgby . .. by is included in the interior of the space allocated.tfThe interior
of the segmenlu, V| is the intervalu,v).) By construction, for ali the measure of this set (interior
of the space allocated tpequalsp;. >

Any sequencey; satisfying the conditions of the previous theorem is cadiénlver semicom-
putable semimeasur@r enumerable from below semimeaguoe N. Sometimes we will use

68

also the notatiomp(i) for p;. We thus have two alternative definitions of a lower semicotalble
semimeasure: (1) a probability distribution generated bralomized algorithm; (2) a lower
semicomputable sequence of non-negative reals whose sssmdoexceed 1. The above theorem
states that these definitions are equivalent.

The word “semimeasure” may look strange, but unfortunatiedre is no other appropriate
term in the literature. Dropping semicomputability regunirent, one can call any function- p;
with 5; pi < 1 asemimeasuren N. Every semimeasure dN defines a probability distribution
on the seNU { L} where L is a special symbol meaning “undefined”. The probability fue t
numbeiri is p; and the probability ofl is 1— ¥ pi. In the sequel we consider lower semicomputable
semimeasures only (unless stated otherwise explicitly).

We have considered so far (lower semicomputable) semimeseun the natural numbers. The
definition of a lower semicomputable semimeasure can baalbtgeneralized to the case of
binary strings or any other constructive objects in placeatfiral numbers. For example, to define
a notion of a lower semicomputable semimeasure on the séafystrings we have to consider
probabilistic machines whose output is a binary string.

Important remark: we will consider in Section 5 a notion oeangmeasure on the space con-
sisting of all finite and infinite 0-1-sequences. Such a sexasure is generated by a probabilistic
machine that prints its output bit by bit and never indicdted the output string is finished. In
particular the machine never halts. It leads to a differextiom: all the machines considered in
this section are required to halt after printing the outpoit;such machines, there is no essential
difference between printing a binary string and a naturahiner.

4.2 Maximal semimeasures
{prefix-m}

Comparing two semimeasures dinwe will ignore multiplicative constants. A lower semicom-
putable semimeasumis calledmaximalif for any other lower semicomputable semimeasufe
the inequalitym (i) < cm(i) holds for some and for alli. (The namegreatest(instead of “maxi-
mal”) would be more accurate since we look for the greatesheht of some partially ordered set,
not the maximal one.)
{max-semi-I
Theorem 41 There exists a maximal lower semicomputable semimeasu¥e on

<1 We have to construct a probabilistic machmevith the following property. The machird
should print every numbemvith a probability that is at most constant times less tharptiobability
that any other machini’ printsi (the constant may depend dH but not oni).

Let the machineM pick at random a probabilistic machifd’ and then simulates!’. The
probability to pick each maching’ should be positive. If a machind’ is chosen with proba-
bility p thenM will print a numberi with probability at leasp- (the probability thatv’ printsi).
Thus one can let=1/p.

It remains to explain how to implement the random choice abéabilistic machine. Enumer-
ate all the probabilistic machines in a natural way;Ngt M1, M, ... be the resulting sequence.
We toss a coin until the first 1 appears. Then we simulate trelhmaM; wherei is the number of
zeros preceding the first t

69

It is instructive to prove this theorem once more using timglege of lower semicomputable
sequences instead of probabilistic algorithms. Basicalé/need to show that there exists a con-
vergent lower semicomputable series having the lowesbfatenvergence. That series should be
greater than any other lower semicomputable convergeigss@ip to a multiplicative constant).
More formally, we should consider only series with the surmast 1, but this is not essential as
anyway we allow to multiply the terms of a series by a constant

To find such a series, we sum up with certain weights all thet@m@micomputable series with
sum at most 1. The weights should form a converging seriesTiois will imply that the resulting
series converge. By construction it will be maximal (up towtplicative constant). There is only
one problem left: how to guarantee that the resulting s&siksver semicomputable.

The lower semicomputable of a semimeasure is withesseddypwtable functiomp: (i,n) —
p(i,n). There are only countably many such functions, since therely countably many algo-
rithms. Enumerate all such functiong?, p», p@. ..., and consider the function

pi.n) = 3 Ap (i)
k=0

where Ay is a computable sequence of rational numbers Wity < 1, say,Ax = 21 The
resulting functionp is non-decreasing infor everyi. Indeed, as increases, the number of terms
in the sum defining increases and the value of every term increases, too. Arallfowe have

r{gnmp(l,n)—;Akmp (i,n).

That is, the constructed semimeasure is indeed equal toutineo$ all lower semicomputable
semimeasures with weightg.

There is a bug in this argument. The functiafm, n) should be computable, and thus we cannot
use arbitrary enumeration of lower semicomputable funstim our construction. We need to
arrange them so that the functigm: (k,i,n) — p®(i,n) is computable as a function of all its
three arguments. Note that we cannot justd&t be the function computed bith program: it
may happen that thith program does not define any lower semicomputable semureagit
may compute a function which is not total, or a function tr@anhstimes decreases in the second
argument or a function whose sum is greater than 1.)

The bug can be fixed using the following

Lemma. Every progranP computing a function of two natural arguments and takinigp ne
values (and possibly the value») can be algorithmically transformed into a progr&@mhaving
the following properties. The progra®i defines a lower semicomputable semimeasure. If the
programP itself defines a lower semicomputable semimeasure,Rhdefines the same semimea-
sure.

Proof of the Lemma. Let P any program satisfying the condition of the Lemma. (We do
not assume tha® is total.) First we let?’(i,n) be equal to the maximal number output within
the firstn steps in the computation &f(i,0),...,P(i,n). If none of this computations terminates
within n steps or all the results are negative, weR&i,n) = 0. This definition guarantees that

70

P’(i,n) is non-negative and is non-decreasingirFor everyi, if P(i,n) is defined for alh and is
non-negative and non-decreasingjrthen lim,P'(i,n) = limy P(i, n).

It remains to ensure thgtp! < 1 wherep! = limy P'(i,n). To this end first leP’(i,n) = 0 for
all n < i. This transformation does not change the limit and presemvenotonicity inn. The
advantage is that now the summ{i,n) over alli is finite and can be computed for every We
need that this sum does not exceed 1. To enforce this we doo@aise?’ if we see that this
would violate our restriction. We trim first the vald®(i,n) for n = 0, then forn = 1 etc. The
Lemma is proved.

Using the transformation described in the Lemma, we arrafigtae lower semicomputable
semimeasures into a computable sequence. The weightedfsaalhit®terms is a maximal lower
semicomputable semimeasure. Thus we obtain another prdbleorem 41.

Fix any maximal lower semicomputable semimeasuy s, p2,... on the natural numbers.
We will use the notatiom(i) for p; and the notatiom for the semimeasure itself. The valongi)
is called thea priori probability of i. (Another name fom is theuniversal semimeasu@n N.)
Here is an explanation of this term. Assume that we are giwkavice (a black box) that after being
turned on produces a natural number. For géagl want to get an upper bound for the probability
that the black box outputs If the device is a probabilistic machine tharpriori (without any
other knowledge about the box) we can estimate the probabfli asm(i). This estimate can be
much more than the unknown true probability, but oBI1) times less than it.

The a priori probability of a numberis closely related to its complexity. Roughly speaking,
the less the complexity is, the larger the a priori probgbik. More specifically, we will show
that a slightly modified version of complexity (the so-cdlf@efix complexity) ofi is equal to the
minus logarithm ofm(i).

4.3 Prefix machines

{prefix-ma
The difference between prefix complexity and plain compesan be explained as follows. Defin-
ing prefix complexity, we consider only “self-delimitingskiptions”. This means that the decod-
ing machine does not know where the description ends anaHhasltthis information itself. One
can clarify this idea in several non-equivalent ways. We edcuss all them further in detail.
Let us start with a following definition. Let be a function whose arguments and values are

binary strings. We say thdtis prefix-stableif the following holds for all strings, y:
f(x) is defined and is a prefix ofy = f(y) is defined and is equal th(x).

{prefix-co:
Theorem 42 There exists an optimal prefix-stable decompressor (fofaimaly of all prefix-stable

decompressors).

< Recall that a decompressor (description mode) is a comlgutabction mapping strings
to strings. (All strings are binary.) The plain complexisydefined using an optimal function in
the class of all such functions. Now we restrict the classeathpressors to computakpesfix-
stablefunctions. We assign to each prefix-stable functibthe complexity functiorkKP p, which
is defined just as earlie’KPp(X) is the length of a shortest descriptionofvith respect toD

71

(i.e., minimall (y) among ally such thatD(y) = x). So the definition oKP p(x) coincides with
that of KSp(x); we write KP instead ofKS just to stress that we consider now only prefix-stable
decompressors.

We have to show that there exists an optimal prefix-stablerdpcessobD (for the class of all
prefix-stable decompressors). The latter means that footer prefix-stabledecompressor the
inequalityKP p(x) < KP /(x) + ¢ holds for some and allx.

Recall that for the plain complexity we have constructed atmeal decompressd by letting

D(py) = p(y).

Herep'is a self-delimiting description gb, say, p= P01 wherep stands for the string with all
bits doubled. The notatiop(y) refers to the result printed by the programngiven inputy (more
precisely, the string is interpreted as a program in a universal programming laggu

Is this decompressor a prefix-stable one? Certainly noeddgthere is a prograpicomputing
a function that is not prefix-stable, sg{0) = aandp(00) = b wherea # b. ThenD(f0) = aand
D(p00) = b.

To construct an optimal prefix-stable decompressor, we fyptiae definition ofD as follows.
We enforce prefix-stability of programs by converting everygramp to the programp| working
as follows:

(1) Apply pto all inputs in parallel. If the computation @fon an inputy halts with a resulkz
we write down the paiKy,z). Let(y;,z) denote the resulting sequence of pairs (enumerating the
graph ofp: z = p(yi)).

(2) We delete some terms of the sequefy¢ez) so that the resulting sequence is a graph of a
prefix-stable function. More specifically, let us call striry andy compatiblef one of them is a
prefix of the other one (an equivalent definition: both stsiage prefixes of a third string). We say
that a pair(y;,z) contradicts to a paifyj, z;) if y; is compatible withy;j, butz # z;. We delete a
pair (yi, z) if it contradicts to a paiKyj,z;) with j <i. (The argument would work as well if we
deleted a pair only when it contradicts tman-deletecprevious pair.)

(3) Computing the sequencw,z) and filtering out some its terms is a process that does not
depend on the input for the progrdm|. The input stringy is taken into account as follows. We
wait until a (non-deleted) pailyi,z) appears such thgt is a prefix ofy. Once we encounter such
a pair, we print the resu and halt.

For every progranp the functiony — [p|(y) is prefix-stable. Indeed, assume thalty) = z
By construction there is a non-deleted pgir, z) such that; is a prefix ofy. Assume furthermore
thaty is a prefix ofy’. We need to show thap|(y') = z. The stringy; is a prefix ofy’ as well,
therefore[p](y') = zor [p](Y) = zj where(y;,z;) is a non-deleted pair such thak i andy; is a
prefix ofy. In the latter casg; is compatible withy; and, since the paify;,z) does not contradict
to the pair(yj,zj), we havez; = z.

If pis prefix-stable then no pair is deleted in the run of its tfamsed versiorip|. Therefore
[p](y) is defined ag’s output ony or a prefix ofy. As we assume thatis prefix-stable, this is the
same.

Now we are able to finish the proof. Let

We have to verify thaD is prefix-stable and optimal (in the class of all prefix-s¢atdécompres-
sors).

To prove the first statement, assume thah is a prefix ofpay2. We need to show th&(p1y;)
andD(pzy2) coincide. As both the strings;, p; are prefixes of the stringyy», they are compat-
ible. Thusp; = p2 (as the encoding — p is self-delimiting) andy; is a prefix ofy,. Since the
program(ps] (=[pz]) is prefix-stable, we conclude thB{ p1y1) = [p1](y) = [p2](y) = D(p2y2).

So we have shown th& is prefix-stable. To prove the optimality 8f assume that a prefix-
stable decompressb is given. Letp be its program. TheD(py) = [p](y) = p(y). Therefore the
complexity of all strings with respect @' is at mosi (p) greater than the complexity with respect
toD. >

Let us fix some optimal prefix-stable decompressor and omititvscripD in KP p(x), speak-
ing about theprefix complexity Kx) of x. As well as the plain complexity, the prefix complexity
is defined up to a®(1) additive term.

There is another way to define prefix complexity. Instead efipsstable functions we consider
prefix-free functions. A function is callegrefix-freeif every two different strings in its domain
are incompatible. If a prefix-free function is defined on angjfyrit is undefined on all its proper
prefixes and continuations.

This time we restrict the class of decompressors to pred&-fmes, that is, computable prefix-

free functions. We have the following theorem that is sintidaTheorem 42:
{prefix-op!
Theorem 43 The class of all prefix-free decompressors contains an @b&fement.

<1 The proof is very similar to the proof of Theorem 42. This time construct, for every
programp, a prefix-free progranjp} that works as follows:

(1) Just as before, run the progrgmon all inputs to obtain a sequengg, z) of all pairs such
thatz= p(y).

(2) Delete all pairsy;, z) such thaty; coincides withy; for somej <.

(3) Lety denote the input to the prografp}. We find the first non-deleted pajy;,z) with
yi =y and outpu = {p}(y).

It is easy to verify that the mapping— {p}(y) is prefix-free for anyp and coincides with the
mappingy — p(y) if the latter one is prefix-free. The rest of the proof repéh¢scorresponding
part from the proof of Theorem 42:

Let us fix some optimal prefix-free decompressor andKIet(x) denote the corresponding
complexity.

Which of the complexity measurdéP andKP’ is “the right one”? This is a matter of taste.
We will prove in Section 4.5 that these measures differ by @dditave constant (and that both
complexities coincide with the negative logarithm of thaiagy probability). Thus the question is
which of the two definitions is more natural. Again this is ateeof taste. Authors believe that the
definition based on prefix-stable functions is more natinahtthe other one (which explains why
we started with it). However, sometimes the second defmiSanore convenient. For instance,
its use makes easier the proof of the theorem on the comyplaiat pair (Section 4.6).

The properties oKP andKP’ are similar to those of the plain complexity but differ in sem
important aspects:

73

e \We start with a comparison &S andKP:
KS(x) <KP(x)+0(1) and KS(x) <KP'(x)+0(1).

These properties are straightforward, as both prefix-staht prefix-free decompressors
form a subclass in the class of all decompressors.

e Recall thatKS(x) < I(x) +0O(1), as the optimal decompressor is better than the identity
function. This argument is not valid for prefix complexitg, the identity function is neither
prefix-stable nor prefix-free. We will show in Section 4.5ttthas inequality is false for the

prefix complexity. .
{prefix-cor

e Nevertheless there is an upper bound for the prefix compléxiterms of the length. We
will provide such bounds fokP’, the same bounds hold f&P, the proofs being entirely
similar. Let us show thaP’(x) < 2I(x) + O(1). Indeed, consider a decompressor

D(x01) = x

wherex stands for the string obtained by doubling all bitxinThis decompressor is prefix-
free andKP p(x) = 21 (x) + 2. By replacingkO1 by a more efficient self-delimiting encoding
X we can obtain better upper bounds. For example, lettiagbin(l(x))01x we obtain the
bound

KP'(x) <1(x)+ 2logl (x) +O(1).

By iterating the construction, we obtain the bound
KP’(x) < 1(x) +logl (x) + 2loglogl (x) + O(1)
and so on.

e as well as the plain complexity, the prefix complexity doesinorease when algorithmic
transformation is applied:
KP'(A(x)) < KP'(x) +0O(1).

The constanO(1) depends o\ but does not depend oa Indeed, ifD is a prefix-stable
decompressor then so is the compositior A(D(x)). This is true for prefix-free decom-
pressor as well, so we obtain a similar statemenkf@f in place ofKP . Using this property
we can define prefix complexity of other constructive objdi&ks pairs of strings, natural
numbers, finite sets of strings etc., without specifying howncode them by binary strings.

e For the prefix complexity, the inequality comparing the céewjty of a pair of strings with
their separate complexities is true up to a constant agdstikor term rather than logarithmic
one:

KP (x,y) < KP (x) +KP (y) +O(1)

(see below Theorem 54 in Section 4.6, p. 86).

74

e Let D be an optimal decompressor (from the definition of the plamglexity). Since the
the transformatiom — D(p) does not increase complexity, we have

KP (D(p)) < KP(p)+0(1) <I(p)+2logl(p) +O(1).

Let p be a shortest description gfwith respect td, that is,D(p) = x andl(p) = KS(x).
Then we have

KP (x) = KP (D(p)) < I(p) +2logl(p) +O(1) = KS(x) + 2logKS(x) + O(1).

Using stronger bounds in place of the boltf(p) < I(p) +2logl (p) +O(1) we obtain the
inequality
KP (x) < KS(x) +10gKS(x) + 2loglogKS(x) + O(1)

and other similar inequalities.

4.4 A digression: machines with self-delimiting input |
refix-sd
This section is not used in the sequel. We analyze here eiiffesomputational models with a{p J
“self-delimiting” input. Such models provide a motivatiéor the notions of prefix-stable and
prefix-free functions.
Usually the input is given to a machine in such a way that thehm& knows where the input
string starts and ends. For example, defining a Turing mactwmputation we usually assume
that initially the head is located at the first symbol of thpunstring and that its last symbol is
followed be a special marker, say, a blank.
At the other hand, a machine with a self-delimiting inputiges the input bits one by one and
has no indication which of them is the last one. At certairetitshould print a result and halt.

4.4.1 Prefix stable functions

Here is a refinement of this idea. Consider Turing machine ltha an extra infinite one-way
read-onlyinput tape The leftmost cell of the tape contains a special ma#kkeXkll the other cells
contain either O or 1 (Fig. 10).

0 1 0 0 0 1

]

Figure 10: A head on a one-way input tape. {read-only-

Initially the input tape head is located in the leftmost @it thus scans the marker. The in-
struction performed by the machine is determined by the s}ymbcans (and also by the symbol
scanned on the work tape and machine’s internal state, af) uShe possible actions are: chang-
ing the internal state, writing a symbol on the work tape, mg¥he heads (in any direction on the

75

work tape and to the right on the input tape). The result ofcttraputation should be written on
the work tape in the usual way. The work tape is initially eynpt

Let M be a Turing machine as described above. For all possibletsof the input tape run
the machine. If the computation halts, write down two stindgje stringx consisting of all bits
scanned by the input head, and the regualf the computation. Leffyy denote the resulting set of
pairs(x,y). If the pairs(x1,y1) and(xp,y2) are inl"y, then the stringg; andx, are incompatible.
Indeed, assume that is a prefix ofxp. Since the computation o does not go outside,, it will
be valid forx, too, and the last bits of, remain unused, thus the pait,y,) does not belong to
M.

In particular, the first components of different pair$ i are different. This means tha, is a
graph of a function. We denote this functionfy. Its arguments and values are binary strings. We
say thatM computess, in a prefix-free modelt is easy to see that the functigry is computable
in the usual sense. Indeed, to compu€x) we write x on the input tape and any symbols (say,
zeros) to the right ok and then rurM. If M halts and prints a reswt we verify whether it has
scanned all symbols of and no symbols beyond If the verification fails, we output no result,
otherwise we priny and halt.

It is easy to see that the functig, is prefix-free (any two different strings in its domain are

incompatible). The converse statement is true as well:
{prefix-fre
Theorem 44 Every computable prefix-free function is computed by sonehimain a prefix-free

mode.

< This statement is not that evident. Indeed, the (standaathime computing a prefix-free
function f knows where the input ends and can use this information. \&d tteconstruct another
machineM such thaty, = f.

The machinévl works as follows. Fix a machine computirign the usual sense. We simulate
in parallel its computations on all possible inputs. Somes we will interrupt the simulation and
scan a new symbol from the input tape. More specifically, wheew pair(x,y) with f(x) =y
appears, we comparewith the already scanned parof the input tape. It is not a prefix ofx
then we do nothing and wait until the next pairy) appears. If coincides withx, we outputy and
halt. Otherwise is a proper prefix ok. In this case we read the input tape until we find the first
bit wherex differs from the contents of the input tape or we find out thatinput tape begins with
X. In the latter case we outpytand halt. In the former case we return to the simulation @®ce
and continue it until the next paix,y) appears.

How doesM start its work? Initially the scanned part of the input tapemnpty. Once the first
pair (x,y) appears, we look whethgiis empty or not. I is empty, we priny and halt. Otherwise
we scan the input tape until we reaar find the first bit wherex differs from the contents of the
input tape (finding out thatis not a prefix of the input). In the first case we pyrend halt. In the
second case we wait for the next péairy).

Formally speaking, we maintain the following invariantat@n: after processing each pair, if
r is the scanned part of the input tape, then either

(1) f(r) is defined and the machine halts with the outpir), or

(2) r is not a prefix ofx for all pairs(x,y) appeared so far, but every proper prefiof r is a
proper prefix of one of suckis.

76

(A proper prefix of a string is any its prefix that is differendrih the string itself.)

It is easy to verify that this invariant relation implies tifa= y. We skip this verification and
explain informally the main idea of the construction: if theanned pant of the input is a proper
prefix of a string in the domain of then f(r) is undefined and we can safely read the next bit of
the input.>

An equivalent model can be defined in more “practical” teri@snsider computer programs
that have instructions of the form

b := NextBit

Executing this instruction, the program prints on the str@@rompt like “Enter the next bit” and
waits until the user hits one of the keys “0” and “1”. After hees this, the input bit is recorded in
b and the computation resumes.

One can assign computable functiérto every program of this type. Namely(x) equals
to y if the program prints/ provided the user enters the bits)o$uccessively in response to the
program’s prompts. If the program prints the result befoeeuser enters all the bits »br it asks
for a new bit after all the bits of are entered, thef(x) is undefined.

It is easy to modify the arguments above to prove that prografthis type compute all the
prefix-free functions and no other. (Moving the input heath®right is just reading the next input
bit.)

4.4.2 Prefix stable functions
{prefix-nor

There is another way to enter a bit string into a program witlspecifying where the string ends:
by pressing the “0” and “1” keys (and no other keys, so the drideinput is not specified). The
input are stored in a queue that is accessible to the program.

To read a new input bit the program invokes the instruction

b := NextBit

This instruction removes the first (the oldest) bit from thege and assigns it to the varialle
The program may use also the instruction

b := NextExists

to find out whether the queue is non-empty. We need to spediyt Wwappens if the program
invokes the instructioNextBitwhen the queue is empty. We may agree that this causes a crash,
or that the computation is delayed until the next bit arrivéss not essential which of these two
options is chosen, since we may guard the input statementaytimg loop:

while not NextExistsio {nothing};
b := NextBit

Programmers would this kind of access a “non-blocking regaeration”, while the input mode
described in the previous section is “blocking read operédti The advantage of a non-blocking
read operation is that we can do some useful work while waitin the next input bit.

77

It is not clear how to define a function computed by a prograat tises non-blocking read
operation, since the output of of the program may dependmigtan the input string, but also on
timing.

We call a programobustif this is not the case (i.e., if the output is determined by itiput
string and does not depend on timing). If the program is roldas any input stringx there are
two possibilities: (1) the program does not halt for any gelaetween the consecutive bitsobr
(2) for somey, the program outputgfor any delays between the consecutive bitg.of

In this way every robust prograoomputes functionf such thatf (x) is undefined in the first
case and equaijsin the second case.

{prefix-co:
Theorem 45 (a) The function computed by a robust program is both computaidieprefix-stable.

(b) For every computable prefix-stable function there existstaust program that computes it.

< (a) The computability of is straightforward: to comput&(x) we start our robust program
and enter all the bits of (with arbitrary delays). Then we wait until the program psia result,
which by assumption is equal fdx) if f is defined orx and does not exist otherwise.

Let us prove that is prefix-stable. We have to show (recall the definition fromet®n 4.3) that
if a robust program printg on some inpuk then it printsy on every inpui’ that is a continuation
of x. Start the program and enter all the bitx@#vith arbitrary delays). By assumption the program
printsy and then halts. After that, input all the remaining bits<ofthe difference betweexi and
X) with arbitrary delays. Obviously, these extra bits do rftéct the output of the program. Thus
the program produces outpgfor inputx’ at least for some timing. (Being robust, it does the same
for any timing.)

(b) Let f be a computable prefix-stable functidn The robust program that computed
works as follows:

Using a (non-robust) algorithm that computiesprogramr computes in parallef (x) for all
inputsx. At the same time reads all available input bits. Doing this|ooks for stringsx andy
such thatf (x) = y andx is a prefix of the input sequence. Once such fraly) is found, program
r printsy and halts.

Assume thaf (x) = y and all the bits ok are entered (with some delays). We have to prove that
r printsy and halts whatever the delays are. Indeed, at certainrtiimews thatf (x) =y and all
the bits ofx have been entered. At that time the program pyrasd halts unless it has been halted
earlier. The latter indeed can happen: the program can &di¢ewith the resultf (xX') wherex' is
some string compatible with However, since is assumed to be prefix-stable, we hdy®) =y
and the output is the same.

If f(x)is undefined and is prefix-stable therf (X') is undefined for all prefixes of x, hence
the program does not terminate.

This theorem provides a motivation for the notion of a pretiable function.

Construct an algorithm that transforms any given progpamsingNextBitandNextExists
calls into a robust program that computes the same functionmdoes, ifp is robust (and some
prefix-stable function ip is not).

[Hint: Use the construction from the proof of Theorem 45 bani forth.]

78

(Continued.) Prove that there exist no algorithm that foy given programp decides
whetherp is robust or not.
[Hint: This can be done in a standard way, by reducing therwafiroblem. See, e.9.7]|

4.4.3 Continuous computable mappings
{prefix-sd-
There is another, more abstract, motivation for the notifoa jprefix-stable function. It goes back
to a general theory of computable functionals of higher typ# we restrict our attention to our
particular case.

Let 3 denote the set of all finite and infinite binary sequenées:=U Q. For a finite string«
let Zx denote the set of all finite and infinite continuationsxofWe will considerZ as a partially
ordered setx < yif xis a prefix ofy.

Consider a topology o& whose base consists of all sets of the f@yn This means that a set
is open if it is a union of some sets of this form. It is easy tofyghat we indeed get a topology.
(Note that the resulting topological space does not sateh\separation axiom.)

The following statement is almost straightforward:

Theorem 46 A set AC Z is open if and only if it satisfies the following conditions:
(2) if a finite string x is in A, then all finite and infinite continu@ns of x are in A,
(2) if an infinite sequence is in A, then some its finite prefix is.in A

<1 Every union of base sets satisfies the conditions (1) andd@npversely, if a sef satisfies
both conditions then it is equal to the unionXfover all finite stringin A. >

Add to the natural numbers a new elemént‘undefined”) and IelN; denote the resulting set.
Consider the following partial order on this set: the eletners less than all natural numbers, and
all the natural numbers are pairwise incomparable (Fig. 11)

012 3 4

Figure 11: The topological spadé {n-bottom}

Consider the following topology on the S8t { 1 }. A set is open if it either does not include
the elementl or coincides withNU {_L}. It is easy to verify that we get a topological space (that
does not satisfy the separation axiom).

Let us identify partial mappings frora into N with total mappings fronk into N | ; the value
1 replaces all undefined values. The next theorem charagsetantinuous mappings (recall that
a mapping is continuous if the preimage of every open setespp

Theorem 47 A (total) mapping F: £ — N is continuous if and only if the following are true:

79

(1) F is increasing, i.e., X< 'y implies Kx) < F(y) (the signs< refer to the pre-ordering
relations onN; andZ introduced above);

(2) if x is an infinite binary sequence and¥ # L, then x has a finite prefix »such that
F(X)# L.

< Let F be a continuous mapping. To verify the condition (1), asstiméx < y but F (x) £
F(y). ThenF(x) is a natural number (and nat) andF (x) # F(y). The preimage of the open set
{F(x)} containsx and does not contaiyhence it is not open.

Let us verify the condition (2). Assume thatis an infinite sequence arfé(x) # L. The
preimage of the s€iF(x)} is open and contains Thus it contains some finite prefix »f

It remains to verify that any functioR satisfying conditions (1) and (2) is continuous. We
need to verify only that the preimage of every natural nundepen (indeed, the preimage of the
entire space is open and other open sets are unions of singlsirmed by natural numbers). It
is enough to verify that the preimage of every natural nunslgisfies the conditions (1) and (2)
from the previous theorem. This is a straightforward camgllof our assumptions. (Note thaixf
is a prefix ofx andF (X') # L thenF (X') = F(x), asF is increasing.)>

For any given continuous mappifig: * — N consider the sdig of all pairs(x,n) € = x N
such thaf (x) = n. Note that the sdif is only a part of the graph of the mappiRg(we consider
only finite stringsx and require that £ 1).

Theorem 48 The mapping F— g is a bijection between continuous mappings> N, and sets
A C = x N satisfying the following conditions:

(1) (x,ny e A, x<y = (y,n) €A;

(2) (x,n) € A, (x,m € A = m=n.

< Assume that the mappirfg is continuous. IfF(x) = n € N then the condition (1) of the
previous theorem guarantees thay) = n for everyy > x. This proves that the s€¢ satisfies the
condition (1). AsF(x) cannot be equal to two different numbers, the conditiong2)so satisfied.
Thus, for every continuous mappiigthe set has properties (1) and (2).

It is easy to see that the det uniquely determine§: if x is a finite string therF (x) is the
second component of the (unique) pairn) € Me. If there is no such pair thelR(x) = L. If xis
an infinite sequence théf(x) is determined uniquely d&(x') wherexX is a sufficiently long prefix
of x.

It remains to show that every sathaving properties (1) and (2) is equallip for certainF.
For every finitex defineF (x) as the natural number such that(x,n) € A, which is unique by
property (2). If there is no such then letF(x) = L. By condition (1) we get an increasing
function. For every infinitex € X let F(x) be equal toF (X') wherex is any prefix ofx such
thatF(X') # L. If there is no such(’ then letF(x) = L. By property (1) the value ofF(x) is
well defined. The constructed functiénsatisfies both conditions (1) and (2) from the previous
theorem and is continuous. By construction we haye= A. >

The conditions (1) and (2) mean that the gets a graph of a prefix-stable function. We
thus have a one-to-one correspondence between contintequyamgsz — N, and prefix-stable
functions.

80

Call a continuous mapping: = — N, computablaf the setl'r is enumerable. It is easy
to verify thatF is computable if and only if the restriction &f to those strings € = for which
f(x) # L is computable in the standard sense. (A partial functiomfioto N is computable if
and only if its graph is enumerable.) Thus computable cootis functiong& — N | are basically
the same as prefix-stable functions. This gives an extravatain for the notion of a computable
prefix-stable function.

4.5 The main theorem on prefix complexity

{prefix-eq
In this section, we prove that all the three complexity measKP (prefix-stable decompressors),
KP' (prefix-free decompressors) and the negative logarithrheotpriori probability coincide up

to an additive constant. To this end we prove that three ialps
—logm(x) < KP (x) < KP'(x) < —logm(x)

are true up to a constant error term. We start with two easyualéies.
{kp-kpprime
Theorem 49
KP (x) < KP'(x) +O(1)

< This inequality would be evident if every prefix-free furmstiwere prefix-stable. This is not
the case: a prefix-free functidhis undefined on all the continuations of any string the domain
of D. In contrast, a prefix-stable functi@his defined on all the continuationf any stringu in
the domain oD, andD(v) = D(u).

Therefore we need a (simple) construction. Debe a prefix-free decompressor. Define an-
other decompress®’ as follows:D’(y) = x if and only if D(y') = x for some prefixy of y. As
D is prefix-free, sucly is unique, thud’ is well defined. To comput®’(y) we just applyD in
parallel to all the prefixeg of y until we find a prefixy such thaD(y') is defined.

By construction the functio®’ is prefix-stable and extend® Therefore the complexity of
any string with respect t®’ does not exceed that with respectDo (In fact, the complexities
with respect td andD’ coincide, as the described transformatidn- D’ does not affect shortest
descriptions.)>

We could try to prove the converse inequality in a similar wegnsider the restriction of the
given prefix-stable decompresddito minimal descriptions. That is, I& (y) = zif D(y) = zand
D(y') is undefined for all proper prefixg5of y.

Note that this transformation is an inverse of the transédrom used in the proof of the last
theorem. The resulting functidl is indeed prefix-free. However it might be non-computable.

Find a computable prefix-stable functi@nfor which the prefix-free functiol’ con-
structed in this way is not computable. [Hint: La&tbe an enumerable undecidable set, whose
complement is thus not enumerable. Lf¢0"11x) = O for all natural numbers and all binary
stringsx. Let alsof(0"1x) = 0 for alln € Aand allx]

This problem shows that, in a sense, the non-blocking reathtipn is more powerful than the
blocking one (see Section 4.4).

81

{m-kp}
Theorem 50

—logm(x) < KP (x) +O(1).

< We have to prove that 2P < cm(x) for some constant and for allx. Recall thaim is
the maximal lower semicomputable semimeasure. Thus itesftio find an upper bound for the
functionx — 2-KP(that is a lower semicomputable semimeasure. (In this seat®consider
semimeasures on the set of all binary strings treated agtésbbbjects, as defined in Section 4.1.)

Let us construct a probabilistic machine generating thisiseeasure. Toss a coin to obtain
a sequenceéy, by, by, ... of random bits. Simultaneously, apply the optimal prefedsg decom-
pressoiD (from the definition ofKP) to all prefixes of the sequend®, by,b,,.... If one of the
computations

D(A)7 D(b0)7 D(b0b1)7 D(b0b1b2)7 s

terminates with a certain result, print that result and.hBlote that it does not matter which of
the terminated computations we choose: prefix-stability giuarantees that this choice does not
affect the result.

Let x be a binary string and lgt be a shortest description a&fwith respect tdD. Then the
machine printx with probability at least 2'(P). Indeed, if the random sequence starts vpithen
the result of the machine s Thus the constructed machine generates a measure thatipgan
bound for 2 KP®)

There is a slightly different proof of the same theorem, \utdoes not involve probabilistic
machines. The function— 2~ KP ¥ js Jower semicomputable. Thus it is enough to show that it is
a semimeasure.

{prefix-co
Theorem 51
227 KP (x) <1
X

< For every string let px be any shortest description »{with respect to the optimal prefix-
stable function from the definition &P). For every different strings andy the stringspx and py
are incompatible. Thus the statement is a direct corollatiefollowing

Lemma. Let po, p1, P2,... be pairwise incompatible strings (that is, neither of thiengs is a
prefix of another one). Thep; 2~'(P) < 1.

Indeed, for every consider the se®, of all infinite continuations ofy. Its uniform Bernoulli
measure is equal to #P). As the stringg; are pairwise incompatible, the sum of the measures
of all setsQp, is at most 1. The Lemma and Theorem 51 are prowed.

Theorem 51 implies that the inequalkyP (x) < 1(x) +O(1) is false (and shows the difference
between plain complexiti(S and prefix complexityKP) Indeed, if it were true, the series

2—| (X)
2

would converge. However for eventhe terms of this series corresponding to string§lengthn
sum up to 1 (there aré'Zuch terms and each of them is equal 18)2

82

Prove that even a weaker inequaklti (x) < 1(x) +logl(x) +O(1) is false (in other words,
the differenceKP (x) — 1 (x) —logl (X) is not bounded by a constant). [Hint: Use the divergence of
the harmonic series.]
It remains to prove the last (and most difficult) inequality:
{kpprime-m
Theorem 52
KP'(x) < —logm(x) + O(1).

<1 We present first a sketch of the proof. The semimeas(xgis lower semicomputable, so we
can generate lower bounds foxx) that converge ton(x) but no estimates for the approximation
error are given. The largen(x) is, the smalleKP’(x) should be, that is, the shorter description
p we have to provide foxr. The descriptions reserved for different strings must lsenmpatible.
(The descriptiong, andp, are incompatible if the intervalg, andl,, do not overlap. Recall that
the intervall, consists of all real numbers whose binary expansion begiiisp) The inequality
I(p) < —log, m(x) means that the length of the intervglis at leastn(x): 2-'(P) > m(x).

Thus we have to assign to every strixgn interval of length at least(x) so that the intervals
assigned to different strings do not overlap.

Let us specify more carefully what we need. First, for eaitlsuffices to reserve an interval of
the lengthem(x) rather tharm(x), for some fixed positive. This relaxation causes the complexity
increase at most by a constant.

Second, we are allowed to use only properly aligned intsrval., intervals, for some binary
string p. However, given the above relaxation, this restriction & @ssential. Indeed, every
intervall C [0,1] contains a properly aligned interval that is at most fourershorter.

So we arrive to a problem that is quite similar to the problemsidered in Section 4.1. There
is a sequence of clients. Each client asks for some spadefsi]; client may increase its request
from time to time. The important difference is that now theet are interested not in the total
space allocated, but in the contiguous interval, which rmake “space management” job more
difficult. To compensate this difficulty, we are allowed tduee all the requests and multiply them
by some constard.

Imagine that clients are processes running on a computdrflnmemory manager has to
allocate contiguous properly allocated memory accordinthéir requests that increase in time.
Once allocated memory cannot be freed (and reused for otbeess).

The simplest strategy is to allocate a new interval (in tlee fmemory) each time the request
increases. This does not work, however: if two clients’ esjs increase in alternating order and
in small steps, the overhead cannot be compensated by ad\efiaad we will run out of space.

The remedy is well known: one should look forward and inceghe allocated interval signifi-
cantly even if the current increase in the request is smallekample, one may allow only powers
of 2 as the interval lengths (then the sum of the lengths isct twvice more than the maximal
summand).

It is not hard to present a detailed proof based on this giyabeit we will not do that. Instead,
we present a slightly different proof that uses the follayvetatement(often called Kraft—Chaitin
lemma, seé&?).

83

This lemma can be considered as a computable version of tfetkeorem from the informa-
tion theory (see p. 170).
Lemma. Letlg,l4,l5,... be a computable sequence of non-negative integers such that

2 i<,
2

There exists a computable sequence of pairwise incompdtibary stringg, X, Xz, ... such that
(%) = 1.

Note that the inequality of the lemma is a necessary comdibo the existence of such a
sequence: the intervalg do not overlap and their lengths are equal 16.2The lemma states that
this necessary condition is also sufficient.

So we again have an infinite sequence of clients,itiielient demands to allocate properly
aligned interval of length 2 for her. The intervals reserved for different clients slimot overlap.
We need to design a computable strategy to fulfill all thentierequests.

There are several ways to describe such a strategy. Herebalgy the simplest one: let us
maintain the representation of the free space (paf0df that is not allocated) as the union of
properly aligned intervals of different lengths.

Initially this list contains one intervaD, 1]. We serve the requedig |y, |y, ... sequentially.

Assume that current requestlisso the required length is = 2-i. First note that one of the
free intervals has length at leagt Indeed, if all the free intervals had smaller lengths,rteam
(the total amount of free space) would be less twaince they have different lengths and the sum
of powers of 2 less that = 27! is less thamw.

If there is a free interval in the list that has size exaut)your task is simple. We just allocate
this interval and delete it from the free list (maintainihg invariant relation).

Assume that this is not the case. Then we have some intervdlseilist that are bigger
than requested. Using the best fit strategy, we take the eshalmong these intervals. Let
w > w be its length. Then we split free interval of siné into properly aligned intervals of
sizew, w, 2w, 4w, 8w, . .., W' /2 (note thatv+w-+ 2w+ 4w+ 8w+ ... +wW /2 =w. The first interval
(of sizew) is allocated, all the other intervals are added to the fige We have to check out
invariant relation: all new intervals in the list have diffat sizes starting witlw and up tow'/2;
old free intervals cannot have this size siméavas the best fit in the list.

Lemma is proved.

Prove that the described algorithm can be rephrased asvilléor eachi use the the
leftmost properly aligned interval of length 2 that does not overlap with previously allocated
interval. [Hint: the construction used in the proof maintaialso the following property: the
lengths of the free intervals increase from left to right.]

Corollary . Letl; be a computable sequence of natural numbers suctﬁlﬂaﬁi < 1. Then
KP'(i) <li+0O(1).

Indeed, the Lemma provides a computable sequence of paimgempatible stringsx; of
lengthsl;. Define a computable functidd by lettingD(x;) = i. As x; are pairwise incompatible,
this function is prefix-free. AndD is computable: given an inpatwe compare it withx; for all
i=0,1,2,... successively. Once we find that x; we output and halt.

84

(Note that, in this proof, we go back and forth between natouanbers and binary strings
when we speak about the a priori probability and complekxity.

Let us return to the proof of the theorem. Consider the malimaer semicomputable
semimeasuren. By definition there exists a computable functiox, i) taking rational values
that is non-decreasing irsuch that

m(x) = iIingom(x,i).
Let m'(x,i) stand for the smallest power of two,/2,1/4,1/8,...) that is an upper bound for
m(x,i). The functionn'(x,i) is computable and non-decreasing.ifits value is betweem(x; i)
and 2n(x;i).

Say that a paitx,i) is aboundarypair if m/(x,i) > m(x,i — 1) (or if i = 0 andm/(x,0) > 0).

Let us show that the sum af (x, i) over all boundary pairé, i) does not exceed 4. It is enough
to show that for every fixed the sum ofm/(x,i) over all boundary pairsx, i) is at most 4n(x).
This is true since for every fixedeach term in this sum is at least twice bigger than the pragedi
term. Thus the sum is at most twice bigger than its last terfitx, i) for somei, which is less than
2m(x,i). Now recall thaim(x,i) < m(x). We see that the sum in question is at mas{}.

The set of all boundary pair, i) is decidable: to find whether a pdi, i) is a boundary pair
we have to comparneY (x,i) andm/ (x,i —1).

Enumerate all the pair,i) and exclude all non-boundary ones. &, io), (X1,i1), ... be for
the resulting sequence. Each boundary pair appears irethigeace exactly once. Defihgby the
equality

270 = ml (%, in) /4.
The sequence df is computable and

1
e .
;2 = 4;nf(xn,|n) <1
The corollary mentioned above implies th&®’'(n) < I+ O(1). As x, can be computed givem
we have
KP'(xn) < KP'(n)+0(1) < In+0(1) = —logm (Xn,in) +O(1).
So for everyx the complexityKP’(x) does not exceed lognt(x,i) if (x,i) is a boundary pair.
Taking the maximai with this property we get-logm(x) + O(1), therefore

KP'(x) < —logm(x) + O(1).

Theorem is proved>

So all the valueP, KP’ and —logm differ by at most a constant. Given this, we do not
distinguish in the sequel betwe&® andKP’ (unless the difference in their definitions becomes
essential for some special reason).

Let us note that actually we have proved the following statei;needed in Section 5.6: (prefi
prefix-exj
Theorem 53 Given a lower semicomputable sequence of reglp{... such thaty; pi < 1, we

can find a prefix-free decompressor D such thaty{P < —log, pi + 2.

This means that given any algorithm enumerating the setic$ frai) with r < p;, we can find
an algorithm for a decompresddrsatisfying the latter inequality.

85

4.6 Properties of prefix complexity
{prefix-pr
In this section we continue the study of the of prefix compiexiWe first revisit some already
established properties and present their alternativefptzased on the a priori probability.
It is well known that the serie§ 1/n? converges. Multiplying its terms by a constant, we
obtain a lower semicomputable semimeasure. Thus the a prabability of a natural number
is at least/n? for some constard. This implies that

KP (n) < 2logn+ O(1).
Let x, be thenth string in the sequenag, 0,1,00,01,10,11,000,... of all binary strings. Then
KP (xh) < KP(n)+0(1) < 2logn+0(1) = 2l (xn) + O(1)

(the last equality is true, sincg is n+ 1 in binary notation without the leading 1, so the length of
Xn is logn+ O(1)).

(There is a special case= 0, as both 10° and log0 are undefined; the changes needed to
handle it are trivial.)

So we get the inequalitfP (x) < 2I(x) + O(1).

To prove a better upper bound for prefix complexity we may m#rsa convergent series

1
anogzn'

(To prove its convergence compare it with the corresponuitagral.) Using this series, we obtain
the inequalitykP (n) < logn+ 2loglogn+ O(1) or (for strings)

KP (x) < I(x)+2logl(x) +O(1)

(for the alternative proof of this inequality see p. 74).

By using the serie§ 1/(nlogn(loglogn)?), ¥ 1/(nlognloglogn(logloglogn)?) etc. we can
improve the bound further.

Now we prove the inequality relating the prefix complexityaopair to prefix complexities of
its components.

{prefix-pa:
Theorem 54
KP (x,y) < KP (X) + KP (y) + O(1).

Just as in the case of plain complexity, we def{i®(x,y) as the complexity of the string, y]
where(x,y) — [x,y] is a computable injective encoding of pairs of binary stsin@ he complexity
of a pair does depend on the choice of the encoding; switdieiramother computable injective
encoding changes complexity at most by an additive consitasited, the translation between any
two computable injective encodings is an algorithmic tfamsation.)

<1 Consider the function? defined as

m([x,y]) = m(x)m(y)

86

(herex andy are binary strings}x,y] is the encoding of the pair and the valuesndfis a real
number). Herem stands for the a priori probability. & is not an encoding of any pair, we let
m'(z) = 0.

The functionn is lower semicomputable (the product of lower boundsgx) andm(y) is a
lower bound fom(x)m(y)). Furthermore, we have

Sm@)=Fm(xy) =3 mxmy) =Y mx)ymy<11=1
Z Xy Xy X y

Thusm is a lower semicomputable semimeasure. Comparingith the a priori probability, we
obtain the inequalityn' ([x,y]) < cm([x,y]) for some constart. Hence

KP ([xy]) < KP (x) +KP (y) + O(1).

Theorem is proved:>

Prove that the suny, m([x,y]) differs from m(x) by at most a constant factor (in botqm_projectj
directions).

Let f: N — N be a strictly increasing computable function. Prove that value
S{m(k)|f(n) < k < f(n+1)} differs from m(n) at most by a constant factor. (So if we split
the series ,m(n) into groups, the sums of the groups form essentially the sames!)

Let us prove now Theorem 54 using decompressors. It turnthative need to use prefix-free
(and not prefix-stable) decompressors.

Let us prove thakKP'([x,y]) < KP/(x) + KP’(y) + O(1). Let D be an optimal prefix-free de-
compressor used in the definitionWP’. Define a new prefix-free decompres&r Informally,
the algorithmD’ reads the input until it finds a descriptionxfThen it reads the rest of the input
until it finds a description of. Formally, we defind®’ as

D'(pq) = [D(p),D(q)].

Here pq stands for the concatenation of stringandq. In other words, we try to split the input
into two partsp andq in such a way that botb(p) andD(q) are defined.

We need to verify thaD’ is well defined. Indeed, assume that represented asq in two
different waysx = pq= p'q, and all the value®(p), D(q), D(p’), D(d) are defined. Themp
andp’ are compatible (being prefixes of the same stkngnd thus coincide (aB is prefix-free),
henceq=('.

In a similar way we can prove that the functibnis prefix-free. Letpqbe a prefix ofp’q’ and
both belong to the domain &. The stringgp andp’ are compatible and bofb(p) andD(p’) are
defined, therefor@ = p'. This implies thag is a prefix ofg’. As bothD(q) andD(q') are defined,
we haveq=(.

The functionD’ is computable: to find’(x) we compute in paralldD(p) andD(q) for each
possible way to splix into p andg. We have shown that there is at most one representativa®f
pgsuch thaD(p) andD(q) are defined. If we find suchandg, we output the stringD(p), D(q)].

It remains to note that

KPp ([x,y]) < KPp(X)+KPp(y).

87

Indeed, letp and q be shortest descriptions afandy with respect toD. The stringpq is a
description of(x,y] with respect td’ and has lengtkP p (x) + KPp(y).

Prove Theorem 54 using the definition of prefix-free decosgmes in terms of machines
with blocking read operation (see Theorem 44 on p. 76).

A set of binary strings is callegrefix-freeif any two elements of it are of incompatible.
Show that if both setd andB are prefix-free then so is the set

AB= {abjac AbeB}.

Which proof of Theorem 54 (using a priori probability or ugiprefix-free decompressors) is
easier and more natural? It is a matter of taste — the auttedimvb that the first one is more
natural. The next theorem provides an opposite exampleode#mg arguments here seem to be

simpler than the arguments using the a priori probability.
{prefix-ad
Theorem 55

KP (x,KP (X)) = KP (X) + O(1).

(Problem 19 asks to prove the same equality for the plain ¢exiip.)

The valueKP (x,n) (wherex is a string and is a natural number) is defined in the usual way,
as the complexitKP ([x,n]) of some (injective computable) encoding of the gain).

< The inequalityKP (x) < KP (x,KP (x)) + O(1) is straightforward, as the stringcan by
computed given the string, KP (x)].

To prove the converse inequality |Bt be an optimal prefix-free decompressor used in the
definition of prefix complexityKP’. Define a new decompressbf as

D'(p) = [D(p), 1 (p)]-

The domain oD coincides with that oD, henceD’ is prefix-free. Letp be a shortest description
of x with respect td. Thenl (p) = KP’(x) and therefore is a description of the strinjgr, KP’(x)]
with respect td’. ThuskP /([x,KP’(x)]) < 1(p) = KP'(x).

Is the theorem proved? There is one subtle point in the arguriiée have proved the theorem
for the complexityKP’, defined via prefix-free decompressors. If we substitiRefor KP' in the
equalityKP’(x,KP’(x)) = KP’(x) + O(1), its right hand side will change by an additive constant.
The similar statement for the left hand side is not stramiatfird, asKkP’ has two occurrences
there, and the second one is inside the argument. But atieasaveKP (x,KP’(x)) = KP (x) +
O(1).

To finish the proof it remains to show that the functkoR (x, n) changes at most by a constant,
asn changes by 1. This easily follows from the computability afppings(x,n] — [x,n+ 1] and
[x,n] — [x,n—1]. >

It is instructive to prove Theorem 55 using the a priori plaby. Let m(x) be the a priori
probability ofx. Define the functiom as

m(([X,kDZ{

27K if 27K < m(x);
0 otherwise.

88

This function is lower semicomputable: giverandk, we generate lower bounds fox(x) and
output 0 until we find that 2¢ < m(x), and then we we output .

For every fixedk the sum off([x, k]) over allk is a geometric series formed by powers of 2.
Therefore this sum is less thami) (the largest term of the series is less tmaix)). Therefore,
the sum ofm([x, k]) over allx andk is finite. Comparingr([x,k]) and the a priori probability of
[x, K] we conclude that

m(x, k) > 2—k+O(1)

if 27X < m(x). Taking the logarithms, we see that
KP (x,k) <k+0O(1)
whenever 2K < m(x). The latter inequality holds fdt= —[logm(x) | + 1 and thus we have
KP (x, —[logm(x) | +1) < KP (x) + O(1).

It remains to recall that the functidiP (x,n) changes at most by a constant,nashanges by 1.
The second proof of Theorem 55 (in the nontrivial directigf)nished.

This argument proves a bit mor&P (x, m) < m+ O(1) wheneveKP (x) < m. How to
derive this inequality from Theorem 55 (from its statemeard aot from its proof)?

We proceed now to the algorithmic properties of the funcdh(x). Like the plain com-
plexity the prefix complexity is upper semicomputable but camputable. Moreover, there is
no computable non-trivial (i.e. unbounded) lower bound K&t (x). Indeed, sinceKP (x) <
2KS(x) + O(1), every non-trivial lower bound oKP would yield a non-trivial lower bound of
KS.

Recall that the plain Kolmogorov complexi§s(x) can be defined as the smallest upper semi-
computable functioiK such that the cardinality of the st | K(x) < n} is O(2") for all n (Theo-
rem 8, p. 21). Here is a similar statement for the prefix coxiple

{kp-minima:
Theorem 56 The function KP is the smalle@tp to an additive constant tejnupper semicom-
putable function K (mapping binary strings to natural numband +) such that the series
5,2 KX converges.

< The functionKP is upper semicomputable and the serjg2~ KP(X) converges. LeK
be any other function having these properties. Then thetifumd/1(x) = c2 KX wherec is a
small enough constant is a lower semicomputable semimeagigm(x) is the maximal lower
semicomputable semimeasure, we hil{e) = O(m(x)), that is, logM (x) < logm(x) + O(1). It
follows thatKP (x) < K(x) +O(1). >

This theorem can be reformulated as follows. For every ugpeaticomputable functioff
mapping binary strings to natural numbers ane the assertionskKP (x) < f(x) +O(1)” and
“3,2~ T < «0” are equivalent.

Note that the requirement “the seri§§2*'<(x) converges” is stronger than the requirement
“the number ofx such thai (x) < nis O(2")” used in Theorem 8. Indeed, §f,2~X® < C, then

89

the number ok such thatk (x) < nis at mostC2". This observation gives another proof of the
inequalityKS(x) < KP (x) +O(1).

It is instructive to compare plain and prefix complexity irotaspects: the average complexity
of strings of given length and the number of strings that ltawveplexity not exceeing given bound.
Let us start with the first question.

We have seen that the plain Kolmogorov complexity of moshg$ of lengthn is close ton
(p. 11 and Problem 2). One could expect the prefix compleaityetslightly bigger.

{average-kj

Theorem 57 (a) KP (x) < 1(x) +KP (I(x)) +0(1)).

(b) For some constant c and for all d the fraction of strings x such that KR) < n-+KP (n) —
d among all strings of length n is at mog¢.

< (a) Letm(x) be the a priory probability of a binary strimandm(n) be the a priory probabil-
ity of a natural numben. Consider the function’(x) = 2-"m(n) wheren is the length ok. The
sum ofm(x) over strings of lengtim is equal ton(n) hencey ' (x) < 1. Since the function is
lower semicomputable, we conclude tingfx) < cm(x) for some constart and allx. Taking the
logartihms we obtain the inequality

KP (X) < n+KP (n) +0(1)

(the constan©(1) does not depend am).
(b) Consider the function

I(x)=n

the total a priori probability of all strings of length Sincem(n) is lower semicomputable and
Y (n) < 1, we havar'(n) = O(m(n)). On the other hand, the a priori probability of the string
consisting oin zeros is at leastm(n) for some positive contamt Thus we have

cam(n) < z m(x) < com(n).
I(x)=n

So the sum ofm(x) over all binary strings of length coincides withm(n) (up to a constant factor).
Thus the average of(x) over all stringsx of lengthn is m(n) /2" (up to a constant factor). The
fraction of strings< such thatm(x) is 24 times bigger than the average, is at most &Chebyshev’s
inequality).>

Prove that the average prefix complexity of strings of lemgghequal tan-+KP (n) +O(1).

(Similar question for plain complexity is studied in Prail&.)
Now we estimate the number of strings with complexity at nmost

{bounded-kj
Theorem 58 The number of strings x with KX) < n is 2"~KP(M+0(1),

90

< Let ¢, be the number of strings such thatKP (x) < n. Let us rewrite the basic property
of prefix complexity (the convergence of the serje3™ KP (X)) in terms ofc,. There are exactly
Cn.1 — Cp Strings of complexityn. Therefore the series

Z 2""(Chs1—Cn)

converges. Regrouping the terms of this series we conchate t

S —2Me, = § 27" < e,
n n

Since the functiom, is lower semicomputable, this implies that"2, does not exceed the a priori
probabilitym(n) of n. Hencec, < m(n)2" (up to a constant factor).

On the other hand, it is easy to construct an upper semicabj@utunctionK whose values
are natural numbers ango that takes the valueon (approximatelyjn(n)2" arguments. This can
be done in many ways. For example, let us agree that for aystoflengthn the valueK(x) can
be either+o or n; it is equal ton if the ordinal number ok in the list of all n-bit strings is less
thanm(n)2".

For this functionK, the seriesy 2-X® converges. Therefor&P (x) < K(x) +O(1) hence
Cni0(1) = m(n)2". Bothm(n) and 2' change at most by a constant factonascreases by 1. Thus
m(n)2" = O(cy). >

The last two theorems show that the difference betw&e(x) andKS(x) can be bounded in
terms of the complexity of the length ®f{not just logarithm of the length as we have seen before).

There are several other inequalities of this type. Itegatime inequalityKP (x) < (x) 4+
KP (I(x)), we obtain the following series of inequalities:

KP (x)
KP (x)

(X) +1(1(x)) +KP (I(1(x)) + O(1),
() +1(109) +1(1(104))) +KP (11 (1 (x))) +O(1)

etc. A similar series of inequalities can be obtained as¥asl LetD be the optimal decompressor
from the definition of the plain (not prefix) Kolmogorov coregity. Combining the inequali-
tieskKP (D(y)) < KP(y) +O(1) andKP (x) < |(x) + KP (x) + O(1) we get the following series of
inequalities:

<l
<l

{kp-ks-bou
Theorem 59

< KS(x)+KP (KS(X))) +O(1),
KP (X) < KS(X) +KS(KS(x))) + KP (KS(KS(x)) + O(1),
<KS(X) +KS(KS(X))) + KS(KS(KS(x))) + KP (KS(KS(KS(x))) + O(1)

etc.

All the inequalities in this sequence can by obtained froenfitst one.
There are many other interesting relations between plairpagfix complexity, se@?.

91

4.7 Conditional prefix complexity and complexity of a pair ofstrings

{prefix-co

4.7.1 Conditional prefix complexity

{prefix-co-

What it conditional prefix complexity? Each of the definitsasf prefix complexity can be modified
by adding a condition.

We start with the definition using prefix-stable functions.fuliction D(y, z) is prefix-stable
with respect to yf for every z the functiony — D(y, z) is prefix-stable:

D(y,z) is defined ang <y = D(Y,2) = D(y,2).

We assume here that the first argumeriDa$ a binary string; the notation< y means thay is a
prefix ofy'.

Recall the definition of the (plain) conditional complexitpm Section 2.2. Aconditional
decompressof=description mode) is a computable function that mapsspaibinary strings to
binary strings. IfD(y,z) = x theny is called adescription of x when z is knowiThe complexity
of x with conditionz is the length of the shortest description. Then we fix an ogiticonditional
decompressor that gives minimal complexity (up to a corstan

Now we consider only decompressors that are prefix-staliferespect to the first argument.
This smaller class of decompressors contains an optimaha@ssor (for this class). The proof
of this statement is similar to the proof of Theorem 42 (pagewhere an optimal unconditional
prefix-stable decompressor is constructed. We modify ttosfiby adding the parameteiin all
formulas. More specifically, let

D'(Py:2) = [p](y,2).
Here[p] stands for the program obtained frgnvia "prefix stabilization for a givey”. This mean
that for all p,z the functiony — [p]|(y,2) is prefix-stable, and if the functiop— p(y, z) itself is
prefix-stable then it coincides with the functign- [p|(y, z). It is easy to verify that this is indeed
possible and thdd’ is an optimal prefix-stable (with respect to the first arguthdacompressor.

Fix an optimal conditional prefix-stable decompressor agbte the resulting complexity by
KP (x|z), theprefix complexity of x with condition z

If we considerprefix-free decompressors (instead of prefix-stable ones) we obtairtten a
native definition of conditional prefix complexity. The etaace of an optimal function in this
class of decompressors is proved in a similar way. The iagutbmplexity could be denoted by
KP’(x|z). Like their unconditional versions, functiokd (x|z) andKP’(x|z) differ by at most an
additive constant, which does not dependk@ndz:

KP'(x|z) = KP (x|z) + O(1).

As in the case of unconditional complexities, this is prousthg the conditional a priori prob-
ability m(x|z). It can be defined in two ways (using probabilistic machinas lawer semicom-
putable semimeasures).

Let M be a probabilistic machine with an input. Lp{(x|z) denote the probability thal
outputs the string for inputz. The function(x,z) — pw(X|2) is lower semicomputable and for
all zthe sumy, pm(X|z) does not exceed 1. Conversely, for every lower semicomfmitabction

92

(X,2) — p(x|z) that takes non-negative real values such fhap(x|z) < 1 for all z, there exists a
probabilistic machin® with py = p.

The class of all functionpy has an optimal function, that is, the greatest one up to aaons
factor. Fixing an optimal function in this class, we obtae tonditional a priori probability
m(x|z) of the string x with condition.z

The inequalitykP (x|z) < KP’(x|z) + O(1) is easy (as in the unconditional case). To show that
all three complexitie&P (x|z), KP’(x|z) and—logm(x|z) coincide up to an additive constant, one
has to prove the inequalitieslogm(x|z) < KP (x|z) + O(1) andKP'(x|z) < —logm(x|z) + O(1).
We omit those proofs since they repeat their unconditioaedions.

One could say that these inequalities and their proofs alativizations” of the respective
unconditional inequalities and proofs. The relativizatis understood here in a non-standard
way. In the Theory of Computation, relativization meand tha class of computable functions
is replaced by the class @f-computabldunctions, i.e., the class of functions computable with
a given oracleA. (HereA is an arbitrary set of binary strings. A function is compugatwith
oracleA if it is computed by an algorithm that is allowed to make gesrmf the form % € A?".
That is, the algorithm calls an external procedure that patir returnstrue or false depending
on whethe is in A or not.) Almost all known theorems in the Theory of Computatyeneralize
to A-computable functions.

By the way, the notion of Kolmogorov complexity can be relatd in a standard way, too.
That is, for every sef we can define the plain Kolmogorov complexkg”(x) and the prefix
Kolmogorov complexityKPA(x) (see Section 6.4). However, we do not consider relativizeld K
mogorov complexity now. Instead of algorithms having ancteraccess to a set of strings we
consider algorithms having an access to a finite stzinig this way we obtain conditional com-
plexity KS(x|z) or KP (x|z) instead oKS(x) (resp.KP (x)). Sincezis finite, the access to it does
not increase the power of algorithms (amgomputable function is computable withait How-
ever, the access tochanges Kolmogorov complexity, # contains non-negligible information.
Here is another example of this kind of relativization: thentity| (x : y|z) can be considered as
common information irxx andy relative toz.

Important remark. Up to now the structure (prefix relatiosgd in the definition of prefix-
stable and prefix-free functions is applied to descriptionly. The described objects, as well as
conditions, can have no structure at all.

The other approach is also possible: we could take into dersiion the binary relation “to be
a prefix of” on described objects as well. This will lead us tootone complexity (see Chapter 5)
and decision complexity (Chapter 6). On the other hand, wedcconsider he relation “to be a
prefix of” on conditions as well (see Section 6.3). The rasgitomplexities make sense, however,
they are not well studied yet.

Note that all the requirements in the definitions of prefeefand prefix-stable decompressors
treat different conditions separately. For example, méggithat a machine can tell when the
input ends, we allow this decision depend on the conditionis Explains why the statement of
Problem 23 (p. 34) is not true for prefix complexity:

Show thaKP (y|x) does not exceed the minimal prefix complexity of a programpivagx (jprefix_cm
toy (up to an additive constant error term). The converse sttérms false. (Both statements hol

93

for every programming language, the additive constant mgpen the chosen [Hint. It is easy
to see thakP (y|l(y)) < I(y) + O(1). Indeed, every string is its own self-delimiting description
whenl (y) is known. If the converse inequality were true, there wowdd@bdifferent programs of
prefix complexity at mosh.]

4.7.2 Properties of conditional prefix complexity

Let us mention several simple results about conditiondbpcemplexity.

e KP(x|z) < KP(x)+0O(1).
Indeed, any prefix-stable (or prefix-free) unconditionalatapressoy — D(y) can be con-

sidered as prefix-stable (resp. prefix-free) conditionabdgpressory, z) — D(y) that just
ignores the second argument

Using semimeasures: any probabistic machine without ic@ibe considered as a machine
that has input but ignores it. And any lower semicomputabteimeasurg(x) can be treated
as a familyq'(x|z) = q(x) indexed byz.

o KP(x|x) =0(1).
Indeed, the decompresdo(y, z) = zis prefix-stable (recall that prefix-stability requirement
deals withy, notz) andKP p(x|x) = 0. We can also change it to get a prefix-free decom-
pressor: leD(A,z) = zwhereA\ is an empty string and ldD(y.z) be undefined ify # A.
Finally, the family of semimeasures can be constucted #&safel q(x|x) = 1 andq(x|z) =0
for z=#£ x.

e KP(f(x,2)|z) < KP(x|z) + O(1) for any computable functiof and for any stringg,z such
that f (x,z) is defined. (The constant (1) may depend ori but not onx andz.)

Indeed. leD be the optimal prefix-stable [prefix-free] conditional degmyessor. The map-
ping D': (y,z) — f(D(y,2),2) is also a prefix-stable [resp. prefix-free] decompressor and
KPp (f(x2)|2) < KPp(X|2).

In terms of semimeasures the same argument goes as folletsi(¥|z) be the a priori
probability ofx with conditionz, consider the semimeasure

a(X2) =Y {m(x|2) | f(x,2) =x}

(for eachzthis is an image of the semimeasure> m(x, z) under the mapping — f(X,2));
it is easy to check thaf is lower semicomputable, thgt,q(x|z) < 1 andq(f(x,2)|z) >
m(x|z). Sincemis optimal, we get the desired inequality for a priori proitiibs and their
logarithms).

e KP(x]z) < KP(x|f(2)) + O(1) for any computable functiori and for anyx,z if f(z) is
defined (the constant iB(1) may depend orf but not onx andz).

(Indeed, consider the decompressgrz) — D(y, f(z)) or the conditional semimeasure
q(x2) = m(x/f(2)).)

94

e KP (f(x)|x) = O(1) for any computabld and for allx such thatf (x) is defined.
(A simple corollary.)

e KS(x|z) < KP(x|2) +O(1)

Indeed, prefix-stable and prefix-free decompressors fobelass in the class of all decom-
pressors used in the definition K6(x|z).

o KP(x|2) < KS(x|z) +2logKS(x|z) +O(1)

This is a corollary of previous statements. IndeedDdte the optimal conditional decom-
ressor (not necessarily prefix-stable or prefix-free). Then

KP (D(y,2)|2) < KP(y|z) + O(1) < KP(y) + O(1) < I (y) +2logl (y) + O(1).

If yis the shortest description gfwith conditionz, thenl (y) = KS(x|z).
In the same way one can prove a stronger inequality

KP (x|z2) < KS(X|z) 4+ logKS(x|z) + 21oglogKS(x|z) + O(1)

etc.

4.7.3 Prefix complexity of a pair

As we have seen (Theorem 54, p. 86F (x,y) does not exceelP (x) + KP (y) + O(1). Let us
prove a stronger inequality:
{prefix-pa:
Theorem 60
KP (x,y) < KP (x) +KP (y|x) +O(1).

<1 We can use either prefix-free decompressors or semimea8atksversions are instructive.
Using prefix-free decompressorsLet D be the optimal unconditional prefix-free decompres-
sor. LetD be the optimal conditional prefix-free decompressor. Giersihe functiorD’ defined
as follows:
D'(uv) = [D(u), Dc(v, D(u))]

(for u andv such that the right hand side is defined). Following the pofdtheorem 54, we note
thatD’ is well defined and is an prefix-free (unconditional) decogspor. The concatenation of the
shortesD-description forx and the shorte€d.-description fory (with conditionx) is a description
for [x,y].

(Note that the order ofi andv is crucial for this argument: replacings by vu we get into a
trouble: to find wherer ends, we have to use the prefix-free propertpgfbut it is valid only for
a fixed condition and(u) is not determined yet.)

Using semimeasuresLet m(x) be the unconditional a priori probability afand letm(y|x)
be the conditional a priori probability gfwhenx is known. Consider the functiom’ defined as
follows:

' ([x,y]) = m(x)m(y[x)

95

(we assume that(z) = O for stringsz that are not encodings of any pairs). Thehis lower
semicomputable (being a product of two non-negative lowarisomputable functions), and

T (@ =3 mogmiyp) = 3 [me) § myx)] < 3 me) < 1.
Z Xy X y X

Thereforem([x,y]) > em ([x,y]) = em(X)m(y|x). >

Prove thaKS(x,y) < KP (x) + KS(y|x) + O(1).

[Hint: One may use prefix-free decompressor and append thm)escription ofy to the
prefix-free description ok. The other argument: count the number of pairs such Kirax) +
KS(y|x) < n. We have at most‘2 m(k) - 2"k = 2"m(k) pairs such thakP (x) = k, and the sum
overk gives 2'- O(1).]

Further improvements are possible. First note that we campass of strings as conditions by
using some computable injective encoding (changing theding we change the complexity at
most by a constant). For similar reasons we can speak abaugierity of a triple of strings. Now
we can write the following chain of inequalities (tl1) terms are omitted):

KP (x,y) < KP (x,KP(x),y) < KP (x,KP (x)) + KP (y|x,KP (X)) = KP (X) + KP (y|x, KP (x)).

Here the equalit)KP (x, KP (x)) = KP (x) (Theorem 55) is used as well as the inequality for the
entropy of pairs (Theorem 60). We get an inequality that carcdnsidered as a strong form
of Theorem 60, sinc&P (y|x,KP (x)) < KP (y|x) (becausex can be produced fronx, f(x)] by
an algorithm). As L.A. Levin (se€?]) and also G. Chaitin (se€?]) have noticed, this refined
inequality is (remarkably) an equality:
{prefix-pa:

Theorem 61

KP (x,y) = KP (x) + KP (y|x,KS)) + O(1).

< In one direction the inequality is already known (see thewlsion above). One can give
also a direct argument: to get a prefix-free description oéia {x,y), it is enough to start with
prefix-free description ok and then append the prefix-free descriptioty @fith conditionsx and
KP (x) (note thatKP (x) is just the length of the prefix-free descriptionx)f After the machine
reads the first part and stops, we know bxefifits output) andKP (x) (the length of the input), so
we have all needed information to restgrén a self-delimiting way).

Using semimeasures, we can prove the same inequality as/follConsider a functiom’ such
that

M= 5 27¥miyxk)
{k|l2-k<2m(x)}

This function is below semicomputable and its sum ovexalf is finite (for eachx andk the
sum over ally does not exceed 1, then the sum ovekallich that 25 < 2m(x) does not exceed
4m(x), and the sum overdoes not exceed 4). So we comparewith the a priori probability and
conclude that fok = —|log, m(x) | we get the term that we want to estimate.

Now let us consider the reversed inequality:

KP (x) + KP (y|x,KP (X)) < KP (x,y) + O(1).

96

Let us start with a simple (but incorrect!) proof of a stronfj®it incorrect!) statemenet
KP (x) + KP (y|x) < KP (x,y) + O(1).
In terms of semimeasures this equality can be rewritten|bs\vs:
m(x)m(y|x) = em([x,y])

(for somee and for allx,y). Herem stands for a priori probabilities (both conditional and omec
ditional ones). Let us rewrite this inequality as

m(y|x) > &

It is enough to show that the function

_ mxy)
my) = e e

for any fixedx is a semimeasure (for song; after that we can compare it with the maximal
semimeasuren(y|x) and get the desired result. We need to show that the sumi(gfx) overy
does not exceed 1:

Zym([)@y])

;rﬂ (yx) =€)

Indeed, the function— ¥, m([x,y]) is a semimeasure (its sum overaéqualsy,, m([x,y]) < 1)
and therefore this function is bounded togx) /€ for somes.

What is wrong with this argument? We have not checked thateh@measure we constructed
is lower semicomputable. There are two cases where we nedtkbtk this. In one of them it it
is easy: the functiory, m([x,y]) is lower semicomputable sinceis lower semicomputable. But
in the other case, for functiom([x,y])/m(x), the lower semicomputable function(x) is in the
denominator, and whem(x) increases, the fraction decreases.

The correct proof of the weaker inegality follows the samieesee but uses some additional
tricks. We have to prove that far= KP (x) the inequality

<1l

m([x,y])

m(y[x,z) > €)

holds. The problem is that the right hand side is not lowerisemputable. But foz = KP (x) we
can replacen(x) ~ 2~ %P by 2-Zand consider the function

m(yx, 2) = m([x,y])2".

This function in lower semicomputable. But now it is not a seeasure: the surfi, N (y|x, z) is
bounded by 1 only if

>mxy)<2°
y

97

which is not true ifz is large. However, we know thgt, m([x,y]) = O(m(x)) = O(2~ KP(), so
there exists a constaasuch that

z<KP(X) —c= Y m(yxz <L
y

But this is not enough: we need a family of semimeasures #tisfg this inequality for alk andz.
So we “trim” the functionm’ and get another functiom” such that:

e function(y,x,z) — m’(y|x,z) is lower semicomputable;

¢ the inequality
Y m'(yix2) <1
y

is true for allx andz;

e the exists a constantsuch that

Z< KP (X) —c= m'(y|x,2) = m(y|x,2).

How to perform “trimming”™? This trick was explained in Semti4.2: we look at the increasing
approximations from below and let them through only if thendt violate the required bound for
the sum. , .

Now, comparingn’ with the a priori probability and taking the logarithms, wanclude that

Z< KP (x) —c= KP(y|x,2) < KP (x,y) —z+ ¢

for somec, ¢’ and for allx,y, z

Now we letz be equal taz = KP (x) — c. Note also that changingby 1 changes the value
KP (y|x,z) by at mosiO(1) (increasing/decreasing the second component of a pairdmautable
function). ThereforeKP (y|x, KP (x) — c) = KP (y|x,KP (x)) + O(1). >

Note that we get Theorem 22 (p. 37), which says &f@fx,y) = KS(x) + KS(y|x) + O(logn)
for strings of complexity at most, as a corollary.

Indeed, the replacementl§P by KS changes all three terms by at m@gtogn). It remains to
note that the difference betwe$(y|x, KP (x)) andKS(y|x) is bounded byD(logn). In this way
we get a new proof of Theorem 21 that replaces counting by podations with semimeasures.

Recalling thatm(x) ~ ¥y m([x,y]) (up toO(1) factor, Problem 73, p. 87), we may rewrite the
statement of Theorem 61 as follows:

m(y|x, KP (X)) ~ %

The right hand side of the equation can be interpreted asahéittonal probability of the event
“the second component of the pair equglsvhere condition is “the first component of the pair
equalsx’.

98

Prove that

KP (x|2) < KP (x]y) + KP (y|z) + O(1)

for any stringsx,y,z. (This result can be improved if we repla&é (x|y) by a smaller term
KP (xly,2).)

Prove the “relativized” version of Theorem 61.:

KP (x,y|2) = KP (X|2) + KP (y|x,KP (X|2),z) + O(1).

Using Theorem 61 twice, we a get a formula for the prefix corigliof a triple. Indeed, the
triple (x,y,z) can be considered as a pair whose first componértys and the second component
is z. Therefore,

KP (x,y,2) = KP (z]x,y,KP (x,y)) + KP (x,y) + O(1).

Using Theorem 61 once again, we get the following result:

{prefix-tr:
Theorem 62

KP (x,y,2) = KP (z|x,y,KP (X,y)) + KP (y|x, KP(x)) + KP (x) + O(1).

We can change the order of transformations (usingtedativized version of Theorem 61) at
the second step:

KP (x,Y,2) = KP (y,z|x,KP (X)) + KP (x) =
= KP (z]y,KP (y|x,KP (x)),x,KP (X)) + KP (y|x,KP (x)) + KP (X)

(we omit theO(1)-terms for brevity).

It is interesting that this leads to a slightly different sien of Theorem 62: the two last terms
are the same but the first term is different. We still have thadd@ional complexity oz but now
we have two conditionKP (x) andKP (y|x,KP (x)) instead ofKP (x,y). Note that the sum of the
complexities in the condition is exactkP (x,y) according to Theorem 61. Therefore, the pair of
complexities has no less information thidR (x,y). In fact the reverse is also true (whrmandy
are conditions). Indeed, letbe the pairfKP (x),KP (y|x,KP (x))); in the second formula the first
term is zero (i.e.0(1)). So we get the following corollary:

{prefix-pa:
Theorem 63

KP (KP (x)[x,y,KP (x,y)) = O(1),
KP (KP (y|x, KP (x))|x,y, KP (X,y)) = O(1).

(Of course the same is true fP (y) andKP (x|]y,KP (y)).)

Give a direct proof of Theorem 63. [Hint: Knowingy KP(x,y), we may look for an
upper boundl for KP (x) such thatkP (y|x,d) +d becomes equal t&§P (x,y). The coincidence

99

(upO(1)) implies thatd = KP (x) + O(1): indeed, ifd = KP (x) + m for somem, the complexity
KP (y|x,d) can decrease (because of timsat most byO(logm), and the sum becomes bigger.]

Using Theorem 61 we can easily show that the basic inequaflifyheore 24 (p. 42) is true
with O(1)-precision for prefix complexity (recall that we have logfamic error term for plain
complexity):
{prefix-ba:s
Theorem 64
KP (x,,2) +KP (x) <KP (x,y) + KP (x,2) + O(1)

for every three strings,y, z.
< Indeed, the right hand side can be rewritten as
KP (x) + KP (y|x, KP (x)) + KP (x) + KP (z]x,KP (X)),
and the levt hand side equals
KP (x) + KP (y, z|x, KP (x)) + KP (x).
It remains to prove that
KP (y,zjx, KP (x)) < KP (y|x,KP (x)) + KP (z]x,KP (x)),

and this inequality is a relativized version of Theorem 548@%). >
Let us provide also a direct proof of Theorem 64 using semsmes. \We have to show that
(up toO(1)-factors)
m(x,y,2)m(x) = m(x,y)m(x,2),
wherem is the maximal lower semicomputable semimeasure. Divithygn(x), we get an in-

equality
m(x,y)m(x, 2)

m(x)
Let us check that the left hand side of this inequality hasigefsum (over all triples, y, z. Indeed,

m(x, y)m(x, 2)
m(x)

< m(x)

yz

(sincey,m(x,y) < m(x) andy,m(x,z) < m(x)). (We omitO(1) factors for brevity.)
This is not enough: since we har€x) in the denominator, the fraction
m(x, y)m(x, 2)
m(x)
is not (necessarily) lower semicomputable and we canndhesaaximality property. So we need

to use the following trick (similar to the trick used in theopf of Theorem 61) to construct a lower
semicomputable upper bound for this fraction.

100

For eac consider the functiomy(x,y) which is obtained fronm(x,y) by 2 "-trimming: the
sumy,m(x,y) is forced to be at most2. Note thaty, m(x,y) = m(x) (up to O(1)-factors) and
thereforemy(X,y) = m(x,y) for n=KP (x). Then we consider the function

My (X, Y)Mn(X, 2)
Z 2-n

(x.y,2) —
n>KP (x)

It is an upper bound since it contains the term witk KP (x). On the other hand,

M (X, Y)Mh(X, 2 SyMn(X,Y) 3 2Mn(X,2)
X¥,2 n=KP (x) 2" Zn }; 2"
Zn }; 2 "< ZZm(x) <2

(As before, we omiO(1)-factors which lead only t®(1)-factor in the final inequality.)

Show that the inequality of Theorem 26 (p. 44) is true for premplexity withO(1)- {condit-tr:
precision:
2KP (x,Y,2) < KP (x,y) + KP (x,2) + KP (y,z) + O(1)

for all stringsx,y,z. [Hint: add the basic inequalitP (x,y, z) + KP (z) < KP (x,z) + KP (y, z) to
the inequalitykP (x,y,z) < KP (x,y) + KP (2).]

- Prove that there existssuch that for every string and for every positive integerthere {increasing
exists a stringy of lengthn such that

KP (x,y) > KP(x)+n—c

[Hint: for everyz andn there exists a string of lengthn such thakP (y|z) > n.]

A similar statement can be formulated fobit extensions of a given string(its version for

plain complexity makes Problem 34 on p. 38)
{increasin;

Theorem 65
max{KP (xy)|l (y) =n} > KP (x|n) +n—O(1).

In other terms, for some and allx andn we can appena bits to x in such a way that its
complexity is at least bits more thakP (x|n) (this is not exactly the increase in the complexity
since we comparkP (xy) with KP (x|n) and notKP (x)).

< In terms of a priori probabilities this inequality says that

2" min{m(xy)[1(y) = n} < m(xjn) - O(1)

The left hand side does not excegfim(xy) |l (y) = n} (the sum may only decrease is we replace all
summands by the least one). But the latter sum is (as a funatioandn) a lower semicomputable
semimeasure, so it remains to compare it with the maximairseasuran(x|n). >

Show that a bit weaker statement Wi (x) — KP (n) instead ofKP (x|n) (in the right
hand side) can be derived from the statement of Problem 85.

101

5 Monotone complexity
{monot}
5.1 Probabilistic machines and semimeasures on the tree

{monotsm}
Chapter 4 defines a priori probability by using probabitistigorithms (machines) that may print
some number as their output and then terminate. In this ehapt consider another type of
probabilistic (=randomized) algorithms. These algorishoatput a binary sequence bit by bit and
do not necessarily terminate. The output, therefore, is)\dam variable whose values are finite
and infinite sequences of bits (i.e., elements of th& s#tall finite and infinite sequences of bits).
Consider the following simple algorithm of this type. It jisends random bits directly to the

output:
while true do

b:=random
OutputBit(b);
od

Its output therefore is a random variable that is uniformstributed overQ, the set of all infinite
binary sequences.

Butitis quite possible (for another algorithm) that somédéisequence is printed with positive
probability. This happens when algorithm with positive lpability stops after sending some bits
to the output (or runs forever without sending any bits todtigput).

For each algorithrA of the described type we consider a functathat is defined on binary
strings and whose values are non-negative reals:

a(x) = Prlthe output ofA starts withx]

More formally this function is defined in the following way. aéh probabilistic algorithm
defines a mapping of the setQ (infinite sequences of zeros and ones) into theEsdilamely,
A(w) is a sequence of output bits that appears if we use the terthe eéquence as random bits
(this means that each statemeént randomassigns ta the first unused bit ofv). For example, if
Alis the program mentioned above, th&fw) = w for all w. _

Thena(x) is defined as the measure of the preimage of th&,sehder the mappind (where
>y Is the set of all finite and infinite sequences having prefix We say thatA generateshe
distributiona.

What areA anda, if the algorithmA prints an infinite sequence of zeros (not using random
bits at all)?

A natural question arises: what is the class of all functiarisat correspond to randomized

algorithmsA of the described type? Here is the answer.
{monotsm-c:
Theorem 66 Let A be arandomized algorithm of the described type andbetthe corresponding

function. Then:
(@ a(x) > Ofor all x;
(b) a(A) = 1 (hereA is the empty string
(c) a(x) > a(x0) +a(x1) for every string x;
(d) the function a is lower semicomputable.

102

The notion of the lower semicomputable (enumerable fromgesequence of reals was de-
fined in Section 4.1 (p. 65). For the functions on strings thkndion is quite similar: we require
thata(x) = limja(x,i) wherea is a computable functiom(x,i) is defined for all stringg and for
all non-negative integetis has rational values (special symbed is allowed) and non-decreases
asi increases.

< The first three claims are obvious:

(a) Probability is always non-negative.

(b) a(\) = 1 since the empty string is a prefix of any output.

(c) a(x) > a(x0) + a(x1), since the events “the output starts wih’ and “the output starts
with x1” are inconsistent and both are subsets of the event “thmibsatarts withx”.

Note that the inequality (c) can be strict; the difference

a(x) —a(x0) —a(x1)

is the probability of the event “the output is exactly thergjix’ (no bits appear after it).

(d) To prove that is lower semicomputable, we need to construct approximatimm below
for a(x) for any given string. Let us simulate the behavior éffor all possible values of random
bits. During this simulation we discover values of randoits that guarantee that output starts
with x, i.e., we find some intervalsin Q such that\(w) starts withx for all w € |. The probability
a(x) is the measure of the union of all these intervals, and theoappationa(x i) is the measure
of the union of all the intervals discovered up to the stepthe simulationr>

The functiona that is defined on all binary strings, takes real values atisfies the conditions
(a)—(d) of Theorem 66 is called dower semicomputable semimeasure on the binary tiees
important not to mix semimeasures on the binary tree andmseasures defined in Chapter 4 that
were functions on natural numbers (or on binary strings ¢batespond to natural numbers) and
correspond to probabilistic algorithms that print some han{or string) and terminate.

All functions that satisfy conditions (a)—(c) are callsgimimeasures on the binary treetree
semimeasureghe condition (d) additionally requires that a tree senasuge is lower semicom-
putable.

Show that tree semimeasures are in a one to one corresp@nihaneasures on the set
> of all finite and infinite binary sequences. Given a semimesaufind the measure of the set
that consists of all infinite sequences that have prefigAnswer: the measure of this set equals
the limit of the (decreasing) sequence

an = {a(y)lyis a string of lengtt that has prefix}

Herea, is defined fom > | (x) and equalg(x) if n=1(x).]

Show that for a semicomputable tree semimeasure thejs@tx) can be infinite. [Hint:
Consider the algorithm that copies random bits to output.]
The converse of Theorem 66 is also true:
{monotsm-c:
Theorem 67 Every lower semicomputable tree semimeasure correspa@ngsne probabilistic
algorithm.

103

< The idea of the proof can be easily explained in terms of spHaeation, as it was done for
Theorem 40 (p. 68). The difference is that now the requestkiararchical. Two big organizations
(called 0 and 1) need space@n(which we identify with[0, 1]); the subsets allocated for 0 and 1
should be disjoint, and their space requests increase iave(lbut never become greater than 1 in
total).

Each of the organizations has two divisions (called0d0Oinside 0 and 1A1 inside 1 that
request some space inside the regions allocated to thainiaagion as a whole. Their requests
also increase over time, but never become greater (in thtat) the organization’s request (at
the same time). Then we consider subdivisions (say, 01 Hadivdsion 010 and 011) that have
increasing requests that do not go out of the request of plaeént division, and so on.

For each subdivisior (at any level) we have increasing requests. All the allocetiare final,
i.e., the space allocated to someemains allocated te.

This scheme is used in the proof as follows: having a lowerncamputable semimeasuee
we construct a family of requests such that the limit of thguests for subdivisior is equal to
a(x). Then we choose a way to satisfy all the requests and therhatif & sequence of random
bits gets into the region allocatedxpthen the output of randomized algorithms starts with

It is more or less obvious that the requests can indeed biddlfHowever, we provide a more
formal argument (and explain the intuitive meaning of ieps).

Lemma 1. Letabe a lower semicomputable semimeasure on the binary trexn thiere exists
a total computable monotone (in the second argument) fam¢xii) — a(x,i) whose values are
non-negative rational numbers with denominators beinggrewf two and:

(1) lim;a(x,i) = a(x) for every string;

(2) for eachi the functionx — a(x,i) is a semimeasure that has only finitely many non-zero
values.

In other terms, the memory manager can impose the followdldlifianal restrictions:

¢ all the requests should be rational numbers whose dencongnate powers of two;
e at each step only finitely many subdivisions can have nonasgjoests;

e at each step requests are coherent (the request of any sifrshould be greater than or
equal to the sum of requests of its children).

Proof of the Lemma. Or goal is to change the funcdrom the definition of lower semicom-
putable semimeasure (not changing the semimeasure gsdlfiat it satisfies the requirements of
the Lemma. First, we make all values rational numbers wheseminators are powers of two. To
achieve this, we replacax,i) by the closest rational number with denominaton@t exceeding
a(x,i) (negative numbers are replaced by zeros).

Then we fulfill the second requirement and &k,i) be zeros for all stringg whose length
exceeds.

To fulfill the third requirement, we perform the replacement

a(x,i) ;= max(a(x,i), a(x0,i) +a(x1,i))

104

iteratively starting from long strings and then decreasieglength of. Sincea(x) is by definition
a semimeasure, these replacements do not violate the iitgcq(®, i) < a(x).

It is easy to check that our corrections do not change the liatiies lima(x,i) (for all x), so
this limit is still equal toa(x).

Lemma 1 is proved.

To formulate the next lemma we need several auxiliary déefimst A “simple semimeasure”
(onthe binary tree) is a semimeasure that has only finitelyymanzero values and all these values
are rational numbers whose denominators are powers of two.

A “simple set” is the union of a finite number of intervalstn (Recall that an interval iQ is
a set of the fornf), that consists of all infinite sequences having prefikherefore, a set is simple
if we need to know only a finite prefix @b to decide whethegw belongs to this set.)

A “simple family” is a family of simple set®#\y (for some binary stringg) such that only
finitely many sets amongx are non-empty and for each strirnghe setsA andAy; are disjoint
subsets of.

For such a family the functiorn— p(Ay), whereu stands for the uniform measure @nis a
simple semimeasure. We say that the family'implements” this semimeasure.

Lemma 2. Each simple semimeasure can be implemented by a simple/fami

Proof. We construct this family starting from the emptyrggrk and then gradually increasing
the length of the index string At each step our goal is to find two disjoint simple s&js and
Ay inside the sef that is already constructed. This is possible since theiredjuneasures do
not exceed (in total) the measureAf Lemma 2 is proved.

Lemma 3. Letb(x) be a simple semimeasure and Bgtbe a simple family of intervals that
implements. Let c be another simple semimeasure such dgat > b(x) for all x. Then we can
construct a simple familZ, implementingc such thaC, O By for all x.

Proof. Let us repeat the argument used to prove Lemma 2. Nohawe two disjoint simple
subsets of a simple set and need to increase their measesgsr(§ them disjoint). It is easy to
see that this is indeed possible if the space restrictiansatrviolated. Lemma 3 is proved.

The proofs of Lemma 2 and Lemma 3 are effective in the natwases. given the tables of
values for simple semimeasures, we can algorithmicallgirant the simple family required.

Now we apply Lemma 3 iteratively to the simple semimeasurasdre obtained by Lemma 1.
In this way we get a two-parametric family of simple 38t i) such that

e the description ob) (x,i) (i.e., the list of intervals) is a computable functionxandi;

e the uniform measure of the détx;i) is equal taa(x,) (and therefore tends &ix) asi —);
e for eachx andi the setdJ (x0,i) andU (x1,i) are disjoint subsets of the 3étx;i);

e U(x,i) CU(x,i+1) for eachx andi.

Now the probabilistic algorithm that generates the semguesa can be constructed as fol-
lows: we construct the set$(x,i) for all x andi and in parallel generate random bits obtaining a
sequencev. If at some step we discover thate U (x,i) for somex andi, we output those bits of
the stringx that have not yet been printed.

105

Note that ifw € U (x,i) thenw € U (y,i) for every prefixy of x. Note also thato cannot be an
element of bothJ (x,i) andU (X, i) if stringsx andx’ are inconsistent (neither of them is the prefix
of the other one). Therefore the bits sent to the output nased to be “recalled”.

An output of this algorithm starts with some strirgf and only if the sequence of random
bits belongs to the union of the increasing sequences obidats) (fori =0,1,2,...). The proba-
bility of this event is the limit of measures of the selt&; i), and this limit is by construction equal
to a(x), so we have achieved our goal.

Theorems 66 and 67 show that lower semicomputable semimesasan be equivalently de-
fined as probability distributions generated by randomelgdrithms (of the described class).

There is an important special case when a randomized digoatmost surely generates an
infinite sequence (i.e., the probability to get a finite seqaes zero). Such algorithms generate
computable measures, as the following theorem shows.

{monotsm-se

Theorem 68 (a) Let u be a computable measure @1 Then function p defined a$X@) = u(Qx)
is a lower semicomputable semimeasure atd p- p(x0) + p(x1) for all x.

(b) If a lower semicomputable semimeasure p satisfies the égygk) = p(x0) + p(x1) for
all x, then it determines some computable measur@on

< (a) If a real number is computable and, is a rational approximation ta with accuracy
1/n, thenb, = a, —1/nis a lower bound for that is at most 2n apart froma. The sequence
b, constructed in this way can violate the monotonicity reguent but we may replace it by the
sequence
Cnh = max(bp, by, ..., bn)

that is a non-decreasing sequence of rational numbersiwgtalia. Therefore, every computable
real number is lower semicomputable. Doing this in pardtelall x, we obtain computable
rational lower bounds fop(x) tending top(x) and prove that every computable measure is an
lower semicomputable semimeasure. Sifdgas the union of two disjoint subsef3,o andQy,,
we also havep(x) = p(x0) + p(x1).

(b) Let p be a lower semicomputable semimeasure suchghgt= p(x0) + p(x1) for all x.
We show inductively howp(x) can be found up to any precision for everyFor emptyx we have
p(A) = 1 by definition. Imagine that we already know how to fipgk) with arbitrary precision
for some string«. How can we do the same f@(x0) and p(x1)? We have to wait until the sum
of (increasing) lower bounds fqy(x0) and p(x1) become close enough to the (decreasing) upper
bound forp(x). In other terms, an upper bound fpfx1) can be obtained if we take an upper
bound forp(x) (constructed recursively) and subtract a lower boungfed). >

This theorem can be interpreted in the following way. Assuhs we need a generator of
random reals (=sequences of zeros and ones) whose outpatgrascribed distributiop (this
means that the probability to get an output that starts withequal top(x)). Then Theorems 67
and 68 guarantee thatpfis a computable distribution, then such a generator can plemented as
a randomized algorithm that uses the internal source oforartuits that has uniform distribution.

Note that the construction used in the proof of Theorem 6bessimplified in the special case
when we deal with computable measures (and not arbitraryceemputable semimeasures). This
simplified construction goes as follows. Let us divide theeiival [0, 1] into two parts of lengths

106

p(0) andp(1). The first part is then divided again into parts of lengtB0) andp(01), the second
one is divided into two parts of lengh(10) andp(11), and so on. In this way for each striagve
get an intervalt inside|0, 1], and the segments for all stringsz of any given length coveld, 1]
without overlaps.

Now construct the probabilistic algorithm as follows. Thigorithm uses independent tosses
of a fair coin to get a sequenae of random bits that has uniform distribution. This sequence
is considered as a binary representation of some ref@, ij; this real is also denoted hy. In
parallel the probabilistic algorithms looks for binaryisgs z such that the real number lies
strictly inside the intervalg (and this is guaranteed by the available information aloand the
current approximations to the endpointspf these approximations are computed with increasing
precision).

The stringsz discovered in this way are are compatible (one being a préfanother). The
more bits ofa we know, the longer can be. These strings are prefixes of some bit sequence that
is the output of our randomized algorithm.

The algorithm described can output a finite sequence. Tippdres ifa coincides with an
endpoint of someg. However, there are countably many endpoints, so this éaanprobability O.
Note also that the output of the algorithm starts withand only if a belongs to the (open) interval
TL, SO the probabilities are correct.

More formally, we have described a transformatibrof the input bit sequence into the
output bit sequencB = T(a) such that the image of uniform measure untiés the measure.

(This trick is well known. For example, imagine that you havéair coin and you need to
simulate the coin that has probabilities2and /3. Then you generate a random real uniformly
distributed in[0, 1] (by fair coin tossing) and compare this real number withghotd 2/3. To sim-
ulate the second coin tossing, you divide both inter{@l2/3] and[2/3, 1] in the same proportion
2 : 1. The algorithm described earlier does exactly this.)

To understand the relations between the classes of randqmsees with respect to different
distributions, we need to look more closely ®n Consider the family, of intervals that corre-
sponds to the uniform measure, i.k.js the interval inside0, 1] that is formed by reals whose
binary representation starts witlfincluding the endpoints, dgis a closed interval).

Using this notation, we describe the transformafianQ — X as follows: a string is a prefix
of T(a) if there exists a prefix of a such thaly is strictly insiders, (i.e., is a subset of the interior
of 1z).

In the similar way we can define another transformatianQQ — % that goes in another direc-
tion: stringx is a prefix ofu (B) if B has some prefiy such thatr is strictly insidely.

We would like to say that transformatiofisandU are inverse to each other, sinteconverts
a sequence into a real number that has binary representatipand then converts its back into
a bit sequence usingp“representation” instead of binary representation, whilkoes exactly the
same in the other direction. But this is not literally true $everal reasons.

As we have mentioned, the rational numbers whose denonnghate powers of two, have
two binary representations. The similar problems appedtstive endpoints of intervalg, and
p-representation. Also it may happen that saméas zero length, and then all the sequences that
start withz correspond to the same point. On the other hand, is some@$@guence has positive

107

p-measure, the entire interval on the real line correspomtisi$ sequence.

But if we forget these problems for a while, we can indeedklofiT andU as transformations
that are mutually inverse of each other and relate uniforstribution andp-distribution. This
informal idea can be verbalized in many ways. As we have dyreaen, ifa is a random element
of Q with the uniform distribution, thefl (a) has distributiorp. On the other hand, we get move
in another direction:

Prove that if no singleton has positigedistribution, and3 is a random variable that has
distribution p, thenU (B) is infinite with probability 1 and is uniformly distributed iQ. [Hint:
Each sequencB determines the sequence of decreasing closed intervalsaha only one com-
mont point; the probability that this common point is ragbequals zero. The probability for
U(B) to get insidert, is correct by definition, and any other interval is a courgalmion ofrz, if
we ignore its endpoints.]

This problems shows how to generate an uniform distributiom a non-uniform one. A toy
example of this type: assume that we have a biased coin withapility 2/3 of getting a head,
and we need to simulate a fair coin tossing. In this specise tiae task is easy without any special
theory: let both players toss a coin once; if both have theesave have a draw and everything is
repeated; if the results are different, the player who hasaal lwins. (This construction, unlike the
one used in the proof, is valid for any probability, not onj\82

The assumption (no sequences of positive measure) is iergomot any distribution can be
used to simulate the uniform one. For examplg(H00...000) = 1 for any number of zeros and
p equals zero for any otherthis “random bits generator” does not provide any rand@saniéjust
generates zeros and is completely useless. A similar gituatises if some infinite sequence has
positive measure, i.e., if there exists an infinite sequemaad a numbed > 0 such thap(x) > o
for anyx that is a prefix otw. In this case the random number generator genecatggh positive
probability, so we cannot simulate the uniform distribatio

However, we are more interested about relation between &tidom sequences with respect
to different measures.

Theorem 69 (a) If a sequencex is ML-random with respect to the uniform measure, then the
sequencg = T (a) is infinite and random with respect to measure p.

(b) If the sequencg is ML-random with respect to p and is not computable, thersdtgience
a =U(B) is infinite, ML-random with respect to uniform measure ar{d T= .

(Note than some of the statements of this Theorem are coesllaf Theorem 99, p. 142.)

< (a) A random sequence with respect to the uniform measuretisomputable, therefore
it cannot represent a rational number or a computable nun®iece the endpoints of ait, are
computable, the sequenBe=T(a) is infinite.

Assume that an algorithm is given that for aniy> O covers the sequenge by a family of
intervalsQ,. Consider the closed intervaig (for corresponding’'s) and replace them by slightly
larger open intervals. Then we get an algorithm that covers¢al number with binary representa-
tion a by a family of intervals with small sum of lengths. It can bsigaconverted to an algorithm
that coversx € Q by intervalsQ, that have small sum of uniform measures (an interval on thle re

108

line is replaced by the union of disjoint intervdlg). And this is not possible sinag is random
with respect to the uniform distribution.

(b) Here we need some additional precautions. Let us notettiias if {3} has positivep-
measure, thef is computable. (We assume thats a computable measure.) Indeed, in this case
p(z) > € for somee. There are finitely many (sal) sequences whose measure is greater ¢ghan
Let us increase a bit so that all thes& sequences still have measure greater thaithen for
sufficiently largen (say, starting froniN) there arek stringsz of lengthn such thatp(z) is greater
than (increasedd. KnowingN and (increased, we can find these strings, so klsequences are
computable.

Therefore, if3 is not computable, the lengths of intervaisfor stringsz being prefixes of3,
tend to 0. Therefore, these (closed) intervals have unigpeesection point. Itis an interior point
for all those intervalgg, sincef3 contains infinitely many zeros and one (being non-compajabl
Then we note thak is not a rational number (it would mak@ computable) and therefore the
sequence = U () is infinite andT (a) = B.

It remains to show thatr is random (with respect to the uniform distribution). Assuthat
there exists a family of interval@,, that covers3 and has small total uniform measure (). We
can transform them to open intervals on the real line thaecowand have small sum of lengths.
Then we consider closed intervatsthat get inside these open intervals. For one of them thegstri
zis a prefix off3, sincex s an interior point and the lengths of tend to zeror>

This theorem implies the following statement: if a sequesds random with respect to some
computable measure, thenis either computable or is Turing-equivalent to some secei¢mat is
random with respect to the uniform measure.

A Turing equivalencef two sequencea andf3 means thatr is Turing-reducible tq8 and
vice versa. Andx is Turing-reducible t@ if there exists an algorithm that computesising as
an oracle, i.e., as an external procedure that can be caltbdeturnanth bit of 8 givenn. In our
case these reductions are provided by transformaficansdU .

Sequence that are random with respect to some computabseireeeere called “proper” iA?
(English translation).

A natural question related to this problem: is there a secpi¢inat is not ML-random with
respect to any computable measure? or even a sequencernbatlisring-equivalent to any ML-
random (with respect to the uniform measure) sequence ({Nat we can replace ‘the uniform
measure’ by ‘any computable measure’.) Here are some ciigans:

1. The first question has a positive answer: there exists aeseguthat is not random with re-
spect to any computable measure. It can be constructed th&mgption of randomness deficiency
(see Section 5.9, p. 141):

Prove that for every binary stringand for every computable measu?eon can effec-
tively find a stringy with prefix x that has arbitrary large randomness deficiency with regpdet
(randomness deficiency is defined below in Section 5.9 asitfeeathce between-logP(x) and
a priori complexityKA (x)). [Hint: Let us extendk in such a way that each next bit decreases the
P-measure of the corresponding interval at least by fact@ 3his can be done effectively, so
the complexity increases slowly while the measure decsdase] Considering all the computable
measures (each should be treated infinitely many timesyy #at there exists a sequence that is

109

not random with respect to any computable measure.

Essentially the same argument can be explained using “@g&seguences. Recall that a subset
A of Q is everywhere dengéit has non-empty intersection with every interval. A fansBaire
theoremsays that the intersections of a countable family of opes/Asdn open set is a union of
intervals) that are everywhere dense is nonempty and, meresverywhere dense.

Prove Baire theorem starting with any string and adding»sesfto get inside dense open
sets (one by one).

Now we consider effectively open sets (unions of enumartdtelies of intervals) that are
everywhere dense. We get a countable family of open setsatkatlense everywhere. Their
intersection is an everywhere dense sets whose elemerdal@e@genericsequences.

Informally speaking, generic sequence violates any lawghahibits a enumerable dense set
of prefixes.

Prove that every generic sequence viiolates the Strong lfavarge Numbers. [Hint:
The set of binary strings of length greater thathat have more than 99% of ones forms a dense
effectively open set; the same is true for the set of strinigfs more than 99% zeros.]

Prove that no generic sequence is computable. [Hint: thefsat sequences that differ
from a given computable sequence is open and everywhere.flens

Note that the definition of a generic sequence (unlike rantss) does not refer to any mea-
sure.

Prove that a generic sequence is not ML-random with respexty computable measure.
[Hint: It is enough to construct an effectively open dendelisat has small measure. This can be
done by iteratively chosing a smaller half of an intervalalonost smaller if the halves have almost
equal size.]

Zvonkin and Levin (P], remark after Definition 4.4) claim that it is easy to shovattithe
characteristic sequence of the universal enumerable seitiML-random with respect to any
computable measure. They don’t say what kind of univessaiheeded etc., but most probably
the statement they had in mind follows from the followinguiés

Show that there exists an enumerable set whose charactsegtience is not random with
respect to any computable measure. [Hint: The complexith@frefixes of every characteristic
sequence of an enumerable set is logarithmic; it remaingsdcagtee that any computable measure
of the prefixes decreases fast. It can be done as follows: Welsnto arithmetic sequences
and devotdth of them toith computable measure; since we don’t know whether it isedd
computable measure, we get an enumerable set, not a decatab]

2. Itis more difficult (though still possible) to constructegsience that is not Turing-equivalent
to any sequence that is ML-random with respect to the uniforeasure. Moreover, we know
which direction is difficult: we can construct a sequencsuch that no ML-random sequence is
reducible toar. Moreover, one can construct a probabilistic machine teaegates such sequences
with positive probability. This is done ir?].
3. As we shall see, the converse statement is false: evergsegus Turing-reducible to some
ML-random sequence (with respect to the uniform measueeTheorem 101, p. 147). {gacs-redu
4. One can also construct a sequence that is Turing-equiviedean ML-random one (with

110

respect to the uniform measure) but is not random with rédpeany computable measure. For
example, we may interleave (using even and odd places) aigessgjuencea with a random
sequencev such thatr is Turing-reducible taw.

(Here we use the results mentions in the preceding paraghipie also that if a sequence is
ML-random with respect to some computable mea&uitgat its subsequence formed by the terms
with even indices in random with respect to the projectiothefmeasur®.)

The sequences that are not ML-random with respect to any ataible measure are somehow
similar to nonstochastic (in Kolmogorov sense) objecte (Section??). Moreover, it is easy to
see that if a sequence is ML-random with respect to some cabjgumeasure, then its prefixes
are stochastic (Problef?, page??).

In the end of this section we present the following easy ¢arnpbf the results proved above:

{monotsm-ar
Theorem 70 If, in place of the uniform distribution, the random bits dd®y a probabilistic ma-

chine have another computable probability distributionen the distribution generated by the
machine is still lower-semicomputable.

< Indeed, every computable distribution is an output distrdn for some probabilistic ma-
chine, and therefore combining two machines we get a matfawviag the same output distribution
and the uniform source distribution.

One may also repeat the proof of Theorem 66 and notice thahtbevals discovered have
computable measures and thus we get lower bounds for piibiesbi>

5.2 Maximal semimeasure on the binary tree

{monotmax}
Theorem 71 The class of all lower semicomputable semimeasures ontheftree has the great-

est elementup to a constant factQr there exists a semimeasure a in this class such that foyever
other d in the same class the inequalit{(® < ca(x) holds for some constant ¢ and for all x.

This element is traditionally called theaximal lower semicomputable semimeasure on the
binary tree(though it is not only the maximal, but also the greatest elenm the partial order), or
theuniversal semimeasun the binary tree.

<1 We can use the same idea as for semimeasurds frheorem 41, p. 69). Consider a
probabilistic machiné that first chooses at random some probabilistic machineterddimulates
it. If a semimeasure’ corresponds to a probabilistic machif¥e thena'(x) < (1/¢)a(x) wheree
is the probability that machin®' is chosen>

Another proof deals with functions, not machines: first wastouct a sequena®),as, ... of
semimeasures and then consider the funatieny; Aja; whereA; are computable coefficients that
have sum 1 (e.gAj =27'"1).

A delicate point: we need a sequence that includes all (fe@®jmeasures that are computable
from below, and the sequence itself should be computabihe below. This means that we need
a lower semicomputable functiofi,x) — u(i,x) such that (1) for any fixed the functionu; :

X +— u(i,Xx) is a tree semimeasure; (2) the sequeunceontains all lower semicomputable tree
semimeasures.

111

This can be done either by enumerating all probabilistichirees (and that corresponds to the
first proof) or by enumerating all lower semicomputable tiorts and then “trimming” them to
make them semimeasures and leaving them unchanged if tie@adglare semimeasures. See the
similar argument for semimeasures Br(Section 4.2, p. 69). Note that if the conditiquix) >
p(x0) + p(x1) is violated, we should increag¥x) unless this makeg(A) greater than 1.

Provide the missing details in this argument.

(Remark: The proof gives a bit more than we have claimed.ddgee get a lower bound not
only for the probability of the event “outpwsttarts withx”, which is p(x), but also a lower bound
for the probability of the event “the output &xactlyx’, which is p(x) — p(x0) — p(x1). So not
only a(x), but alsoa(x) — a(x0) — a(x1) is maximal for the universal machine we constructed.)

Prove that all these arguments can be applied to the casgaithims that send natural
numbers (not bits) to the output one at a time. These algostborrespond to lower semicom-
putable semimeasures on the set of all (finite and infinitglieeces of natural numbers.

(Continued.) Letm be the maximal lower semicomputable semimeasure on thefset o
all finite and infinite sequences of natural numbers. Show iteaestriction on the sequences
of length 1 coincides (up t®(1) factor) with the a priori probability on natural numbers éph
ter 4), and its restriction to binary sequences coincidpaduD(1) factor) with the universal tree
semimeasure we have defined in this section.

Let us fix some maximal lower semicomputable semimeasurb@bihary tree and denote it
by a(x). One can cala(x) ana priori probability of a tree vertex however, one should distinguish
it from the a priori probability defined in Chapter 4. Howewse can consider the expression

KA (x) = —loga(x)

and call ita priori complexityof a stringx. (This does not create any confusion, since in Chapter 4
the logarithm of the maximal semimeasure coincides withphedix complexity and does not
require a special name.) Since different maximal seminreadliffer at most byD(1) factor, the

a priori complexity is defined up to an additi@1) term.

In the next section we study the properties of a priori coxipfeLet us note that by definition
the a priori complexity need not be an integer (or even rafjomumber. But this does not matter
much, since most of the statements about complexity are“tqpéo O(1) term”, and we may
replace—loga(x) by a minimal integen such thata(x) > 2~". An important detail: we use the
strict inequality since we want the resulting function tolbeer semicomputable. In the sequel
we indicate the rare cases where this rounding (or its ale3@an be important.

5.3 A priory complexity and its properties

Theorem 72 (a) KA (x) < I(x) +0O(1) for each x.

(b) KA (x) < KP (x)+0O(1) for each x.

(c) Let x,X1,... be a computable sequences of incomparable strings (i.eg nbthem is a
prefix of another one). Then K&) = KP (x) + O(1) = KP (i) + O(1).

(d) KP (x) < KA(X) +2logl (x) +O(1).

{kenptapet

112

(e) Moreover, KP(x) < KA (x) + KP (I1(x)) +O(1),

(f) and even more, K|l (x)) < KA (X) +O(1);

(9) A sequence of zeros and ones is computable if and only if a pamplexity of its prefixes
is bounded.

(h) If f : ¥ — N, is a computable continuous mapping, then Px)) < KA (x) + O(1) for
each string x such that(k) is defined (is not equal ta).

< (@) The functionp(x) = 2~'™ is a lower semicomputable semimeasure. Therefioxg <
ca(x) for somec and allx.

(b) The machines that print a binary string (as a whole) aed tialt, form a subclass of the
machines that generate output bits one by one. Therefupe, < ca(x) wherem is the a priori
probability as defined in Chapter 4.

It is instructive to rephrase this argument using semimessiLetm (x) be the sum ofn(y)
taken over all stringgthat are prefixes of (includingx itself). Heremis the maximal semimeasure
onN as defined in Chapter 4. Modify and letm(A) be equal to 1. Then' is a semimeasure on
the binary tree and therefong(x) < m'(x) = O(a(x)).

(c) Letx be a computable sequences of incomparable binary strirtgs fuhctioni — a(x;)
(wherea is the a priori probability on the tree) is a lower semiconglg semimeasure an.
Indeed, it is lower semicomputable and the events “outpuitstvithx” are disjoint and therefore
the sum of their probabilities does not exceed 1. Therefétéi) < KA (x) +O(1).

On the other hanKP (x;) = KP (i) + O(1), sincei can be algorithmically transformed intp
and vice versa; finallyA (x;) < KP (x) + O(1) according to (b).

(d) Leta be the universal semimeasure (a priori probability) on tinady tree. Consider the
functionu defined asi(x) = a(x)/I(x). Itis lower semicomputable. Moreover, since the sum of
a(x) over all stringsx of lengthn does not exceed 1 (these strings are not prefixes of each),other
we get

Jun=3 3 <Y 0w,

so we get the desired inequality.
(e) can be proved in a similar way, this time we Ulgk) = a(x)m(l(x)) wherem is a priori
probability onN (as defined in Chapter 4).

(f) Consider the function
~Jax), ifI(x)=n,
u(xn) = { 0, if 1(x) # n.

Then for eachn the functionx — u(x,n) is a semimeasure in the sense of Chapter 4 (the sum of
values does not exceed 1), and we get the desired inequality.

(9) For a give computable (infinite) sequenwoeof zeros and ones consider a “probabilistic”
algorithm that ignores random bits and just computes andssemthe output the sequence
(bit by bit). The corresponding semimeasure equals 1 on esfixpf w, therefore the universal
semimeasure (whose logarithm is a priori complexity) ofpm#fixes ofw is greater that some
positive constant.

113

The converse implication is a bit more complicated. Assuha & priori probabilities (the
values of the universal semimeasaren the binary tree) of all prefixes of are greater than some
rationale > 0. Consider the sdéB of all binary stringsx such thata(x) > €. The setB contains
all prefixes ofw and is a subtree (if some string is#) then all its prefixes are iB). Moreover,
any prefix-free subset d@ (that does not contain a sequence and its prefix at the sarag hims
at most ¥ ¢ elements (since the corresponding events are disjoirit,ttital probability does not
exceed 1). Finally, the s&is enumerable (having more and more precise approximatios(x)
from below, we eventually discover all element®n

These properties d8 are sufficient to conclude that the sequenzés computable. Indeed,
consider the maximal (having the maximal cardinality) pedfee subsex,, ..., xy of B. For each
of x; consider all its continuations that belongBo All of them (for a giveni) are prefixes of
one sequence; otherwise we can find two inconsistent staingseplace; by them (which is not
possible, since the subset is maximal).

So for each we have a (finite or infinite) branch i& going through it, and it is computable
sinceB is enumerable. The sequenwds one of these branches (otherwise we could add a suffi-
ciently long prefix ofw to the set which is maximal).

(h) Consider the probabilistic machine that correspondsh& maximal semicomputable
semimeasure on the binary tree, and apply funcfida its output. This composition is a proba-
bilistic machine as defined in Chapter 4, and it remains topaomit to the universal machine that
generates the maximal lower semicomputable semimeasure(lmgarithm of this semimeasure
isKP +0(1)). >

Note that the a priori complexity is quite different from tbemplexities already known (plain
and prefix complexities). Its definition uses a tree structhat exists on the set of finite binary
strings, and algorithmic transformation that ignore thfs&ure can increase a priori complexity
more than byO(1).

Show that one can find a stringthat hasO(1) a priori complexity butx® (reversedx)
has arbitatrily large complexity. (Formally: there existsuch that for every there is a string
x satistying the inequalitiekA (x) < ¢ andKA (x?) > n.) [Hint: the stringx can be of the form
1000..]

So (unlike before) we cannot speak about a priori complexiityome constructive object (a
pair, a graph, a finite set etc.) since it depends on the engodi

The difference between a priori complexity of a stringf lengthn and other complexities of
(plain, prefix) is stillO(logn). However, it is important that stands for the length of not for the
complexity ofx. (For example, i is a string ofn zeros, its a priori complexity is bounded while
plain and prefix complexities are not.)

Prove that the difference$S(x) — KA (x) and KA (x) — KS(x) could be of order log
for some strings of length (and for arbitrarily largen). [Hint: KS(x) can be much greater than
KA (x) if x consists of zeros only. On the other haK&(x) is greater thaiKA (x) if x is a prefix
of a ML-random sequence; in this casé (x) = I (x) + O(1), butKS(x) can be smaller thak(x)
by logl (x), see Problem 38.]

114

Prove that

KA (xy) <KP(x) +KA(y) +O(1),

wherexyis the concatenation of stringandy. It is important thak is on the left ofy: for KA (yx)

the the statement is false. [Hint: L&t be a probabilistic algorithm in the sense of Chapter 4
that generates the maximal lower semicomputable semimeéspriori probability) on strings as
isolated objects, considered in Chapter 4. \/dte the probabilistic algorithm in the framework
of this chapter that generates maximal semimeasure onnheyiree. Then combirg andV as
follows: first, runU until it prints something and terminates. Then Xuasing the rest of the input
and add its outbut bits to the string generatedJbyTo show thaKA (xy) cannot be replaced by
KA (yx), lety =0"andx =1.]

Prove that for each stringat least one of the numbekA (x0) andKA (x1) is at least
KA (x)+ 1. (Here itis important thaA (X) is defined as-loga(x) without rounding). Using this
observation, prove that for any strimgind for any integen € N there exists a string of lengthn
such thakA (xy) > KA (X) +n.

(Cf. Theorem 65 on p. 102 and Problem 34 on p. 38; note that nevdavnot haven as
condition and even do not have tefil) in the inequality.)

Another property of the a priory complexity is an immediab@sequence of its definition. Let
U be a computable measure Qn Then for some and everyx we have

{increasin;

KA (x) < —logu(Qx) +c

Indeed, the a priori probability on the binary tree is gre#étanu (or any other computable mea-
sure, or even lower semicomputable semimeasure) up@¢la factor, and it remains to take
logarithms.

This (very simple) property is important since it is the Isdsir a criterion of Martin-Lof ran-
domness in terms of a priori complexity: a sequewas ML-random with respect to a computable
measuregu if and only if this inequality turns into an equality for predis ofw, i.e., if the difference
—logu(Qx) — KA(X) has a constant upper bound for althat are prefixes of (it always has a
constant lower bound as we just mentioned).

This criterion follows from Levin—Schnorr theorem that yicdes randomness criterion in terms
of monotone complexity and we postpone its proof to SectiénBere Levin—Schnorr criterion
is considered. But first we have to define monotone complé$iéction 5.5) and this definition
uses the notion of a computable mapping of the spacto itself (Section 5.4).

One can characterize a priori complexity as the smallestiupgmicomputable (=enumerable
from above) function that satisfies some condition (singlaaracterization for plain complexity
was provided by Theorem 8 (p. 21) and by Theorem 56 (p. 89)rifiyocomplexity). Here is the
corresponding statement:

{ka-criter:
Theorem 73 The function KA is a minimal (up to an additive constant) upgEmicomputable

function K such that
2

for any prefix-free set M of binary strings.

115

< Since the stringg € M are inconsistent (none of them is a prefix of another one)coe
responding set&y (of all finite and infinite sequences with prefix are disjoint and the sum of
probabilities does not exceed 1.

On the other hand, & be an upper semicomputable function that satisfies thisitondWe
have to construct a lower semicomputable semimeasuresthegater that 2¢. The latter function
is lower semicomputable but is not necessarily a semimeasgarvalues orx, X0 andx1 can be
unrelated. So we need first to incre&sehen it is unavoidable. Let(x) be the least upper bound
of all the sums of the form

2—K(x)
&

over all prefix-free sets of strings that start withlt is easy to check thai(x) is indeed a lower
semicomputable semimeasure an? does not exceed(x). Theorem is proved>

5.4 Computable mappings of type — %
{tree-mapp:
The algorithms (machines) used in the definition of the ws&kesemimeasure on the binary tree
consist of two parts: the random bit generator and the algarthat transforms the sequence of
random bits into the output. In this section we look more elpst this second part and introduce
the notion of a computable mapping of the Egbf all finite and infinite sequences of zeros and
ones) into itself. Let us stress that we consider mappirgsatte defined on the entike however,
some of their values can be equal to the empty sthir{that represents an “undefined value” in a
sense).

5.4.1 Continuous mappings of type —

{tree-cont:
Let f: 2 — X be a mapping defined on the entife We say thatf is continuousif it has the

following two properties:

(1) f is monotone: ifx € X is a prefix of some € Z, then f(x) is a prefix of f(y). (Each
sequence is a prefix of itself.)

(2) The valuef (w) for an infinite sequence is the least upper bound of the valuigs) on all
finite prefixesx of the sequence.

We use the notatior < y for the relation %X is a prefix ofy”; herex,y € ¥ may be finite or
infinite. We havex < x for anyx; if x <y for an infinite sequence, thenx =y. The requirement
(1) says thatf is monotone with respect to the partial orédeon Z. This requirement guarantees
that the values (x) for all finite prefixesx of some sequenae are consistent (continue each other);
their “union” (=least upper bound undet-ordering) coincides withf (w) due to (2).

Show that the notion of continuity defined above is the steshdantinuity notion with
respect to the topology ol defined in Section 4.4.3 (p. 79). [Hint: a very similar notioh
continuous mappings — N was studied in the same section.]

Let f: 2 — X be a continuous mapping. Consider the [Sethat consists of all pairéx,y)
of binary stringsx andy such thaty < f(x). (The setl + may be called théower graphof the

mappingf.)

116

For any continuoud : = — 2 the set s has the following three properties:

(1) (x,\) € 't for every string;

(2) If (x,y) €T, then(X,y) € I'; for everyx = xandy <.

(3) If (x,y1) and(x,y2) belong tal ¢, then the stringg; andy, are consistent (one of them is a
prefix of another one).

The first two properties are obvious. The third one is trueesiany two prefixes of a (finite or
infinite) sequence are consistent.

The following theorem shows that a continuous mapping isiddfuniquely by its lower graph.

{continuous
Theorem 74 The mapping It is one to one correspondence between continuous functions o

typeZ — % and sets of pairs of strings that satisfy conditigh}s-(3)

< Let f be a set of pairs satisfying the conditions (1)—(3). Theselitmns guarantee that
for any stringx the setFy of all y such that(x,y) € F is non-empty and everys,y, € F are
consistent. Lef (x) be the least upper bound Bf. The property (2) guarantees thak X implies
f(x) = f(X) (sinceF increases asincreases). Therefore we may defifiev) as the union (least
upper bound) off (x) for all stringsx < w. Then the mapping is continuous. It is easy to check
that we get a mapping which is an inverse mapping to the qooresencef — ;. >

5.4.2 Monotone machines with non-blocking read operation

A continuous mappind : = — % is calledcomputablef the corresponding sét; is enumerable.
(By definition all computable mappings are continuous.)

This definition is complete and does not require any intégpien in terms of machines. All
we say below about the interpretation of this notion is teahmachines of special type is not
necessary (and is not used in the sequel). However, to getigatian for this definition it is in-
structive to understand which type of machines (programsksponds to computable continuous
mappings of typ& — 2.

Let us consider programs that use a non-blocking read oper@ie can get the next bit from
the input queue and also check whether this queue is nongmfveyhave discussed this type of
input paradigm in Section 4.4.2, p. 77. However, now we asstimat the output is created bit by
bit, using the procedure calutputBit b) with a Boolean argument.

The output sequence generated by a program of this type chniteeor infinite. In general,
it depends not only on the input sequence but also its tinonglfe moments when keys “0” and
“1” were pressed). We say that a machine (progranmlomistif timing does not matter, i.e., if
the output sequence depends only the input sequence but tioe iming. (Of course, the output
timing may still depend on the input timing.) A robust prograetermines (computes) some
mapping of the seX into itself.

Theorem 75 Robust program compute computable mappings (in the alisesse, as described
above); every computable mapping is computed by some rplmgiam.

< Assume thaiM is a robust program. Letandx' be two (finite or infinite) sequences such
thatx < X. Let us show thaM(x) < M(x') whereM(z) stands for the output of progralv on the

117

input z (sinceM is robust, the output depends only gmot on the timing). I is infinite, this is
trivial (x = X'). Assume thax is finite. There are two possibilitieM(x) is either finite or infinite.

If M(x) is finite, let us submit input and wait untilM(x) appears at the output. This should
happen at some point; after that we submit the remainingobits(that are not irx) to the input.
Then we get outpu¥ (x') which by construction is the extensionMfx).

If M(x) is infinite, then every bit oM(x) should appear at some time after we subnid the
input. Since the remaining bits af can be sent after this moment, this bit should appear also in
M(X). ThereforeM(x) = M(X) in this case.

It is also clear that for an infinite sequen@ethe valueM(w) is the union ofM(x) for finite
X X w; indeed, at each moment only finite number of input bits aaelre

The set of all pairs of strings,y such thaty < M(x) is enumerable since we can enumerate
it by simulating the behavior d¥1 on all inputs. So each robust machine computes a computable
mapping.

On the other hand, let be an arbitrary computable mapping. We show how to cons&uct
robust machin®! that computes it. The machihéenumerates the lower graph of the mapping
f. Atthe same timé/ reads input bits and stores them. If it turns out thatncludes a pairx, y)
such thatx is a prefix of the input sequence, we output the remainingdfits(the requirements
(2) and (3) guarantee that all the stringbound in this way are consistent so there is no need to
recall the bits already sent to the output).

5.4.3 The set of continuous mappings is enumerable

The definition of computability based on robust machinesnse® be more natural than the ab-
stract one. However, it has the same drawback as in the cgsefod-stable programs: there is no
(algorithmic) way to find out whether a given program is rab&® the class of robust program is
not a syntactically defined class.

Nevertheless, there exists an algorithmic transformabbprograms that transforms every
program into a robust one (and does not change the mappingutechby it if it was robust). This
transformation goes back and forth between mappings améspmnding enumerable sets: we
transform a program into an enumerable set of pairs (i.m,dan algorithm enumerating this set),
then we “trim” this set of pairs and transform it back into agmam.

We do not describe this process in detail, since robust prograre more a motivation for
the definition of a computable mapping than a technical tdostead, we prove that the set of
computable mapping is enumerable in the following sense:

{monot-enu
Theorem 76 There exists an enumerable setU of triplask,y) (here nis a natural number while

x and y are binary strings) such that:

(1) for every nthe setp={(x,y) | (n,Xx,y) € U} is a lower graph of some computable mapping
Uy: 2 — Z (i.e., satisfies the requiremer(ts)—(3) of Theorem 7%

(2) every computable mapping of the &dnto itself is equal to gfor some n.

<1 Consider the universal enumerable B&0Df triples: every enumerable set of pairs appears
amongW,. Then we “trim”W to enforce the requirements (1)—(3) for\&} and leave unchanged

118

the setd\, that already satisfy these requirements. After that\gllare lower graphs for some
computable mappings, and any computable mapping appears amang

The trimming is made in two steps: first we “delete contradid” and then we “fill the gaps”.
The contradiction is formed by two paifg;,y1) and (X2,y2) wherex; is consistent with; but
y1 is not consistent witly,. (It is easy to see that two pairs with this property cannqteap
simultaneously in the lower graph of a continuous mappiiigg contradictions are eliminated in
the most simple way: if a pair contradicts with another plaattis generated earlier and was not
deleted, we delete this pair from the enumeration. In thig wa get an enumerable set without
contradictions. The we fill the gaps by adding all pdis\) and adding for each paik,y) all the
pairs(x,y) with X' = x andy’ xy. Itis easy to see that the set remains enumerable and is ¢he on
we need >

This theorem is used in the next section to prove that (optimanotone complexity function
exists.

5.5 Monotone complexity
{monotone-
To define monotone complexity we use computable mappinggpefI — > as decompressors

(description modes). For a fixed decompred3orz — ¥ the monotone complexityf a stringx
(with respect tdD) is defined as the minimal length of a strigguch thatx < D(y). Monotone
complexity is denoted bi{M p(X).

(This definition can be applied to infinite sequengeagithout any changes but we follow the
tradition and considgM p(x) only for finite x unless the opposite is said explicitly.)

Prove that the monotone complexity of an infinite sequeneér(éd in a natural way) is
the limit of the increasing sequence of monotone compkxibf its prefixes.

Theorem 77 There exists an optimal decompressor, i.e., a computabfgpimg D: ~ — > such
that KMp is minimal up to additive constant: for any computable B — there exists a constant
c such that

KMp(X) < KMp/(x)+c

for every string x.

< LetU be the set of triples whose sections are all lower graphsl ebatputable mappings
(constructed in Theorem 76, p. 119). &t be a computable mapping that has lower graigh
Then let us define a mappimyas follows:

D(fiz) = Dn(2),

wheren'is the prefix-free encoding of the numhbe(say, its binary representation with doubled
digits followed by 01) and is an arbitrary element &. In terms of the lower graph: consider the
set of all pairs(fiu,v) such that(n,u,v) € U. It is easy to check that we indeed get a computable
mapping. If some (monotone) decompreddbhas numben (i.e., its lower graph coincides with
Un), thenKM p(x) < KM /(x) +1(fA) for everyx. >

119

As usual, we fix some optimal monotone decompressor (deéserimode), i.e., some com-
putable mappind that satisfies the statement of this theorem and defileotone complexityf
a stringx askKM p(x). Notation:KM (x) (the subscripD is omitted).

Theorem 78 (a) Monotone complexity is a monotonic function: KM < KM (y) if x 5 y;

(b) the function KM is upper semicomputable;

(0) KM (x) <1(x) +O(2);

(d) KM (x) < KP (x) + O(1);

(e) KA (X) < KM (x) +0O(1);

(f) an infinite sequence of zeros and ones is computable if aiydfdhke monotone complexity
of its prefixes is bounded;

(9) if f: 2 — X is a computable mapping, then KM(x)) < KM(x) + O(1) (the constant
hidden in 1) may depend on f but not of; x

(h) if f: ¥ — N, is a computable mapping, then KIP(x)) < KM(x) + O(1) (the constant
hidden in 1) may depend on f but not of.x

It is instructive to compare these statements with the pt@seof a priori complexity given
in Theorem 72 (p. 113). Since monotone complexity is not Enahan a priori complexity
(statement (e)), some properties of the a priori compleaity valid also for monotone com-
plexity. In particular, we conclude immediately théP (x|l (X)) < KM (x) + O(1) andKP (x) <
KM (x) + KP (I(x)) + O(1). Note also that for computable sequences of inconsistengst(none
is a prefix of another one) the prefix and a priori complexitiesicide up to an additive constant
and monotone complexity is between them. Therefore it ed@scwith them: ifxXp,X1,... IS a
computable sequence ard{ x; fori # j, thenKM (x) = KA (x;) + O(1) = KP (%) +O(1).

< The statement (a) is a direct consequence of the definitfdd(u) = y thenD(u) = x for
everyx that is a prefix ofy. One could say that in the definition of monotone complexitg aeed
to describe not the string exactly, but any of its continuadi and the longer the string is, the more
difficult this task becomes (the set of continuations becosmealler).

The statement (b) is true since the lower graph of a compaitabbping is enumerable.

To prove (c) it is enough to remark that the identity mapging % such thaD(x) = x for all
X € 2 is computable.

To compareKM andKP (statement (d)) it is enough to note that any computable mgpp
> — N, becomes a computable mapping of type> 2 if N, is embedded int& (and_L becomes
an empty string). More formally, léD be a prefix-stable decompressor used in the definition
of KP. In can be extended to a computable mapping of pe Z (the strings wher® was
undefined are mapped intv and the values on infinite strings are determined by the oty
requirement).

To compareKM andKA (statement (e)) we have to recall the remark we started @igirob-
abilistic algorithm is a random bits generator whose ouigpted into a computable mapping Bf
into itself. LetD be the optimal decompressor used in the definition of the nom@ocomplexity.
Consider a probabilistic algorithm that feeds random secgeientoD. What is a probability of
getting some string (or some string that starts wik) as the output? Obviously, this probability is

120

at least 2'¥ for any stringy such thaD(y) = X, since the random string starts witlwith proba-
bility 2! and this guarantees that the outpuboivill start with x. (We return to the comparison
of KM andKA in Theorem 80.)

The statement (f): one implication is a straightforwardotiary of the corresponding statement
of Theorem 72; the other implication is obvious, all the pwesiof a computable sequenoehave
bounded complexity since there exists a computable mag@ping that is equal tav everywhere.

For (g), let us consider the monotone decompressor thag istiimposition of an optimal mono-
tone decompressor and the mappingn this statement the sequentg) can be infinite; if we
don’t want to deal with the complexities of infinite sequertbe statement should be reformulated
as follows: for eacH there exists a constaasuch that for alk,y such thay < f(x) the inequality
KM (y) < KM (x) +c holds.

The similar argument works for (h), but this time the composiof the optimal monotone
decompressor antlis a prefix-stable decompressor. (One can also derive diisnsent from a
similar statement about a priori complexity)

Prove thatKM (xy) < KP (x) + KM (y) + O(1) (herexy stands for the concatenation Of hrefix-mor
stringsx andy). In particularKM (xy) < KP (x) +1(y) +O(1). [Hint: Consider the optimal prefix-
free decompressdd, and optimal monotone decompresh. Now let D’ (uv) = Dp(u)Dm(V)
(whenDy, stops reading the input, the remaining part of the inputasl tgyDy,.]

Show that in the preceding problem one can repldgg(y) by the “conditional” mono- {kp-kn}
tone complexityKM (y|x) defined in a natural way (we do not require “monotonicity”lwiespect
to the conditiorx, see Chapter 6 for details).

Prove that the statement (g) remains true if we repkddeby KA (in the both sides of
the inequality). [Hint: the mappin@ can be applied to the output of a probabilistic machine; the
new machine is not better than the optimal one.]

We can give an equivalent definition of the monotone complekat does not use computable
mappings of typ& — Z; in this way we get a simpler (but less natural, in our opipidefinition.

Let = be the set of all binary strings. Consider the binary retatim be compatible” (or
“consistent”) on this setx is compatible withy if x < y ory < x (equivalent propertyx andy are
prefixes of the same string). An enumerable set (binaryioglgb C = x = is calledregular, if it
has the following property:

(x1,y1) € D, (X2,y2) € D and (x;is compatible withxy) = (y1 is compatible withy,)

for all x1,X2,y1,Y2. Then the monotone complexity of a stripgvith respect td is defined as the
minimal length of a string such that(x,y) € D. There is an optimal regular enumerable binary
relation on=.

Prove that this definition leads to a notion of monotone cexip} that is differs from
the previous one by at mo§i(1). [Hint: The lower graph of any computable mappibg- X
is a regular binary relation. On the other handifs a regular binary relation, the “gap filling”
described in the proof of Theorem 76 makes it a lower graplowfescomputable mapping.]

It is instructive to compare this definition with the defioitiof plain complexity (where we use
graphs of computable functions, i.e., uniform enumerabéts, snstead of regular relatiody. In

121

the definition of monotone complexity we do not requiréo be uniform: several pair,y) with
the samex and differenty are allowed; we require only that aflk in these pairs are compatible.
This makesKM smaller; for example, all prefixes of some computable secpiésay, 0000..)
have bounded complexity (note tH&6(0") = KS(n) is about logh for mostn).

On the other hand we put additional restrictions: if a strng/a description of some string
then the strings that are compatible witlsan be descriptions only of strings that are compatible
with y. This makes complexity larger. This is especially clear mwhe consider complexities of
the elements of a computable sequence of pairwise incobipatirings: monotone complexity
in this case coincides with prefix complexity and the differe can be about logfor strings of
lengthn.

Summing up (and recalling that both a priori complexity atarpcomplexity differ from the

prefix one at most b(logn) for strings of lengtim), we come to the following conclusion: (kn-ks-dif;
—KS—dl

Theorem 79 The difference between K8 and KM(x) is bounded by Qogn) for strings of

length n and may be both positive and negative with absohitesvogn — O(1) for n bit strings

for infinitely many n.

We return to the comparison of different versions of comipyar Chapter 6. Now we mention
(without proof) only one statement of this type:

Theorem 80 The difference KMx) — KA (X) is not boundedfrom abov.

Let us explain the informal meaning of this theorem. Red¢wit tn both definitions (0KM (x)
andKA (x)) we use computable continuous mappiitgz — % and consider the preimage of the
setZ of all sequences starting withh Defining KA, we are interested in the measure of this
preimage, while foKM we are looking for the largest interval of tyfag which is a subset of
this preimage. This shows thKA 1 < KM ¢, and the difference can be large, if the preimage is
“sparse” (consists of large number of small intervals). hestion is how large this difference
could be for an optimal computable mapping.

Recall out metaphor of space allocation (we allocate sslug@d, 1] for a countable number of
clients) used in the proofs of Theorem 40 (p. 68) and Theor2ip583). The difference between
prefix complexity and the logarithm of the a priori probalyibnN has the same nature (difference
between the total measure and the maximal contiguous aljetdowever, in that case we were
able to perform some kind of “consolidation” by modifyingettlescription mode and the price was
just a constant factor.

Now we have a more delicate task since our clients form ataleyaThis makes reorganization
more difficult and consolidation leads to more the constactolr overhead.

However, the technical details of this argument (given B&ts’s article P]) are rather tedious,
and authors are unable to understand and clearly explamtgument, so readers are referred to
the original paper.

Prove thatkM (x) < KA (x) + O(logKA (x)). [Hint: in fact KM (x| KA (X)) < KA(X) + (xp-ka-re1:
O(1). Indeed, ifKA (x) = k, thenx at some point appears in the growing subtree of strings whose
a priory complexity is less thak+ 1; this tree at all times has width (the cardinality of maxima
antichain) at most'¢, so looking at the maximal elements of this tree, we coveryi2f!
growing branches. For the complete argument see Theorenpl032.]

{gacs-diffe

122

Figure 12: The construction af. {monotlev-j

5.6 Levin—=Schnorr theorem

{monotlev}
The definition of a priori complexity guarantees that for émwyer semicomputable semimeasure
p the inequalityKA (x) < —logp(x) + ¢ holds for somes and for every. It turns out that ifp is a
(computable) measure, then this inequality is true not @ priori complexityKA but also for
a (larger) monotone complexitM .

{monotlev-1

Theorem 81 Let u be a computable probability distribution d. Let p(x) = u(Qx). Then there
exists a constant ¢ such that
KM (x) < —logp(x) +¢

for every string x.

< The idea of the proof can be explained as follows. The diffeecbetweetKM andKA ap-
pears since we are unable to allocate contiguous spacertodiieal users’ requests, since we do
not know which of the current requests will increase in therfe. However, if we have a measure
(and not a semimeasure), we can solve this problem and tdlooatiguous intervals. (Feel free
to ignore this metaphor if it is confusing: we provide a fohpaof in the next paragraphs.)

For each stringt we define an intervat inside[0, 1]. The intervalr is defined in such a way
that:

e the length ofrg equalsp(x);
e 1\ = [0,1] (hereA is the empty string);

e for each stringk the intervalrg is split by some its point into intervalgg (left part) andrg,
(right part).

(See Figure 12.)

We consider also another family of intervals that corresptanthe uniform measure. Lét
be the interval of reals whose binary representation stattsx. We call the intervaldy binary
intervals

Now consider the s&b of all pairs(x,y) of strings such that (binary) interviglis located inside
the interior of 7. The setG is enumerable. Indeed, since the functrs computable, we can
find the endpoints of intervals, with arbitrary precision, and if they are greater (lesshteeme
rational number, this fact will be eventually discovered.

Note also that the property,y) € G remains true if we replaceby any string that starts with
(since the segmeit becomes smaller) or replagédy any prefix ofy (sincers, becomes larger). If

123

(X, y1) € G (X, y2) € G, the segments;, andrg, have a common interior point (they both contain
lx), therefore the stringg; andy, are compatible. So Theorem 74 (p. 118) guarantees that there
exists a computable mapping bfinto itself whose lower graph 6. We use this mapping as the
decompressor in the definition of monotone complexity. TKFhp (y) equals to the minus binary
logarithm of the biggest binary interval that is locatedcslty inside 75,. It remains to note that any
open interval of lengtln contains a closed binary interval of lendtd, and compar® with the
optimal decompresson:

Prove the claim about binary intervals (see above). [Hettulbe a power of two such
thath/4 < u < h/2. Then any interval of length intersects at least three consecutive binary
intervals of lengthu and contains the middle one.]

Theorem 81 provides a theoretical justification for thedwiing approach used by A.N. Kol-
mogorov and his students to get upper bounds for the complekRussian texts. While reading
the text (one letter at a time), the reader tries to guessdkeletter. The guess is formulated as
a probability distribution over the alphabet. Then the retter is read and we addlogp to the
complexity, wherep is the probability of that letter with respect to the guesdisttibution.

If we believe that the behavior of the reader is computahkeyésult is an upper bound for the
complexity. Indeed, the reader provides (some part) of apcdaible probability distribution on
the set of strings telling the conditional probabilitiesrad some path, and the complexity of text
does not exceed the sum of negative logarithms of these Ipititiess (Theorem 81).

Of course, it is not practical to require that the reader ey at each step the list of proba-
bilities for all the letters; one can suggest some standguéstof answers like “the next letter is
A with probability 05, all other vowels are equiprobable and have total proibgidil3, all other
letters are equiprobable”. Note also that we get an uppendéar the conditional complexity of
the text where the condition is the background of the req&er.example, if reader knows the text
by heart, or just is familiar with the author’s writings, theund can be very small.)

Now we are ready to formulate the criterion of Martin-Lohdomness that uses monotone
complexity: a sequence is ML-random if the inequality of ®feam 81 becomes an equality for its
prefixes.

Let us formulate this statement precisely. dbe a computable probability distribution on the
setQ of all infinite bit sequences and lptx) be the measure of the inten@k: p(x) = u(Qx).

_ _ _ _ {levin-schu
Theorem 82 (Levin—Schnorr) A sequencev € Q is Martin-Lof random with respect to a com-

putable probability distributiornu if and only if
—logp(x) —KM (x) < ¢
for some c and for every prefix x af

<1 We have to prove theorem in both directions. Let us show fuat if (for a given sequence
w) the difference—log p(x) — KM (x) is unbounded, then this sequence is not ML-random (i.e.,
the set{ w} is an effectively null set).

Fix some constant and consider all strings such that the difference log p(x) — KM (x)
is greater thare. (This difference is sometimes calleandomness deficienciut this term has

124

different meanings, e.g., in Chapt?it is used in a different way, so we avoid this name.) This
set is denoted bip..

The setD. is enumerable (sinceis computable anM is upper semicomputable, the differ-
ence is lower semicomputable).

Lemma 1. The set of all infinite sequences that have a prefiRdasu-measure at most 2.

Informally speaking, this is true because on this set thesomea is 2° times smaller than the a
priori probability (and the latter does not exceed 1). Mamfally this argument can be explained
as follows.

We are interested in the measure of the union of intel@gl®r all x € D.. Without changing
this union, we may keep only minimale D¢ (i.e., stringsx € D¢ such that no prefix ot belongs
to D¢). Let xg,X1,... be these minimal elements Bt. (We do not claim the the set of minimal
elements is enumerable, so this sequence may be non-cditguta

For eachx; consider the minimal descriptiop; (according to the definition of the mono-
tone complexity:x < D(pij) whereD: ¥ — X is the optimal monotone decompressor). Then
[(pi) = KM (X)) < —logp(x) — c. Moreover, none ofy is a prefix of another one (otherwise the
corresponding; would be compatible). Thereforg 2-'(P) < 1 (being the sum of uniform mea-
sures of disjoint setQ,). The corresponding(x;) are Z times smaller, so we get the statement
of Lemma 1.

Our assumption guarantees that the sequenieas prefixes fronD for everyc. To prove that
{w} is an effectively null set, we need to cowerby an enumerable family of intervals with total
measure not exceeding? and we can use intervals froby.

However, we need to be careful here. We know that for interfralm D, the total measure
(i.e., the measure of their union) does not exce€d(as the Lemma says), but the definition needs
that the sum of measures of all intervals does not exce€d \&e cannot solve this problem by
considering only minimal points (maximal intervals), sribe set of minimal points is not always
enumerable. Instead we can use the following statement:

Lemma 2. Any enumerable set of stringg, X1, ... can be transformed into an enumerable set
of incompatible strings with the same uniof,,. This transformation is effective (an algorithm
that enumerates the first set can be transformed into anthignahat enumerates the second one).

Indeed, if during the enumeration we get a string that is a@resxon of the previously enumer-
ated one, this string can be omitted (since the correspgnuiarval is already covered). If we get
a stringy that is a (proper) prefix of a strinrgenumerated earlier, we have to split the difference
Qy \ Qy into finite number of disjoint intervals and replagey strings that define those intervals.
Lemma 2 is proved.

Applying Lemma 2, we get an enumerable set of incompatibilegst; these strings may be not
in D¢ but that is not important. It is enough to know that they cgpand to disjoint intervals that
coverw and the union of these interval hasmeasure at most2 according to Lemma 1.

Proving the converse implication, we need to show that ifqueacew belongs to an effec-
tively null set then the differences between the negatigaidithms of the measure and the mono-
tone complexity ofw-prefixes are unbounded. The idea of this construction masxpkined as
follows: given a set of small measure, we construct a moretmcompressor that treats favorably
the elements of this set (i.e., provides short descriptiongheir prefixes).

125

Let us provide details now. Assume thatbelongs to a sdl which is an effectively null set
(with respect to measune). For eachc we can effectively find a family of intervalQy,, Q,, . ..
that covelJ (and thereforev) and have total measure less thart.2f we multiply the measures
of all these intervals by %2 the sum is still less than 1. Consider the computable seguan=
2°U(Qy). Applying Theorem 53 (p. 86), we get a prefix-free decommme&s which the prefix
complexity ofi does not exceed logu(Qy) — c+ 2. A composition of this decompressor and the
computable mapping— ¥; is a prefix-free decompressbDg such that

KPp, (X)) < —logu(Qy) —c+2.

(The subscript in D¢ is used to stress that the construction depends)oMonotone complexity
does not exceed the prefix one, so if the difference betweendbative logarithm of the measure
and the prefix complexity is large, the same is true for mom@tmmplexity. It remains to combine
the decompressoB3; into one decompressor (not dependingchn

We use the same trick that was was used in the constructiom gpamal decompressor. We
want the stringcd to be the description of the stringf u is a description of with respect tdD.
HerecC'is a self-delimited encoding of leng®(logc) for a natural numbec. If the decompressor
D is constructed in this way, the following inequality holdisr(all c):

KP5(x) < —logu(Qyx) —c+ O(logc)

Since the monotone complexity does not exceed the prefixwaeeplaceKP ;(xi) by KM (x)
and conclude that all the strings(for a givenc) have the difference at least- O(logc). If an
infinite sequence belongs t, it has a prefix of this type for ang, therefore the difference is
unbounded for its prefixes.

Levin—Schnorr theorem is provegh.

In fact the proof give us a bit more that we claimed. Here avers¢ modifications of Levin—

Schnorr theorem that can be extracted from it: _
{levin-schu

Theorem 83 We may replace the monotone complexity ¢Vby the a priori complexity KAX)
in the statement of the previous theorem.

< The a priori complexity does not exceed the monotone onehesdalifference may only
increase. So we need to change only the first part of the pitaefeasy: in the proof of Lemma 1
we should note thay; 2~ KA(X) < 1, since this sum is the some of a priori measures of disjoint

intervalsQy,. >

_ _ {levin-schu
Theorem 84 We can also replace the monotone complexity («Mby the prefix complex-

ity KP (x).

<1 Here we go in the other direction and increase complexityrdg the second part of the
proof needs to be redone. And this is trivial — recall thatanotfwe got just an upper bound for
prefix complexity.>

Theorem 84 is nowadays the most popular version of Levinr@thrandomness criterion
(see, e.g., 7). However, authors still believe the it is more natural s@umonotone (or a priori)
complexity.

126

Indeed, for the monotone complexity the difference betwdennegative logarithm of the
measure and the complexity is always positive and is bourided only if the sequence is random
(To be more precise, the difference is always bounded frolomband is bounded from above
if and only if the sequence is random.) If we use prefix comipfexstead, the difference can
become negative. For example, in the case of the uniformuneadog (Qy) is just the length
of string x, and prefix complexity may be greater than the length (thkerdihce can be of order
logn, see Theorem 57, p. 90).

Moreover, the use of the monotone complexity allows us &ngjthen the Levin—Schnorr the-

orem as follows:
{levin-sch

Theorem 85 If a sequencew is not random with respect to measutg then the difference
—logp(x) — KM (x) for prefixes x (otv) is not only unbounded, but also tends to infinity.

< In the proof of theorem 82 we have constructed a prefix-freziaressor that provides
short descriptiong; for stringsx; and guarantees that the prefix complexityofwith respect to
this decompressor) does not exceeldg 11(Qy,) — €. To get the required bound for the monotone
complexity, we may use (for eachthe extensions of; as descriptions of the extensionsxfn
such a way that the length of the descriptions correspontetmeasure of described strings, as
it was done in the proof of Theorem 81 (p. 124).

More formally, we can use the inequalkM (xy) < KP (x) + KM (y|x) (Problem 107) and the
relativized version of Theorem 81 saying thdil (y|x) < —log ux(Qy) for any computable family
of measures that (computably) depends on paramekégreiy, is the measure that is concentrated
on the seQ)y and is defined as followgi(Qy) = 1 (Qxy)/U(Qy).

For the case of the uniform measure (whereg 1i(Qx) = 1 (x)) we can use a simpler argument
and say thap;z is a description ok;z for any stringz. >

We provided some argument in favor of using monotone conitgléxthe randomness crite-
rion. However, a version that uses prefix complexity hasws advantages. Note that the notion
of a ML-random sequence is invariant under permutation dices (if the measure is invariant
or is changed according to the permutation), but the notfoa prefix (and therefore the crite-
rion of randomness in terms of prefixes) is not. UsiKfg, one can get an invariant criterion of
ML-randomness.

Let F be a finite set of indices (natural numbers) anduddie a binary sequence. By(F) we
denote the restriction ab ontoF, i.e., the binary string formed by bitg such that € F (in the
increasing order of indices).

Let u be a computable measure @n For every finite seE C N and stringZ whose length
equals the cardinality df, we consider the evend(F) = Z. Its u-probability is denoted by 7.

Let w be a ML-random sequence with respecttaProve that
KP (F, @(F)) > —I0gH w(F) — €

for somec and for all finiteF.

[Hint: the measure of the set of all sequences for which theguality does not hold for some
fixed ¢, does not exceed 2 multiplied by the sum of a priori probabilities of all paisZ and
therefore does not exceed?]

127

(Note that ifF is an initial segment dN, thenF is determined byo(F) and can be eliminated,
SO we return to the previous statement.)

In fact, the condition given by the last problem is also sidht. Moreover, it is enough to
require this inequality for any increasing computable sege of finite sets that cover the entife

Assume that is a computable probability distribution @ LetFo CFi C F2C ... be [eyin-schy
a computable sequence of finite sets b = N. Assume that

KP (F,w(FR)) > —loguF, w(R)—c

for somec and for alli. Thenw is ML-random with respect tq.

[Hint: Using permutation of indices, we may assume thaire initial segments af. Then we
repeat the proof of Levin — Schnorr theorem using only stioappropriate length and splitting
other intervals into unions of appropriate intervals.]

This statement implies, for example, that a two-dimendibitaequence (i.e., a mappidg —
{0,1}) is ML-random with respect to the uniform measure (all bits mdependent; 0 and 1 are
equiprobable) if and only iN x N square centered at the origin has complekify- O(1) (for all
oddN).

The case of the uniform measure is rather important; let ite wown all what we have proved
for this case:
{levin-schu

Theorem 86 (a) Upper bound:
KA (x) < KM (x) +0O(1) < 1(x) +O(1);

for any string x.
(b) Randomness criterion: the sequeneés ML-random with respect to the uniform measure
if and only if these inequalities become equalities for gesfiofc:

KA ((w)n) = KM ((@)n) +O(1) = n+O(1).

(©) If w is not ML-random with respect to the uniform measure, then dtiference n-
KM ((w)n) (and therefore A- KA ((w)y) tends to infinity as A~ .

(d) The sequencev is ML-random with respect to the uniform measure if and ofly i
KP ((w)n) = n—c for some c and for all n.

(e) The sequencev is ML-random with respect to the uniform measure if and offly i
KP (F,w(F)) > |F| — c for some c and for all finite sets F.

For the case of the uniform measure there exists one moeeicritof Martin-Lof randomness.
It is interesting since it uses only plain complexity (and tie prefix or monotone versions). It
is a bit strange that this criterion was discovered only mdgegsee P]) since similar suggestions
were considered in the end of 1960ies (s&€?]), and the proof of this criterion uses only ideas
and methods well known at that time.

128

{miller-yu-
Theorem 87 Assume that fN — N is a computable total function and the serig@ (" con-
verges. Letvo be a ML-random sequence with respect to the uniform mea$uen

KS((w)nln) = n— f(n) —O(1)
(i.e., there exists c such that for every n the inequality (¢3n|n) > n— f(n) —c holds.
<1 Assume that the claim is false. This means that for ee¢here exists such that
KS((w)n|n) <n—f(n)—c.
In other words, for everg the sequence is covered by some interv&ly such that
KS(x|n) < n— f(n) —c,

wheren is the length ok. For each there are at most®2 ("¢ intervals with this property and
their total measure is at most 2" 2-¢ (for a givenn). The total measure of all such intervals (for

alln)is
2—C (z 2—f(n))

and the sequenae forms an effectively null set: choosing an appropriatee getw’s cover that
has small measure. Therefowe,is not ML-random. (Note that the sum of the serjgg= ("
may be a non-computable real number; this does not matiss sia may use any upper bound for
it.) >

This theorem implies, for example, that for any ML-randonyugence (with respect to the
uniform measure) the plain complexity of its prefix of lengtfs at leasth — 2logn— O(1) and
evenn—logn—2loglogn— O(1), since the corresponding series converge.

Making functionf smaller, we get the claim of the theorem stronger. It turrigtoat for some
f we get a randomness criterion in this way:

{miller-yu-

Theorem 88 There exists a total computable function ¥ — N with the following property: if
for some sequenae and for some c the inequality

KS((w)n[n) = n—f(n)—c,
holds for all n, thernw is ML-random with respect to the uniform measure.

<1 We need to prove that every non-random sequence (i.e., segnence that belongs to the
largest effectively null set) has “simple” prefixes. Notattive also need to choose the function

To explain how to do this, let us assume that we are given alyamhiintervals with total
measure at most LetF be the set of strings that define these intervals (i.e., tindyfaonsists of
intervalsQy for all x € F). Let us sort strings iff according to their length and for each length
consider the total measure of intervals that correspontiib strings inF. Let it be 2-f(" (by
the definition off). Then we haves,2- (W < &. On the other hand, the sEtcontains 2~ f("

129

strings of lengtm, and each of these strings can be described (wreerd other parameters of the
construction are given) by— f(n) bits. This gives an upper bound for the complexity of all the
strings inF. Note also that any infinite sequence that is covered by aenials has a prefix ik.

Now we return to the proof. Consider the largest effectivelif set. For eacls > 0 there exists
its covering by interval of total length at mastand we can use the construction above to get the
corresponding functior with znZ‘f(”) < €. We need to combine those functions for different
into one functionf as the theorem requires. This is done as follows.

For eachc =0,1,2,... consider the covering by a family of intervals with total reege not
exceeding 2%, the corresponding s of strings and the corresponding functién Then we
decreasd by 2c and obtain a functioric such that

y2 fe) o—c¢
n

(we get 2°¢ instead of 23 since we have decreasddby 2c). The setF. contains 2~ fc("W-2¢
strings of lengtm, and any non-random sequence has a prefi.in
Thenf(n) is defined by the equation

This guarantees that

2—f(n) — 2—fc(n) — 2—fc(n) < 2—¢C <1
On the other hand, the sE¢ is enumerable given (according to the definition of an effectively
null set), so any its elememtof lengthn is determined (when andc are known) by its ordinal
number (in the enumeration of strings of lengtin F;), i.e., byn— f¢(n) — 2c bits:

KS(x|n,c) < n— fe(n) —2c+ O(1),

which implies
KS(x|n) < n— f¢(n) —2c+O(loge) < n—f(n) —c

for anyx € F; of lengthn (for large enougtt).
Now let w be any non-random sequence. As we have seen, foreeadias a prefix ir. Let
n be the length of this prefix. Then

KS((w)n|n) <n—f(n)—c

(assuming that is large enough), which contradicts our assumption.

However, this does not complete the proof, since we neednaputablgunction f, and the
setF. is only enumerable, so we don’t know when all strings of lenghave been appeared, and
therefore cannot computie To fill this gap, recall that we started with a family of intafs (that
covers the largest effectively null set). In this covering may split a large intervd®, into many
small intervalsQ (for all stringst of some length). This allows us to makgcomputable if we

130

require (without loss of generality) that the length of thé&ervals in the enumeration can only
increase. The same argument can be applied tfz all parallel and make$ computable.

Finally, there is a (trivial) technical problem: the stashrequirest to be integer-valued, so
some rounding is needed.

The two last theorems together provide a randomness oriténat uses plain complexity (and
not monotone or prefix complexity). This criterion is “rousone can replace the conditional
complexityKS((w)n|n) by the unconditional on&S((w)n), or by conditional prefix complexity,
KP ((@)nn).

Indeed, this replacement increases complexity, therefioise Theorem 88 needs to be verified.
For the prefix complexity version: we use that for any finite Aand for any its element the
inequalityKP (x|A) < log, |A| + O(1) holds (we consider a prefix-free encoding by the strings of
length log |A|).

The case of the unconditional plain complexity is a bit mafadilt. As we do not known, we
need to describe a strings F.n (hereF; p is the set of all strings € Fc that have lengtim) by its
ordinal number in the entire st (and not by its ordinal number ik, as before). Enumerating
Fc in increasing length order, we need

log(|Feol +[Feal+- .-+ [Fen

)

bits for that, and everything is OK if the last tetR n| is greater than the sum of all preceding terms
(in this case the increase is at most twofold). We can aclit@gausing the same trick as before:
replacing a string by all its continuations of a greater tandNote that this is done separately for
eachc, so the conditiort remains, but this does not matter since it gives éd{iogc) additional
bits.

So we get the following result:

{miller-yu-

Theorem 89 A sequencev is ML-random if and only if for any computable total functibnN —
N such thaty 2= (" < « the inequality

KS((w)n) = n—f(n)—0O(1)
holds.

This criterion uses only plain unconditional complexitydais the most popular version of
Miller—Yu theorem.

This criterion has a drawback: there is a quantifier dvelt can be placed differently (there
exists somef that rejects all the non-random sequences, as Theorem 8§ say still it would
be nice to get rid off completely. It is indeed possible, the price is that we havweinsert prefix
complexity into the statement:

{miller-yu-

Theorem 90 A sequencev is ML-random with respect to the uniform measure if and ohly i

KS((w)n) = n—KP(n) —O(1).

131

< If the seriesy ,2~ (" converges for a computabfe thenKP (n) < f(n) +O(1). Therefore
the condition with prefix complexity is stronger than thaffimeorem 89.
Therefore, we need to prove only the converse implicatibforievery c there exists such
that
KS((w)n) <n—KP(n)—c,

thenw is not ML-random. This can be done in the same way as in The8i&rm\Ve need only to
note that the set of all stringssuch that

KS(x) < I(x) —KP (I(x)) —c¢

(herel (x) stands for the length o) is enumerablex>
In this theorem we can also repla€&((w)n) by KS((w)n|n).

Verify that this is indeed possible.

Show that we cannot l€t(n) = 2lognin Theorem 88. [Hint: Theorem 87 says that for a
randomew we have a stronger inequali§S((w)n) > n—logn—2loglogn— O(1). Therefore, if
we computably interleave random sequence with the zereeseguand zeros are sparse enough),
we get a non-random sequence such K&f(w)n) > n—2logn— O(1). Similar argument shows
that we cannot get a computably convergent serid§"2for a functionf that makes Theorem 88
true.]

All the results above still do not answer a very natural goastmay be one can eliminate
completely and require th&S((w),) > n— O(1) (similar to monotone complexity criterion)?

Of course, this would be the most natural version of the remuss criterion, so it was tried
in the very beginning. Martin-Lof noticed that this appecbaloes not work: any binary string is a
substring of a random sequence, so any random sequencesartztrarily large groups of zeros.
And if a string of lengthn ends withk zeros, then its complexity is at mast- K+ 2logk+ O(1)
(2logk bits are needed for a prefix-free encodindgcaindn — k bits for the rest), and the difference
between length and (plain) complexity is at lelast2logk — O(1).

The following theorem (se€?[?]) gives a more precise bound for the unavoidable difference
between length and complexity:

{martin-1lo:
Theorem 91 There exists some c¢ such that for any Q the inequality

KS((w)n) < n—logn+c
holds for infinitely many n.

< For eachn let usselect1/n-th fraction of all strings of lengt, i.e., |2"/n] strings of
lengthn. We want to do this in such a way that each infinite sequencenfingely many selected
prefixes (and the set of selected strings is decidable).

Why is this possible? The serigsl/n diverges so we can split its terms into infinitely many
groups, and each group has sum greater than 1. Using one, greget one layer of2-covering
(this means that each sequenee Q has a prefix among the strings that correspond to that layer).

132

To do this, we consider the strings in the order of increakngth and select string whose prefixes
are not yet selected. (There is the rounding problem sihGeif not an integer, but it can be easily
fixed.)

Every selected string of lengtincan be described (if is known) by its ordinal number, and
this requires — logn bits. Therefore, the conditional complexity of this strifrgth conditionn)
is at mostn — logn+ O(1). Moreover, if we make a combined list of all selected strifigghe
order of increasing length), the ordinal number increage®{) factor. Indeed, the number of
selected strings grows almost as a geometric sequenceddimdjall selected strings of smaller
lengths increases cardinality only By1) factor. This implies the statement of Theorem 81.

Prove that the statement of Theorem 91 is true not only foresobut for everyc (in-
cluding the negative ones).

[Hint: If the seriesy 2 (M diverges, we can increase a bit the functfdceeping this property:
there exists a functiog such thag(n) — f(n) — o andy 279" =]

Show that the statement of Theorem 91 (the conditional cexitglversion) remains true
if we replace logarithm by any computable functibsuch that the serie§2‘f(”) diverges.

Martin-Lof claims in [?] that the same generalization is possible for unconditioomplexity
(and refers to an unpublished paper for the proof). The saatensent (attributed to Martin-Lof)
can be found also irf]. [It is not clear how to prove it.]

Note also that the statement of Theorem 87 has a slightlgréifit form in P]:

Prove that if a sequena® is ML-random with respect to the uniform measure, and
f: N — Nis a computable total function such that the segié’sf(”) computablyconverges, then
KS((w)n|n) = n— f(n) for all sufficiently largen. [Hint: If a series computably converges, and
the inequality is false infinitely many times, the tails oétberies can be used to get coverings that
have small measure.]

Another natural question: what happens if we require highgexity not for all (sufficiently
long) prefixes but for infinitely many of them? In the same MuaLtof paper?? paper the following
results are stated:

Prove that for almost all (with respect to the uniform meaysgequences € Q there
existsc such thaKS((w)n|n) > n— c for infinitely manyn.

[Hint: If it is not the case, then for everythere existdN such thatw-prefix of every length
n > N has complexity less tham— c. For givenc andN the set of allw with this property has
measure at most 2. As N increases, this set increases and the union ovéf ks measure at
most 2 ¢ by continuity.]

If for a given sequencev there exists a constamtsuch thatKS((w)n|n) > n— c for
infinitely manyn, then w is ML-random with respect to the uniform measure. [Hint:afis
covered by some interval in a family of total measure lesa &, then every sufficiently long
prefix of w can be described (when length is given) by its ordinal nunbére set of all strings
of this length covered by some interval, and this requireg@# n — c bits.]

Prove that the statement of the previous problem remaiesiftiue replace conditional
complexityKS((w)n|n) by unconditional complexitiKS((w)n).

133

[Hint: Use Problem 6 or, better, Problem 39.]

The last two problems refer to a set of measure 1 that is a sabte set of all ML-random
sequences. Its complement is a null set; if it were an effelstinull set, we would get another
criterion for ML-randomness. However, it is not the case.

Recently in P, ?] it was shown that this set has a natural description: itessét of ML-random
sequences relativized to ora€le these sequences are sometimes called “2-random” (while ML
random sequences are called “1-random”).

5.7 The random numberQ

{chaitin-or
The following theorem provides an interesting applicatbthe randomness criterion given in the
previous section. Let be a maximal lower semicomputable semimeasure on the settafah
numbers (e.g, len(x) be equal to 2XPX: we can use also the distribution on the outputs of the
universal probabilistic machine, see Chapter 4). G. Qhaiilggested to consider the number

Q= zm(n)

(the halting probability for the universal probabilisti@ohine; the sum of the “least convergent”
lower semicomputable series) and made the following istarg observation:

{omega-is-
Theorem 92 The binary representation @ is Martin-Lof random with respect to the uniform
distribution.

Note that the value a2 depends of the choice of a maximal lower semicomputablerseat
sure, but the statement remains true for every choice.

<1 Assume that the first binary digits ofQ are given. They form the binary representation of
a numbeQ,, which is a lower bound fo with approximation error at most2. Generate lowers
bounds form(0),m(1),m(2),... in parallel until the sum of these lower bounds becomes great
thanQ, —2~". This does happen at some point since the sum of the sefieansd hence is greater
than our threshold. Then make a list of ialhat appear in this sum (with a non-zero lower bound
for m(i)).

Note that this list includes all such thatm(i) > 2-2" (if somei with this property were
omitted, the approximation error would exceed'2 Therefore, all such thaKP (i) < n—c (for
somec that depends on the choice of functiorbut not onn) appear in this list. Thus, the minimal
integer that is not in the list has complexity at least c. This implies that both the list itself
(which determines this minimal integer) and the numgKwhich allows us to construct the list)
have complexity at least— ¢’ for some othec’ and for alln. It remains to use the randomness
criterion in its prefix complexity version (Theorems 84 art).8>

One can define the notion of a (Martin-Lof) random real nundiectly. A setX of reals is an
effectively null set if there is an algorithm that for anyiostal € > 0 enumerates a cover &f by
intervals with rational endpoints and total measure (lehgt most. A real number is Martin-Lof
random (with respect to the standard measurR)ifiit does not belong to any effectively null set
(=does not belong to the maximal effectively null set).

134

Prove that a real number is random (according to this dedmjiif and only if its binary
representation is a random sequence (with respect to thnmmeasure 0Q).

Prove that a square (sine, exponent) of a random real is amarehl. [Hint: A preimage
of a null set is a null set, and this argument can be effe@iz

Can the sum of two random real numbers be a non-random real® fre numbers may
be “dependent”.]

The random numbe® (or, better to say, an@2-number, since different maximal lower semi-
computable semimeasures lead to different numbers) hasesting properties that makes it a
rather special random number.

First of all, Q is lower semicomputable. (Note that the set of lower semmatable real num-
bers is countable and therefore is a null set, but — as we seet-atneffectively null set.) This
property ofQ has interesting corollaries:

Show that ifar is a lower semicomputable real number, then the nurabef is random.

Prove that any real number is a sum of two random real numfenst: It is enough to
know that random numbers form a set of full measure.]

[Here one should also write about Solovay reducibility feals, the maximal element etc. —
but first we should understand this!] .]

[Using Q as an oracle allows us to decide any enumerable set. Whataeidee said abo@2?
how theQ’s for two different optimal semimeasures are related?]

The numberQ can be considered as an “infinite version” of special objettsomplexityn
that are considered in Theorem 15 (p. 27). Moreover, thesedisect connection between these
notions.

{chaitin-f:
Theorem 93 Let Q,, be the binary string formed by first n bits of the binary reprstion of
Q. ThenQp has the properties described in Theorem 15; each of the tbjested there, say,
B(n), can be algorithmically obtained frof2,,, o0gn) and vice versa@, can be obtained from
B(n+ O(logn)).

< Let us show how knowin@, we can construct an integ&rgreater tham (n— O(logn)).
Generating the better and better approximation€Xowe stop this process when the approxima-
tions reac (i.e., the firsin bits achieve their “true” values). L&t be the number of steps before
this happens; thi$ can be algorithmically found whe@,, is known. Lett be any number greater
thanT; let us show that the complexity ofis greater tham — O(logn). Indeed, id we know n,
we may perfornt approximation steps and fir@d,, that has prefix complexity at least- O(1)
(Theorem 92) and therefore plain complexity at leastO(logn).

Reverse direction: assume tfign) andn are known. How to find,,_qo(iogn)? We claim that
the current approximation f& found afterB (n) steps the firsh — O(logn) bits are true (i.e., they
coincide with the corresponding bits). If this is not the case then there exists a threslfbld
that is a finite binary fraction of siz€"2°(°9" pits that separates the current approximation and
Q. The complexity of3 is at mosth— O(logn). Knowing 3, we can construct a number greater

135

thanB (n); just count the steps needed to get an approximation grietefS. For a large enough
constant irO(logn) we get a contradictiorn-

Therefore, recalling Theorem 15 we see that knowindd(logn) bits inQ allows us to answer
any question about the termination of a program of size att mosSince the question about
the membership in any enumerable set (e.g., questions amhatlgiven statement of sizeis
provable in some fixed formal theory) have this form, we cdfo¥o Chaitin and callQ “the
number of wisdom” which contains information about many artpnt things. (Sounds rather
romantic, indeed.)

5.8 Effective Hausdorff dimension

{monothaus

The notion of Hausdorff dimension is well known in measureoity (and became popular in
connection with fractals). Here is the definition. leet- 0 be some real number. We say that a set
Ais ana-null set if for anye > 0 there exists a sequence of intendalthat coverA such that

Zu(lk)“ <E.

This definition assumes thatis a subset of a space where a class of subsets called “ilsteiva
chosen and measure of intervals is defined. We restrict lmass® the case of the s&. Here
intervals are the setQy (whereQy is the set of all infinite sequences that start with a binary
stringx). The measure of the interv@® equals 2!,

Let us start with a few simple remarks:

(1) Any subset of amr-null set is ana-null set.

(2) Fora = 1 we get the standard definition of a null set (set of measu®.ze

(3) Fora > 1 any subsef C Q is ana-null set. Indeed, one can covaiby 2" intervals that
correspond to 2strings of lengtm, and the sum of theim-measures tends to 0 as— .

(4) Assume that & a < a’. Any a-null set is then am’-null set (note that measugg(l) of
any intervall does not exceed 1 and therefaré) > u(1)).

Give a natural definition for an-null set of reals and show that a getC [0,1] is ana-
null set if and only if the set of binary representations dhalmbers inAis ana-null set according
to the definition above.

[Hint: We need to verify that the more liberal notion of argntal inR where we do not require
any alignment, does not change the class of null sets.]

Our remarks imply that for any sé&t C Q there exists some threshadde [0, 1] with the fol-
lowing property: ifa > d, the setAis ana-null set; ifa < d itis not. (Fora = d the set may be
ana-null set or not.) This threshold is called thausdorff dimensioof the setA.

The Cantor setis the subset 0f0,1] that remains if we take out the middle third
(1/3,2/3), then take out the middle thirds of two remaining segments, (i1/9,2/9) out of
[0,1/3] and(7/9,8/9) out of [2/3,1] etc.). Prove that Cantor set is a compact set homeomorphic
to Q and has Hausdorff dimension lg2

[Hint: To get an upper bound for Hausdorff dimension one naysader the “standard” inter-
vals, i.e., the intervals that remain untouched after sd¢wteps of the Cantor set construction. To

136

get a lower bound we need to consider an arbitrary cover traists of open intervals. Then we
(1) replace this cover by a finite one using compactnessg(#ace open intervals by closed inter-
vals; (3) if some interval from the cover intersects some deleted intedvblUt does not contain
J, makel smaller (there is no need to cou®r (4) if some interval from the cover contains some
intervalJ that was deleted being the middle third of some inteljalie replacé by I’; (5) having
only standard intervals, we note that they correspond taakering of the binary tree and get the
desired bound for their measures.]

Give a natural definition of Hausdorff dimension for the satbfR3. Explain why the
dimension equals 3 for solids, 2 for surfaces, 1 for curvesGfor isolated points. Show that for
anyd € [0, 3] there is a subset @2 that has dimensiod.

The effective version of Hausdorff dimension is defined iratural way. (See, ?].) A set
A C Q is aneffectivea-null set (for a giveror > 0) if there exists an algorithm that for any given
€ > 0 enumerates a sk, I1, I, ... of intervals that coveA such thaty (u(lx))? < &. (Herepu is
the uniform measure ofd).

As in the classical case, the property is monotone (remauesfta increases oA decreases).
The main difference between the classical and effective isashown by the following theorem:

{effective-
Theorem 94 For any rationala > 0 there exists the largest (with respect to inclusion) eifety

a-null set.

< The proof goes in the same way as for effectively null (=1Bnséts (Chapter 3). The
countable union ofr-null set (in the classical sense) isamull set. In the same way the union of
an enumerable family of effectively-null sets is arr-null set. On the other hand,df is a rational
number (or even a computable real), we can enumerate attigéby a-null sets (or, better, the
algorithms that serve these sets) by enumerating all &lgosi and changing them when too large
intervals are generateg-

The following result (A. Khodyrev) is not used in the sequer the definition of Hausdorff
dimension rationablr are sufficient) but is interesting in its own right. Letbe an arbitrary real
number.

Theorem 95 The largest effectivelgr-null set exists if and only i is lower semicomputable.

< Assume thatr is lower semicomputable. This means that we can generatr et better
approximations from below ta but do not know their precision. If we use these approxinmatio
(instead of truax) in the requirements for the covering in the definition of &ectively a-null
set, we get stronger requirements. Consider the algorithtmegprevious theorem that generates
coverings of the largest effectivetly-null sets and let it use rational lower approximationsxof
instead ofa. Then modify the algorithm as follows: Do not reject permahethe intervals
that violate these requirements but postpone them and dgaik when new approximation to
a arrives. If a covering satisfies the requirement for the tyall its intervals will be printed
eventually.

On the other hand, let us assume that for sombere exists the largest effectivelynull set.
Consider the algorithm that generates covers for it. Thasrdthm can be used to obtain lower

137

bounds fora. Indeed, if for some rational the algorithm produces a finite family of intervals (at
some step) an@-powers of the measures of these intervals exegéluis means thgb < a.

It remains to prove that these bounds can be arbitrarilyectosr. Assume that it is not the
case and all of them are less than same: a. In this case every effectively-null set would be at
the same timer’-null set, which is not true (there exist sets of any effectiiausdorff dimension,
see below Problem 130, p. 1490

The effective Hausdorff dimensiaf a setA C Q is now defined as the greatest lower bound
of the set of alla such thatA is an effectivea-null set. This number belongs {0,1] and is
obviously greater than or equal to the (classical) Hausdbnfiension. (Initially the definition
of effective Hausdorff dimension was given in a differentyyvasing computable martingales;
see P, 7], where the properties of effective dimension were essaklil. See also Secti@? about
computable martingales.)

We have mentioned the paradox: the property of being antefédg null set depends only on
the type of its elements (whether they are random or nog§;ribt important “how many” elements
are in the set. A similar observation can be done for Hautdorfension:

{dimension-
Theorem 96 The effective Hausdorff dimension of the set equals the iggser bound of the
effective Hausdorff dimensions of its elements.

(By effective Hausdorff dimension of a poiai € Q we mean the Hausdorff dimension of the
singleton{ w}.)

<1 Obviously the (effectively Hausdorff) dimension of a seteat be less than the dimension
of any its element. It remains to prove the converse statenféhe dimensions of all singletons
formed by elements of a sétare less than some rational numbgandr’ > r is another rational
number, then the dimension &f does not exceed. This is a direct corollary of the previous
statement: all singletons are subsets of the largest mgcinull r’-set, soA is a subset of the
same set and has dimension at most-

Therefore we need to understand only what is the (effectaesdorff) dimension of a single-
ton. It turns out that it has a simple description in terms ofrkogorov complexity.

{hdim-form
Theorem 97 The effective Hausdorff dimension of a singlet@n}, wherew = wpwi . .., is
equal to
fiminf KS(“’O(";‘ - Gh1)

(The statement uses plain Kolmogorov complexity of the pesfiof w. However, this is not
important: since the difference between different comipfexersions is of ordeiO(logn) for
strings of lengtm, and we divide the complexity by, we get a ternD(logn)/n that does not
change the limit.)

<1 We have to prove two inequalities: one for each direction.

Assume that the liminf is less than a rational numhewe have to verify that the st} is
an effectivelyr’-null set for any rationat’ > r.

For eachn we consider alh-bit strings that have complexity less them There are at most
O(2™) such strings. The condition about liminf guarantees thairfiinitely manyn the n-bit

138

prefix of w is in the corresponding list. Consider all interv&ls for all z in the list (for some
fixed n), and compute the sum required in the definition of an effettir’-null set: there are
O(2™) terms and each {2 ") = 27", so the sum is® """, which gives a converging geometric

series
zz(rfr’)n‘
n

Deleting an initial part of this series (considering onlgirgjs of lengthN or more) we make the
sum arbitrarily small (whem is large enough). At the same time our assumption (aboutnfmi
guarantees that remaining intervals still from a coverorgd. So one inequality is proved.

Going in the other direction, assume tHab} has effective dimension less tharfor some
rationalr. Let us show that the liminf does not exceed

By definition, for each rationad > 0 we can generate a sequence of intervals. We know that
one of them containe and the sum of-th powers of the measures does not exceedet us
do this fore =1,1/2,1/4,.... In this way we get a sequence of intervals that have finite sum
r-th powers of their measures, and infinitely many of them coweln other terms, there exists a
computable sequence of intervagsxy, Xo, ... such that:

° 22*“ (%) < 0]

e X; is a prefix ofw for infinitely manyi.

The first statement implies that(i) > c2~") for somec and for alli (wheremis the largest
semimeasure on natural numbers considered in Chapter &nglthe logarithms, we get the
bound for prefix complexity:

KP(x) <rl(x)+0(1)

for all i. Note also that the lengths gftend to infinity (since the series in convergent), tlkais a
prefix of w for infinitely manyi and that the plain complexity does not exceed the prefix drtee (
definition of liminf guarantees that if a sequence has irdlgitnany terms that do not exceedts
liminf does not exceed.) >
Prove the following corollary: for any real < [0, 1] there exists a set (an even a singlgany-hausd
ton) that has effective Hausdorff dimension[Hint: The complexity of an initial segment can be
increased by adding random bits and decreased by adding zero

Prove that for any reak € [0,1] there exists a set that has (classical) Hausdorff dimen-
siona.
[Hint: Consider the set of all sequences that have zeroseaifsgal places.]

Prove that the definition of effective Hausdorff dimensiémsetA can be reformulated
in the following equivalent way: there exists a computaklguence of intervals that has finite sum
of r-th powers of the measures and that covers each elem@nihbhitely many times.

We return to the notion of effective Hausdorff dimension gcon ?? where its relation to
effective martingales is explained; we show there how todiate the proof of Theorem 97 into
the martingale language.

139

5.9 Randomness deficiency using a priori complexity
{monotdef}
The ML-randomness criterion (for a computable mea&)rean be reformulated in the following

way. For each string consider the difference
dp(x) = —log, P(Qx) — KA (X).

The sequencey is ML-random with respect t® if this difference is bounded (by a constant) for
the prefixes ofw. So we may call this difference thrandomness deficien®f a stringx (with
respect to computable measW®E a sequence is random if the deficiencies of its prefixes are
bounded (by a constant).

The name “randomness deficiency” is quite general and maynderstood in different ways
in different contexts; see, e.g., Chap®&r However, in this section we study the properties of the
functiondp defined in the above way.

[In would be nice to analyze these definitions systematicaitluding Levin—Gacs definition
of deficiency for infinite sequences, classes of measure3 bis could be a special section in this
chapter!]

If P(Qx) = 0 for somex, we letdp(X) = +oo.

The randomness deficiency is always non-negative (up@1a additive term), see Theo-
rem 81). The randomness criterion (Theorems 83 and 85) giems that for ML-random se-
guences the deficiency of their prefixes is bounded while dorrandom sequences the deficien-
cies tend to infinity. This implies that the intermediataigtion is not possible: there in no se-
guence such that deficiencies of its prefixes are not boundeddonot tend to infinity. This
looks rather strange, and one may ask why this happens. Tbeifogy theorem provides some

explanation.
{monotdef-
Theorem 98 Let P be a computable measure On There exists a constant ¢ such that for any

string x and for any string y that has x as a prefix the ineqyalit
dp(y) > dp(X) — 2logdp(X) —C
holds.

Informally speaking, any continuation of a string with hidificiency has (almost as) high
deficiency. Or: a prefix of a string that has small deficienag falmost as) small deficiency, so
the deficiency function is quasi-monotonic.

<1 For eachk consider the enumerable set of all finite sequences thatdefi@ency greater
thank. All the infinite continuations of these sequences form aanggetS,, andP-measure of this
set does not exceed® Now consider the measuRg on Q that is zero outsid§ and is equal to
2P insideS. That means that for any sétthe valueP(U) is defined as¥P(U N'S,). Actually,

R is not a measure according to our definition, siRgE) is not equal to 1. HoweveF can be
considered as a lower semicomputable semimeasure, if wegetina bit and leB(Q) = 1 (this
means that the difference between 1 and the former valBg 9f) is assigned to the empty string).

Now consider the sum L

S= Z 2 R

140

It is a lower semicomputable semimeasure (the factor 2 irddreminator is used to make the
sumy 1/2k? less than 1); again, we need to incre8s® thatS(Q) = 1. Then we have

—logS(x) < —logP(x) —k+2logk+O(1)

for any stringx that has a prefix with deficiency greater thian Since S does not exceed the
maximal lower semicomputable semimeasure on the binaey(tre toO(1)-factor), we get the
desired inequality.

This argument assumes that deficiencyxat finite (i.e., P(Qx) # 0); if P(Qy) = 0, then
P(Qy) = 0 for anyy that has prefix, and the deficiency of is also infinite.r>

Let us note one more property of the deficiency function thani immediately corollary of its
definition:

Prove that for every string the deficiency of at least one of the stringsandxl does
not exceed the deficiency &f (We assume that a computable measuused in the definition of
the deficiency is fixed.)

This problem shows that we can start with any string and ekiehit by bit not increasing
its deficiency. The randomness criterion guarantees th#tisnway we get a ML-random se-
guence with respect to the measure used in the definitionfafielecy. (Recall that we assume
thatP(Qy) > 0 for anyx.)

Now we use the notion of deficiency (as defined in this sectiortpmpare randomness with
respect to different measures.

Let P be a computable probability distribution éhand letf: ¥ — % be a continuous com-
putable mapping. Consider the image of the meaBumgh respect tof, i.e., a measur® on the
set such that

Q) =P(f(U))
for anyU C Z. In other termsQ is the probability distribution of the random variabf¢w)
wherew is a random variable that has distributiBn In general case the distributidp is not
concentrated o and may assign positive probabilities to finite sequencesur terminologyQ
may be a semimeasure (and this semimeasure is lower semitaioig), not a measure.

Let us assume, however, that it is not the case andQhaia measure of. (It is easy to see

that in this cas®) is acomputableneasure.)
{random-im:
Theorem 99 (a) For any sequencea < Q that is ML-random with respect to measure P, its image
f(w) is an infinite sequence that is ML-random with respect to mesQ.
(b) Any sequence that is ML-random with respect to Q can be obtained in this,way, there
exists a sequenas that is ML-random with respect to P and) = 7.

The intuitive meaning of this theorem can be explained dsWa. Assume that we have a
probabilistic machine that consists of a random bit geoerahd an algorithm that transforms
random bits into an output sequence. Assume that the randauarierator has distributio and
the transformation algorithm defines a computable mapping — 2.

Which sequences can appear as the output sequences of thsmeta Or, better to say, for
which sequences we can believe that they appeared at thet aditinis machine? There are two

141

possible answers. First, we can look inside the machine anthat these sequences dramages

of the ML-random (with respect t®) sequences. On the other hand, we can forget about the
internal mechanisms and look at the output distributiotyotilen we expect the output sequence
to be ML-random with respect Q. Our theorem guarantees that these two approaches leaa to th
same class of sequences.

< First, let us prove that thé-image of aP-random sequence is infinite. If it is not the
case andf(w) is a finite stringz, consider all infinite sequences such thatf (w) = z (i.e., the
f-preimage of the séi;\ (ZpUZx).

The preimage of); is an effectively open set (the union of an enumerable settefvals),
the preimage ok, U, is another effectively open set that is a subset of the first dio get
the contradiction, we have to prove that the preimage of tfierence (=the difference of the
preimages) does not contain random sequences. This is mlspese of the following general
statement.

Lemma. LetP be a computable measure @nand letJ C V be two effectively open sets such
thatP(V \U) =0. ThenV \ U is an effectively null set (=does not contain random segegnc

Proof of the Lemma. It is enough to consider one intehvialthe setV (and replac&J) by its
intersection with). Enumerating the intervals that form the Betve cover more and more points
in 1. By continuity the measure of the covered part convergdsgoteasure of the interva(since
V\U has zero measure). Therefore, we can wait until the rengioémt ofl has measure less
than e for any givene and find a cover of \ U by a (finite) family of intervals with small total
measure. Lemma is proved.

To finish the proof of (a) we have to show that the imddev) of a P-random sequence
cannot be an infinite but n@@-random sequence. Indeed, assume that fbal is infinite but
does not form an effectivel@-null set. The preimages of the intervals that cof/ew) coverw,
and we get an effectively open set that contairesnd has small measure (recall tRatneasure of
the preimage of an effectively open set is equaDtmeasure of the set itself). The statement (a)
is proved.

Let us now prove the statement (b) using the notion of the idefty. Assume that the se-
guencert is ML-random with respect to the measu@e This means that the deficiencies of its
prefixes are bounded (by a constant). Then we apply the follplemma that can be considered
as the “finitary version” of the statement (b):

Lemma. Letu be a string such tha(Q,) > 0. Then there exists a stringsuch thatu is a
prefix of f(v) anddp(v) < do(u) +O(1).

(The constant hidden i@(1) may depend ori, P andQ but not onu.)

Proof of the Lemma. Consider the preimage= f (%) of Z,. This is an effectively open
subset ok. By definition, theP-measure of the s&, (recall that the measufis concentrated on
infinite sequences) equal¥>,). If the deficiencydg(u) is small,Q(Z,) cannot be significantly
less than the a maximal (tree) semimeasune of

Now consider the a priori probability (on the binary tree}loé set,, i.e., the probability of
the event “the output of an universal probabilistic machih&elongs toR,”. This event can be
rephrased as follows: the output of the machfneM (that appliesf to the output ofM) starts
with u. Comparing the machineo M and the universal one, we conclude that a priori probability

142

of the set, can be only constant times bigger that the a priori probigtoli >,. The latter can be
only 2% times bigger thaiQ(X,), which is equal to thé&-measure of the s&,. Therefore we
get an inequality between two measure&pfthe a priori probabilityA andP):

A(R) do(u)

W < o2%

PRy <O
Since the seff, can be represented as the union of a (possibly non-enuregfablily of disjoint
intervals, we conclude that the similar inequality is traegome interval,, in this family:

AlZv)

< 2% . o1
P @

SinceX, C Fy, we getf(v) = u, and the inequality implies thak(v) < do(u) +O(1). Lemma is
proved.

Now we continue the proof of statement (b). ltgt= (7), be the prefix of &Q-random se-
guencer that has lengtm. The randomness criterion guarantees tQateficiencies oft; are
bounded. Then Lemma says that there exists a sequencengfssiivy, ... that have bounded
P-deficiencies such thdt(v;) is an extension df.

A standard compactness argument shows that the sequehas a subsequence that either
consists of identical strings or converges to some infiretuencew. The latter means that any
(finite) prefix of w is a prefix of all but finitely many strings in the sequence.

In the first case the sequentas the image of the finite string that appears infinitely often
in the sequence. (This can happen for @-random sequenceif this sequence, i.e., the corre-
sponding singleton, has a positive measures computable in this case.) Then we tetbe any
P-random continuation of the string(we know that it exists, sindé(Qy) > 0).

In the second case an infinite subsequence of the sequetmaverges tav. Note that in this
case:

(1) Any prefix of w is a prefix of somey;, and these strings have boundedleficiencies.
Therefore, Theorem 98 guarantees tRadeficiencies of all prefixes ob are bounded. So the
sequencev is ML-random with respect tP.

(2) As we have proved in part (), the sequeri¢e) is infinite.

(3) The sequencé(w) cannot have a prefix that is not a prefix ©f Indeed, in this case
would have a prefixiwhose image is incompatible with then the stringiis a prefix of almost all
strings in the subsequence that converges,tbut images of; have increasing common prefixes
with 1.

This contradiction finishes the proof of part ().

Give a direct proof of (b) using the definition of an effectivaull set. [Hint: For a
given £ consider the family of intervalZ, that covers the largest effectiveB:null set and has
total P-measure less thagy let F be the (closed) set of non-covered sequences. All sequences
in F are random; it is enough to show that (for asjythe complement td-image ofF can be
effectively covered by intervals with small tot@tmeasure.

Let us call a string« “special” if the family Z¢ together with thef-preimages of all strings
inconsistent withx covers the entir€. The set of special strings is enumerable (since every

143

covering ofQ has a finite subset that covesdue to compactness, we can effectively enumerate
all special strings). If a sequendéw) has a special prefix, thenw is covered byZ,, therefore

the totalQ-measure of all sequences having special prefixes is les€tlan the other hand, any
sequencea that does not have special prefixes isfaimage of a sequence k. Indeed, since for
everyk thek-bit prefix of T is not special, there exists some sequesmgce F whose image (being

an infinite sequence, sinag, € F) coincides witht in the firstk bits. Consider a convergent
subsequence of a sequenege wy, . . .; its limit w belongs td- (sinceF is a closed set), sb(w) is
infinite and coincides witlr (continuity).]

Prove a statement that can be considered as a finitary vesstbe statement (a) of the
last theorem: iy andv are binary strings such thatx f(v), then

do(u) < dp(v) +2logdp(v) +O(1).

[Hint: the set of sequences having laQaleficiency can be covered by a set of sn@aineasure;
therefore its preimages can be covered by a set of deaaleasure and have lardgedeficiency.
Note that this statement is a generalization of Theorem 98.]

Theorem 99 has some (rather surprising) applications. &keréwvo examples:

Let w be a ML-random sequence according to the Bernoulli distiobuindependent
coin tosses) where 1 has probability3l Prove that there exists a sequeinéethat is random
with respect to the uniform distribution (1 has probabilli}2) and can be obtained from by
replacing some zeros by ones. [Hint: Consider a ML-randogueaece of independent random
reals uniformly distributed in0, 1], or, better to say, the random sequence of bits placed in two-
dimensional table where (infinite) rows are considered fsiia binary fractions. Then convert
this sequence into bit sequence using threshgRl Zrheorem 99 guarantees that we get a ML-
random sequence with respect to thi8-Bernoulli distribution and that any ML-random sequence
with respect to this distribution can be obtained in this wilyen we can change threshold (21]

Consider a computable distribution on pairs of sequences @n the se@ x Q) and the
corresponding notion of ML-randomness on pairs. Show thg,in) is a random pair, theé is
a ML-random sequence with respect to the distribution that projection of the distribution on
Q x Q onto the first coordinate, and that any ML-random sequenedirst component of some
random pair.

An important special case: a distribution @nx Q is a product of two distributions, i.e., the
components of the random pair are independent. In this cat®mger claim is true (known as
van Lambalgen theorem, se&)[

[Where exactly is this is Lambalgen’s thesis? There is aflprobably related material, but is
this statement explicit somewhere?]

Let P andQ be two computable distributions dd. Consider the produd® x Q which is a
computable distribution o€ x Q (this space is isomorphic @ and the definitions of randomness
can be easily extended onto it).

Theorem 100 A pair of sequence&, n) is ML-random with respect to the distribution-PQ if
and only if the following conditions are both true:

144

(1) ¢ is ML-random with respect to P;
(2) n is ML-random relative t& (with oracleé) with respect to Q.

Speaking about relativized randomness, we mean that tbathig that (givere > 0) enumer-
ates the intervals in the covering now has accegsas an oracle (so we get more enumerable sets,
more non-random sequences and less random sequenceskeltfeovacle is crucial, since a pair
(&,&) is rarely random with respect #x P even wherg is random with respect tB.

Note also that the conditions (1) and (2) are not symmetrib véspect t& andn. Theorem
implies that the condition (1) can be replaced by a strorggirementg is random relative t@).
However, the non-symmetric version looks more naturalait be read as: “to produce a random
pair, first choose a randoéand then choose a randapknowingé (random relative t&)”.

< Let us prove first that conditions (1) and (2) are true for alcan pair(&, n).

() If the sequencé is not random and may be covered by intervals of small meatwea
the same intervals multiplied Y (along the second coordinate) become rectangles (prodficts
intervals along both coordinates) that coy&rn) and have small measure.

(2) Assuming that) is not random with oraclé. Then for eacls we can (using as an oracle)
enumerate intervals that covgrand have smalQ-measure. This enumeration process can be run
with any oracle and it will generates some intervals usinigefiamount of information about the
oracle.

Therefore, we get (for a givem> 0) a family of rectangles that is enumerable (without oracle
and has the following property: if the first coordinate is €ixe beé, the rectangles become a
family of intervals with totalQ-measure at most. This family can be easily converted into a
family of rectangles for which all vertical sections (notlprf -section) have the same property
and all the sections where this inequality was true befoeectinversion remain untouched. This
contradicts to the randomness(df, n).

Now let us prove that if the paif, n) is not random, then one of the conditions (1) and (2) is
false. Assumé&,n) is not random. Let be the union of an enumerable family of rectangles in
Q x Q of measure at most that coversé,n). For each fixed value of the first coordinatéet
Ux denote thex-section ofU, i.e., the sefy|(x,y) € U}. Consider the values of such that that
Q-measure ol is greater thar/e. We get a set oP-measure at mosf’c that is an union of an
enumerable family of intervals.

There are two possibilities: eithéris covered by an enumerable family of intervals having
total P-measure at mosy'c that we have constructed, f,n) is covered by a family/ of rectan-
gles such that th@-measure o¥/; does not excee¢/s. (Other section can have bigger measure,
this does not matter.) In the second cgses covered by & -enumerable family of intervals of
total measure at moste.

We would like to apply this argument for evegyand conclude that eithéris not random or
n is not random with oraclé. The first conclusion can be drawn if for everyhe first possibility
happens; the second one if the second possibility happemryéoys. But what should we do if
both cases happen for different values®f

The following simple trick helps. For evety= 1,2 3,... we perform this construction for
€ = 2-%_Then for eactk we get a familyV (k) of intervals (along the first coordinate) that have
total P-measure at most2 = v/2-2k. Now the two possibilities are:

145

(a) the familyV (k) coversé for infinitely manyk;

(b) for sufficiently largek the familyV (k) does not cove€.

If (&) happens, for eacK the union ofV (k) for all k > K gives us an enumerable covering of
£ that has total measure 2K, soé is not random.

If (b) happens, then for eadhgreater than somké one cané-enumerate a family of intervals
that covers) and has totaQ-measure at most#, son is not&-random. (We do not know the
value ofK, but this does not matteny

[One would like to generalize this theorem for the case ofedéent variables, but first we
need to develop theory of conditional probabilities. Ottdreto learn it.]

Let us return to the question that we have already discugspdobabilistic machine is given;
which sequences seem to be the plausible outputs of thisineafdr, better to say, for which se-
guences we agree to believe that they are generated by tbhigme3? This question is meaningful
for any machine, even for the machine that generates fingigesees with positive probability.

More formally, consider a computable probabilistic distitionP on the sef2 and computable
continuous mapping@: ~ — X. Together they generate some output distribu@dhat is the image
of P underf. Now we do not assume th&tis concentrated on infinite sequences, so we get an
lower semicomputable semimeas@evhich is not necessarily a measure.

On the other hand, we can consider the images (uhjlef sequences that are ML-random
with respect tdP. The interesting question is: Does this set depend only erdistributionQ?
(This is true for measures, when this set coincides with #teo§Q-random sequences.) The
natural conjecture: this set coincides with the set of sege® such that the rat®/Q (whereA is
the a priori probability on the binary tree) is bounded fagitlprefixes.

The authors don’t know whether this is true. However, one nudg that this conjecture implies
the following theorem (proved ir?[?)):

{gacs-redu
Theorem 101 Let a be an arbitrary sequence of zeros and ones. Then there exsgguencev

that is ML-random with respect to the uniform measure, an@@mputable mapping f%~ — %
such that fw) = a.

Using the terminology of recursion theory, this statement loe reformulated as follows: any
sequence of zeros and ones is Turing-reducible to some kidera sequence with respect to the
uniform measure. (We have already mentioned this result ad])

This theorem is an immediate corollary of the conjecturevabandeed, iff is the universal
machine, thel is (up toO(1) factor) the a priori probability on the binary tree, and tagaA/Q
is bounded everywhere. However, we cannot use our previgusreents in this case (we may find
the preimages df that have small deficiency and even find their condensatiort,daut now the
image of this condensation point can be finite.) So we neethanoonstruction.

<1 We prove a bit stronger statement and construct a computabknuous mappingd (the
same for alla) such that the imagé(R) (whereR is the set of all ML-random sequences with
respect to the uniform measures) equls

Moreover, for any effectively open sét (i.e., the union of an enumerable family of intervals)
of sufficiently small measure we will construct a computabbgppingf such thatf (Q\U) covers

146

entireQ. Applying this construction to an effectively open set ofadihmeasure that coveRwe
get the result.

We enumerate intervals h one at a time, and construttwatching the growth o). At each
step we ensure that the image of the complemebt (hore precisely, the current approximation
toU) is the entireQ.

Initially the approximation tdJ is empty, so this goal is trivial: we may létbe the identity
mapping. However, we should have in mind that later somespEr© become covered by
and therefore should be replaced by something else, so vieto@eserve some space for future
use. This reserve is easy to provide since the total measwei®small, so most of the space
will remain usable. However, we should be careful: it is nebwgh that at every stage of the
construction a given sequencehas a preimage outsidé; there must be a sequenaethat is
outsideU at all steps and is (ultimately) mappedaoWe achieve this goal, since the sequence of
preimages has a limit (see below).

More specifically we choose some positive intedetks, ko, ... and split the sequences
into blocks of length&g, ki, ko, In other terms, we definEon the tree whose root ha¥2ons,
each of these sons ha¥% 2ons etc. Vertices of these tree are strings of lengtke K + ki1, ko +
k1 + ko etc. Formally speaking, the algorithm that implements thegformationf will read input
blockwise, not bit by bit.

We may assume without loss of generality that the intervalsebtU are also block-aligned
(represent vertices in the subtred)is an union of intervaly where eaclx has lengttkg+. . . +k;
for somei. (This can be achieved by splitting every interval into derahtervals; the total length
remains unchanged.)

In this tree (with large branching factor) we select a biraurigtree that will be mapped onto a
standard binary subtree Hy To do this, we select two amonéZons of the rooty andX; (say,
the first two in the lexicographic ordering) and map them dhtnd 1 respectively. This means
that for any sequenc® that starts withXp (resp.X;) the first bit of f (w) equals 0 (resp. 1). For
other stringsw (whose first block is neitheXp nor X;) the valuef (w) is not yet defined. Then for
each stringXg and X; we consider two its sons (say, the first two in the lexicogi@aphdering).
We get four strings of lengtky + k1 that we denot&g, Xo1, X10, X11; they are mapped onto strings
00, 01, 10 and 11 respectively, and so on. Formally, for eawdry stringu we consider a string
Xu that consists off(u) blocks and is mapped onto If u is a prefix ofv, thenX, is a prefix ofXy;
if uis incompatible withv, thenX, is incompatible withX,.

In this way we get a computable mapping that maps the bindresi of the large tree onto
entireQ. If U is empty, this is the end of construction. If not, we have sxtevhen a new interval
in U covers some branches of our binary subtree making them bieusghe reaction is that we
reroute our subtree in the (still) free zone and extérah this zone, so the image of the current
subtree is still entiré.

To describe this construction in more details, we need todhice a notion of a “bad” vertex
(i.e., a bad string of length &g, ko + ki1, etc.) This notion changes during the process: the more
intervals ofU appear, the more bad vertices they create. A verigdbad in either of two cases:

¢ X belongs to some blacklisted interval (i.e., for one of msQ, in U the stringzis a prefix
of X);

147

e all the sons ok except (may be) one are bad.

As usual, this inductive definition says that we considemntimémal set of vertices that satisfies
these two properties. This definition guarantees that aogdg(=not bad) vertex has at least two
good sons. This property allows us to embed full binary tnethé subtree of good vertices.

Note that the sons of a bad vertices are also bad accordihgstdefinition.

Let us compute what minimal part 6f needs to be ity to make the tree root a bad vertex.
The root is bad if all its sons except one are bad. So we neettadin

(%)

of bad vertices on the first level (the sons of the root). Totlgat many bad vertices, we need at

least fraction L L
<1‘ z—ko) | (1‘ %)

of bad vertices at the second level. At some level all the leatices are insid¥ -intervals (since
at any time we have a finitely many intervalsur). Therefore we get the following statemertt:
the total measure of blacklisted intervals is less than timite product

A (A (o d)

that the root remains good at any stage of the construction.

Now the choice ok; is clear: the product above should be positive which is exdeit to the
convergence of the serigsZ*ki. For example, we may lé&¢ = 2logi (fori > 2).

The set of bad vertices increases as time increases. If & doedamage the current binary
subtree, then we leave the subtree unchanged. But if it dog@same branch of the subtree
becomes bad, then we substitute this bad vertex by its gamtidor(which exists since the father
is good), and then grow the subtree from this good brothemBtby speaking, we modify the tree
starting from the root replacing bad vertices by their goasthers and choosing good sons for
new vertices.

While changing the tree we also extend the mappindeaving it unchanged where it was
already defined). The process is effective so it is easy tokctimat f is computable.

It remains to prove that (fof constructed in this way) every sequemce Q has anf-preimage
outsideU. By definition, at any stageof the construction there existspreimagew that is not
covered by the already discovered parthof Moreover, ag increases, the points converge to
some limit sequence (we prove the stabilization property at levddy induction oveli; note that
the number of possible changes on levislbounded by). It remains to verify thato does not
belong toU and thatf (w) = a.

By way of contradiction, assume thatis in U. Thenw belongs to some interval that is
discovered on some step. After that the sequeng@® not belong to this interval, hencgdoes
not belong either.

Finally, let us verify thatf (w) = a. Letzbe an arbitrary finite prefix oft; we have to show
that f (w) starts withz. Letk be the length of. At every stagé there exists &-block string in the

148

binary subtree that is mappedzoWhent increases, this string ultimately achieves its final value
and thereforev has a prefix that guarantees thato) starts withz. >

Using this argument, prove that for any sequemdiere exists a ML-random sequernwoe
such thata is Turing-reducible tow and this reduction needs onlynBgn-bit prefix of w to
generata-bit prefix of a.

[It seems that this bound can be improved (according to Leyrene of the possibilities is
to split a into blocks, too — but it is not clear whether this gives thetdenown result in this
direction.]

One may speculate about the “meaning” of this theorem amastl For any sequeneewe can
a posterioriexplain how it could appear during an experiment: for a ramdethis is the philo-
sophical assumption, and the transformatiae computable and therefore can be implemented.

149

6 General scheme for complexities

6.1 Decision complexity

We started with plain Kolmogorov complexikS and then considered also prefix complexXty
and monotone complexitgM . All three complexities were defined in terms of shortestdps

{class}

{class-dec:

tions, but the notion of description was different in eackecaFor plain complexity the descrip-

tion modes (decompressors) were just computable functionprefix complexity the description
modes were computable continuous mappings of iype N |, for monotone complexity the de-
scription modes were computable continuous mappings efIyp 2.

To be uniform, we may use computable continuous mappinggpE# N, — N, for plain

complexity. Recall that topology on the ¢t (and the set itself) was introduced in Section 4.4.3

(p- 79). It is easy to see that there are two possibilitiesaafoontinuous mappin: N, — N :
either f (L) is some natural number (and noj, and the mapping is a constant onefot) = L

and the values (n) for naturaln can be arbitrary. The mapping of the second type are in aalatur

one-to-one correspondence with partial functions of tipe> N if we use L as a replacement
for an undefined value. As before, computability is definedhia following natural way: the
mappingf: N; — N, is computabldf the set of pairs(x,y) such thaty < f(x) is enumerable.

All the constant mappings are computable, and for non-eomstnes computability means that

corresponding partial function is computable. (Recall gngartial function of typeN — N is

computable if and only if its graph is enumerable.)

So using this “new” definition of a description mode (decoegsior) as a computable con-
tinuous mapping of typ®&, — N, we get the same plain complexity. Indeed, we add constant

functions that map everything, including the eleménto some constamt but they do not change
complexity more than byD(1). (A pedantic reader will stress that the function that mapsye
thing toc should not be identified with the function that correspords total functiolN — N that
maps everything ta since the latter one still mapsto 1.)

All this formalism, however, is used only as a motivationtfog following scheme that explains
the origin of the complexities considered (see Figure 13gHof the three complexities is obtained

N, >
N, | KS ?
> KP KM

Figure 13:KS, KP andKP revisited.

{class-1}

when we consider computable continuous mappings of theigéea space into the object space

as description modes (decompressors).

This table has an empty cell; for this cell the descriptiorde®are computable continuous

mappings of typeN, — 2. Let us consider the corresponding definition in more detave call

150

this complexitydecision complexitgnd denote it bKR (the notatiorKD were used too, but now
KD is used for the so-called “distinguishing complexity” so ugeKR for decision complexity to
avoid confusion).

Let us define decision complexity using some class of mashi@ensider a machine that gets
a binary string as an input (and some end-marker is writtethertape, so the machine knows
where the input ends) and prints bits on the output tape (gramb). The machine is not obliged
to stop, so for any input stringwe obtain a finite or infinite bit sequence as machine’s outfhiut
the output sequence is infinite, it obviously is computgble.

Any machine of the described type defines a mapping of thefsdt lninary strings (that can
be identified with the natural numbersin) into a setx of all finite and infinite sequences.
is @ machine of this type, the complexkyrm (x) of a stringx (with respect to decompressd) is
defined as the minimal length of a strigguch thatM(y) (the output sequence for inpyit starts
with x.

Check that there exists an optimal decompressan the described class of decompres-
sors (i.e., the decompresddrthat leads to smalle#tR) up toO(1) additive term).

Give the definition of computable continuous mappibgs— 2. What is the difference
between this definition and the class of the machines destabove and why it is not important
for the definition of complexity? [Hint: a continuous mapgican mapl into some non-empty
string.]

Therefore we can fill the empty cell in our table (Figure 14):

Ny >

N, | KS KR

> KP KM

Figure 14: Four complexities. {class-2}

The following theorem lists the main properties of the decicomplexity:

{decision-
Theorem 102 (a) If a string x is a prefix of a string y, then KR) < KR(y).

(b) The complexity of prefixes of a sequenze Q (which is a monotone function of the prefix
length is boundedby a constarjtif and only if the sequenc® is computable(The limit of the
complexity of prefixes may be called the decision complekitye sequence. This complexity is
finite for computable sequences and infinite for non-conipetanes).

(c) KR(x) < KS(x) +O(1) for any string Xx.

(d) KR(x) < KM (x) +O(1) for any string x.

(e) KM (x) < KR(x) + O(logKR(x)) for any string x.

(f) KS(x|I(x)) < KR(x) +O(1) for any string x.

151

(9) If f: £ — X is a computable continuous mapping, then KRx)) < KR(x) + O(1) (the
constant in @1) may depend on f but not of.x

(h) If f: £ — N is a computable continuous mapping, then(K&)) < KR(x)) +O(1) (the
constant in @1) may depend on f but not of.x

(i) If f: N, — X is a computable continuous mapping, than (Rx)) < KS(x) + O(1) (the
constant in @1) may depend on f but not of.x

(1) Any prefix-free set of stringaone is a prefix of another opthat have decision complexity
less than n, has cardinality less thah

(k) The function KR is upper semicomputaf@aumerable from aboye

(1) The function KR is the smalle@tp to a constartfunction satisfying last two conditions: if
some function K is upper semicomputable and for every n titeredity of every prefix-free set of
strings x such that Kx) < n for all elements of this set, is(&"), then KR(X) < K(x) +O(1).

(m) KR (x) < KA(x) 4+ O(1) for all strings x.

< (a) An immediate corollary of the definition (description afstring is at the same time
description of any its prefix).

(b) Assume that sequenceis computable. Consider the machine that ignores its inpdt a
prints w bit by bit, as a decompressor (description mode). All prafixdw have zero complexity
with respect to this decompressor (since the empty strsxggeir description), and therefore they
haveO(1) complexity (with respect to optimal decompressor), On tieohand, if the complexi-
ties of all prefixes otv are bounded, some string has to be a description of infinii@lyy prefixes,
thereforew is computable.

(c) Any partial computable function whose arguments andieslare binary strings can be
considered a&R-decompressor (don’t output anything before the companas finished, then
print the result bit by bit).

(d) Any continuous computable mappiig— 2 can be considered &R -decompressor (after
restriction on finite strings; we may say that we type the trgttng on the keyboard of a robust
machine just after the computation starts and do not touzkelgboard anymore).

(e) LetR: N — Z be an optimal decompressor used in the definition of decisoonplexity.
Consider a computable mappify = — = defined as followsR(Xu) = R(x), wherex'is a self-
delimiting encoding ok (say, thexitself prepended by the binary encodingd ©f) with duplicated
bits and the separator 01) ands any string (needed to ensure the monotonicity).

(f) Let againR: N — X be an optimaKR-decompressor. Define the conditional decompressor
S by letting S(y,n) be the firstn bits of the sequencB(y) (if n exceeds the length &(y), then
S(y,n) is undefined).

(9) Consider a newR-decompressor that is a composition of the optiKBlI-decompressor
and the mappind and compare this new decompressor with the optimal one.

(h) Consider the composition of an optiméR -decompressor anflas aKS-decompressor.

(i) Consider the composition of an optim&b6-decompressor anflas anKR-decompressor.

()) Two inconsistent strings cannot share a descriptiarcésin this case they would be prefixes
of some sequence, and the shorter string would be a prefixedbtiger one). If all elements of a
prefix-free set of strings have complexity less tinathen their descriptions are different strings of
length less than, and there exist less thafl &uch strings.

152

(k) Applying in parallel the optimal description mode to sttings, we get improving upper
bounds folKR (finding new descriptions from time to time) that convergéhteKR.

() This is a first interesting claim in this theorem (up to nawe had only simple variation on
known themes).

Let K be a function that satisfies (i) and (iii). Aiding a constanKt we may assume without
loss of generality that there are at moSigairwise inconsistent stringssuch thak (x) < n.

We construct a description mode that gives every stxisgch that (x) < n a description of
length exactlyn. This is done independently (and in parallel) for eaciNamely, we watch the
decreasing upper bounds #rand fill the (increasing) list of stringssuch tha (x) < n. Consider
a subtree of a full binary tree that is formed by the stringbhelist and all their prefixes. Thisis a
growing subtree that has at any time at mddgaves. (Indeed, the leaves are inconsistent stxings
such thaK(x) < n.) Let us attach a label to each leaf; this label is a stringpgthn. When the
subtree grows by adding some new string, this string eitkiemels one of the leaves (no more a
leaf) or creates a new branch (being attached to some ihtevda). In the first case the new string
is a leaf, and this leaf keeps the label of the supersededotiee second case we provide a new
label for the new leaf (which is possible since we have leas ffi leaves).

Let us fix a label and look what happens with leaves carryinglébel. Initially the label is
unused. It is possible that the label remains unused fofexeedo not need that many labels), but
if it is not the case, the label is attached to some leaf and th@ves up the tree (next position is
a continuation of the previous one). So this label marks soraech of the tree (finite or infinite
sequence of zeros and ones). In this way we get a functiomtbaps strings of length (i.e.,
labels) toZ (the strings that are not labels are mapped tthe empty sequence).

Combining these mappings for & we get aKR-description mode that provides complexity
at mostn for all stringsx such thaK (x) < n, just as we claimed.

(m) If x; are pairwise inconsistent binary strings, theKA%) < 1 (since 2 XAX) equals a
priori probability of the seky and these sets are disjoint). Therefore we have at mostridgs
such thaKA (x) < nand may refer to the previous statemest.

Prove thaKR (x) can be defined as follows: for any computable functaf two argu-
ments (the first is a binary string, the second is a naturalbaunvalues off are zeros and ones)
let KRg(x) for a stringx = Xg.. .. X1 @s the minimal length of the stringsuch thatS(y, i) = x; for
alli=0,1,...,n—1. Then we choose an optimal function among all function of thass, and it
defines decision complexity.

Show that the decision complexity of a strirgquals (up td(1)) the minimal value of
KS(p) for all programsp (in a given programming language, s8¥scal) that ignore their input
and output the string or any its continuation.

[If we replace her&S by KP, we get in the similar way an upper bound for monotone com-
plexity. Will it be tight? Probably not, but a specific examjd needed.]

6.2 Comparing complexities
{classcomp
There are four complexities in our table (two options forgpace of objects are combined with two

options for the space of descriptions). The following deagr(Figure 15) shows the inequalities

153

between them (up t®(1) additive term):

KP
KS KM
KR
Figure 15: Inequalities between complexities. {class-3}

Some people would like to avoid references to topologicéibng like continuous mappings,
though these notions are quite relevant here as the thealystfact data types (Dana Scott lattices
and related notion ofg-spaces in the sense of Ershov), sele These reader will appreciate the
following simplified construction that is still enough tofohe the four complexities in the table.

Consider the sef = B* of all binary strings and two binary relations=y means that strings
x andy are equalx <y means thak andy are consistent (one is a prefix of the other one). d.et
andf be one of these two relations (so there are four combinat@rike paira, 3).

A set SC = x = is called a-B-regular if the following condition is true for any
stringsxy, X2, Y1, Yo:

(X1,¥1) € S, (XY2) € Sx10X%2 = Y18Y>

For example=-=-regular binary relations are just graphs of functions.

(2) Show that every<-=-regular relation determines a continuous mapping of typ&putable
2 — NL-

(b) Show that every<-=-regular relation determines a continuous mapping of iype .

(c) Show that every=-=<-regular relation determines a continuous mapping of fype— 2.

Now by a-f-description mod&ve mean an enumerabde 3-regular binary relation o& x =.
For any description mod8we define the complexity functioks: let Ks(x) be the minimal length
of a description ok. i.e., the minimal value df(y) for all y such thatly,x) € S.

Theorem 103 For any of the four combinations, 3 € {=,=<} there exists an optimad-3-
description modéthat provides minimal complexity function up t¢X)) and the corresponding
complexity is one of the four known complexities KB,KM ,KR .

< In all four cases enumerable-B-regular relations correspond to computable continuous
mapping of the corresponding sets (see Problem 143), thes gihe same complexity function,
and vice versa>

So we can provide new labels for rows and columns of our tdbfgpife 16):

Show how one can define for pairs of strings:
(a) monotone complexity (using computable continuous nmgg® — > x > as decompres-
sors; such mappings are in one-to-one correspondence awtqs computable mappings— 2);

154

Figure 16:a-B-complexities {class-4}

(b) a priori probability (using probabilistic machines thave two output tapes where bits are

printed sequentially);
(c) decision complexity (using computable continuous niaggN | x 2 x).

[There is almost no information about these notions: fomegxea, is it true thakM (x,y) <
1) +1(y)?]
Another classification scheme that goes backtpdefines each version of complexity as the

smallest upper semicomputable function in some class (wftfons that satisfy some restrictions).
We have already considered these restrictions, so we jllsttthe results obtained and give the

conditions for each complexity version:

e the number of stringssuch thak (x) < nis O(2") (plain complexityKS, Theorem 8, p. 21);
e the serieszXZ*K(X) converges (prefix complexitgP, Theorem 56, p. 89);

e any prefix-free set of stringssuch thak(x) < n hasO(2") elements (decision complexity
KR, Theorem 102, p. 152);

® Syex 2-K(®¥ < 1 for any prefix-free seX of binary strings (a priori complexititA, Theo-
rem 73, p. 116).

These scheme gives the same four complexities with one BaioException: we get a priori
complexity instead of monotone complexity. (There is ndyem with prefix complexity, since it
coincides with the negative logarithm of the largest lonesngomputable semimeasure i§t)

Combining these two quadrilaterals, we get a pentagonu(Eig7):

KP
KM
KS
KA
KR
Figure 17:

155

{class-5}

Let us recall basic results that relate complexities in pleistagon. First, all five complexities
differ at most byO(logn) for strings of lengtm. Indeed,KP (x) < KS(x) + O(logKS(x)) (The-
orem 59, p. 92). On the other harkiS (x) < KS(x|I (X)) + KS(l(x)) < KR(x) + O(logn). So the
two most distant complexities in the pentagon (the upperamukethe lower one) differ at most by
O(logn) for strings of lengtm.

A more complicated picture arises if we want to bound thesddihce between two complexities
in terms of the complexities itself, not the length (notettbamplexity can be much less than
length). This is indeed possible for two lines that go in tbetim-east directions:

KP (x) < KS(x) + O(logKS(x))

(see Theorem 59) and
KM (x) < KR(X) + O(logKR (X))

(Theorem 102). (The similar inequality witkA instead ofKM follows, as we have already
mentioned in Problem 110, p. 123.) For “north-west” lines $ituation is different: IndeedKM

and KR are bounded for prefixes of a computable sequence (e.g.trfings that contain only
zeros) whileKS andKP are not (the string oh zeros has the same complexity as the integer
and can be of order lagfor somen). n). We have already discussed this question in Theorem 79
and noted that the difference betwa€R andKM can be of order log in both directions (for
infinitely manyn and for somex of lengthn). We also noted (without proof) Gacs theorem that
says that the difference betwekM andKA is not bounded (Theorem 80).

There are rather subtle results about relations betweésralit complexities. For example,
none of the results above guarantees that the differenaeebeKP (x) andKS(x) tends to infinity
asx goes to infinity (we consider hexeas a natural number). This is indeed true, as the following
theorem shows; this theorem was proved in R. Solovay maipaseritten in 1970ies and not
published (though circulated among experts).

{solovay-b
Theorem 104

KS(x) < KP (x) —KP (KP (x)) + KP (KP (KP (x))) +O(1)

< As we have seen (Theorem 58, p. 91), the logarithm of the nuwibgringsx such that
KP (x) < n does not exceed— KP (n) 4+ for somec and for alln. We can enumerated all these
strings (givenn), so each of them can be reconstructed if we knmoand the ordinal number
of the string in the enumeration. This ordinal number can bé&en as a sequence of exactly
n— KP (n) + ¢ bits (we add left zeros when needed). So when this ordinabeuns given, we
know alreadyh— KP (n) (thecis a constant, so we ignore it), and to restovee need only to know
KP (n) that can be described by a self-delimiting code of legfKP (n)). So we concatenate
this self-delimiting code and the ordinal numbemxah the enumeration, and in this way we get
(for anyx such thaKP (x) < n) the description ok that has lengtiKP (KP (n)) +n—KP (n) +c.
ThereforeKS(x) < n—KP (n) +KP (KP (n)) +O(1). Theorem is proved>

[Other results of Solovay should be added.

Any results abouKM vs. KA?

156

Muchnik result about two sequencgsandy; such thaKS(x;) — KS(y;) — +o butKP (%) —
KP (y;) — —co.

Miller KS vsKP here?

Monotone complexity of pairs: is it true thEM (x,y) < KM (x) + KM (y)?

A priori complexity for pairs differs from monotone compigs]

6.3 Conditional complexities

{classcond
We have already considered several versions of conditiomrablexity (of one string relative to
the other one). In Section 2.2 we have defined the conditimmablexityKS(x|y) as the minimal
length of a stringp that describeg wheny is given, i.e., a stringp such thatS(p,y) = x. HereSis
the conditional decompressor that is optimal in the clasdl @lartial computable binary functions.

In Section 4.7 we defined the conditional prefix compleX® (x]y). In this definition we
requiredS to be prefix-stablavith respect to p this means that i§(p.y) = x for somep, then
S(p',y) = x for any stringp’ that has prefixp.

Finally, in the proof of Theorem 85 we mentioned the condd@iiomonotone complexity
KM (x|y). For its definition a description mode (decompressor) israpdable family of com-
putable continuous mappin@,: ¥ — > (indexed by string/). The computability of this family
means that the set of triplgg u,v) such that < Dy(u) is enumerable.

The conditional decision complexity can be defined in a similay.

In these four definition we consider conditions as termish&iestrings, and the behavior of the
decompressor is unrelated for different conditions: if wew thatp is a description ok relative
toy, this gives us no information about the values of decomprdss any othel.

In other terms, a decompressor (say, for the conditiondixpcemplexity) can be considered
as a computable mapping

D:>xN—-Nj;

in the pair(p,y) € £ x N the stringp is considered as a description (edds monotone with respect
to p) andy is a condition, and no monotonicity is required.

If we change this and consider conditions also as verticegafy tree requiring monotonicity
over conditions, we get four other versions of conditiormahplexity. These version are not widely
used ([] is one of the few exceptions).

In this way we get 8 versions of conditional complexities @ach of three components, i.e.,
conditions, descriptions and objects, we have two po#s#s). The most non-technical defini-
tion of these complexities goes as follows. leet,y € {=, <} (see Section 6.2). Ata, 3)|y-
decompressor (description mode) is an enumerabl8aktriples (p, x,y), such that

(PL,X1,Y1) €S, (P2,X2,¥2) €S, p1aP2, Y1Vy2 = X1B%2

The we defindg(x]y) as the minimal length of a stringsuch that p,x,y) € S.

Theorem 105 In all eight cases there exists an optimal decompressor Sdivas the smallest
complexity K (up to Q(1), among all the decompressors of that class

157

Give the detailed proof of this theorem (it follows the sardieesne as in the case of plain
or prefix conditional complexity).

In each of eight classes let us fix some optirf@l 8)|y-decompressor and denote the cor-
responding complexity b4)y~ In this notationKP (xly) (as defined earlier) i - and
KS(x|y) is K(:7:)|:.

Show that by replacing: by =< in the place ofy we may only increase the complexity.
[Hint: This replacements adds more restrictions for a dgmessor, so we get less decompressors.
For the same reasons the plain complexity does not excegutdfie one.]

[Problem (probably not very difficult): show that this inase is essential (greater th@fl))
and investigate related questions.]

Let us give an example of a statement that involves conditioomplexities as they are defined
above:

Prove that

KS(X) < K= =)= (Xly) + KR(y) + O(logKR(y)).

Let us now describe one more approach to the definition of dmelidonal complexity that
goes bask to Kolmogorov's interpretation of logical cortives as operations on problems. The
conditional complexity ok wheny is known can be described as the complexity of the problem:
“transformy into X”; moreover, this problem can be considered as a set of attiums that majy
into x (any function that mapgto x is a “solution” of this problem).

More formally, let us consider the spaewhose elements are all partial functions whose
arguments and values are natural numbers. Let us introdadeltowing partial order on this set:
f1 < foif fp is an extension ofy (i.e., f1(y) = x implies f2(y) = x). By finite element®f F we
mean functions with finite domain. For each finite elemkertF consider its cone, i.e., the set of
all its extensiondy|f < y} (both finite and infinite). We call a continuous mappihgN,; — F
computabldf the set of pairga, f) such thane N, f is a finite element oF andf < T(a), is
enumerable. Continuous computable mappiNgs— F are used decompressors for function. For
any functionf € F we define the complexity of (with respect to decompressbras the minimal
length of the string (or, better, the logarithm of the numberecall that we identify strings with
natural numbersy such thatf < T(a).

Prove that there exists an optimal decompressor (in thseemd that the complexity of
the functiony — x (whose domain is a singletdiy} and whose value i8) is KS(x|y) + O(1).

We can give a similar interpretation of all eight conditibnamplexities defined above: for
every two space¥, X € {N,,%} we define the space of functioff¥ — X) and then consider
computable mappings of the space of descript®rs{N ,>} into the function spacéy — X).
The definition of the function space is given in the spirit b8 domain theory (or the theory of
fo-spaces in the sense of Ershov, sgdqr details).

A slightly different interpretation of (plain) conditiohaomplexity as the complexity of the
problem “transforny to x” is considered in Chapté¥?; it does not use the computability in function
spaces.

158

The related notion of complexity for functions was consadeby Schnorf?, ?]. Recall that a
numberingan important notion on recursion theory) is a mappirtgat maps each natural number
ninto some (partial) functiow, whose arguments and values are natural numbers. A numbering
v is computableif a (partial) function of two arguments

(n,X) — vn(X)

is computable. A numberingis called aGodelnumbering if for any other computable numbering

p there exists a computable function tmatlucesy to v in the following sensen = vy, for

everyn. (In particular, the range of a Godel numbering is the setllafomputable functions.)
Following Schnorr, we make this condition stronger and negadditionally thah(n) = O(n)

(in other terms, the length of the strihgn) exceeds the length of strimgat most by a constant, if

we identify the natural number with binary strings). If s@ctlunctionh exists for every computable

numberingu, the numbering is calledoptimal

Theorem 106 There are optimal numberings.

< Consider any reasonable programming language for binargtiftns and leuv be av-
number of the function obtained by fixing first argument equal in the function that has
programu. (Hereu is some self-delimiting encoding af, i.e., u with doubled bits and 01 ap-
pended.y>

Schnorr P, ?] has shown that any two optimal numberingsandv, can be translated into each
other by a computable permutatienthat changes the size at most®y1) (in both directions):
this means tha; (n) = v,(7(n)) for everyn and thatrr(n) = O(n) andrr1(n) = O(n).

6.4 Complexities and oracles
{classlim}
Relativizationis a well known method in computability theory. We take soraérition or state-

ment that involves the class of computable function, anthogpcomputable functions by functions
that are computable with some oracle (computadligtive tothis oracle). Usually the oracle is a
total functiona whose arguments and values are natural numbers and/oy Istniags, for exam-
ple, a characteristic function of some getAn algorithm is allowed to call an “external procedure”
that computes the valuwe(n) for a given value of the parameterIf a is a characteristic function

of a setA, this means that we may ask whether samigelongs toA or not. If the functiona

is not computable, this permission to askoracle increases our capabilities and we get a class
of a-computabldunctions that contains all computable functions but alsme non-computable
ones (e.g.q).

Then we can develop the general theory of algorithms as asubtlefine, sagr-enumerable
sets, ora-computable real numbers, or (closer to our subjeepwer-semicomputable semimea-
sures etc. And practically all the theorems of general thebalgorithms (and their proof) remain
valid, we need just to addd~” for all the notions. This procedure is called “relativizan”.

In particular, for a given seA we may define the notion dA-relativized Kolmogorov com-
plexity allowing decompressors to use oradleThis can be done for plain, prefix and all other

159

versions of complexity that we have considered (unconaii@r conditional). The use of oracle
is shown by a superscript, so, e §R”(x) denotes prefix complexity relativized by oradle

In fact we can prove a bit more: instead of defining complefdtya given oracléd up toO(1)
additive term (by proving the existence of an optimallecompressor) we may define (with the
same precision) the function of two arguments:

(A, X) — KA(X)

(hereK is one of the complexity versions, saP or KM).

Show that this indeed can be done and that the resulting @xitipk coincide with the
limits of conditional complexities defined in Section 6.3:

KPA(X) = K= —(x) = lim K= —j) (X/An),
whereA, is the prefix of lengtim of the characteristic sequence of theAefThe similar statements
are true for other complexity versions.)

Note that relativized complexity does not exceed the ndativized one (up tdO(1)), since
the algorithm with an oracle is not obliged to use it in any wsy all decompressors are
decompressors.

For some oracle8 and some stringsthe A-complexity ofx can be much smaller than oracle-
free complexity. For example, I&tbe the universal enumerable set This set is usually dengted b
0'. In other words(Y-oracle is an oracle for the halting problem. We may send aogram (with
its input) to this oracle and it will tell us whether the pragr terminates at this input.

Using this oracle, we can find for every strirgts shortest description (in the standard sense,
without oracle) since the oracle tell us which computati@nsinate. Therefore, the functioKS
is 0'-computable (the same is true 6P, conditional complexities etc.), and the list of all stréng
of complexity less than (that hasn+ O(1) complexity without the oracle), as well as the numbers
B(n) andBB(n) (see Section 1.2) now ha@acomplexity onlyO(logn).

On the other hand, most strings of lengtihave0’-complexityn — O(1), and therefore their
0’-complexity is close to their non-relativized complexiang to their length).

6.4.1 Complexity with large numbers as conditions

Let us define a new type of conditional complexity, i.e., tbeplexity of a stringx relative to the
setA. Informally speaking, we want to measure the complexityhef tollowing task “obtairnx
from any element of the sé{'.

This complexity has several equivalent (upga@l) definitions).

Here is one of them. Fix some reasonable programming lamgu&grmally speaking, “rea-
sonable” means that the numbering corresponding to thigikzge is a Godel numbering, i.e., there
exists a translation algorithm from any other programmarguage, seé] for the details.) Now
let us define the conditional complexity of an obj&awith condition A and the minimal (plain)
Kolmogorov complexity of a program that mapseryelement ofA into x. (A generalization of
this definition is considered in Chapte?.)

160

The existence of a translation algorithm guarantees tignttion is well-defined, i.e., that the
complexity defined in this way does not depend on the choieegrbgramming language (Godel
numbering).

One should not mix this complexity with a completely diffeternotion: a conditional com-
plexity of x with condition A given as a list of its elements. In our case we get not the fist o
all elements ofA, but only one of them, and should be prepared to deal anthhelement ofA.
To stress this distinction, we use the notatk®(x||/A) for the new complexity (whileKS(x|A)
denotes the condition complexity »if a finite setA is given as a list of its elements).

A different (but equivalent) definition dS(x||A) can be given as follows. L& (decompres-
sor) be a computable partial function of two arguments.xe¢ a binary string and l&t be a set
of binary strings. We definKSp (x||A) as the minimal length of a string such thaD(p,y) = x
for everyy € A.

Prove that there exists a optimal decompressor in this @aasgive the minimal func- 111 4¢1ve-¢
tion KSp(-||-) up toO(1) additive term). Prove thaSp for optimalD coincides (up t@(1)-term)
to the complexity defined above.

For a singletomA = {a} the complexitieKS(x|A) and KS(x||A) coincide with the standard
conditional complexity)KS(x|a) up toO(1)-term (see Problem 23).

Now letA be the set of all integers greater than some (presumabdyd rarmben. (As usually,
we identify natural numbers with binary strings.) The coexly of a stringx with respect to this
set we denote b¥XS(x|| > n). Obviously, thus complexity does not exca€fi(x) and is a non-
increasing function ofi (and, more generallKS(x||A) can only decrease A becomes smaller; it
become®(1) for the empty sef). So there exists some limit as— co.
{large-numt
Theorem 107
lim KS(x|| > n) = KSY (x) +0(1).
< Assume that the limit equaks Then here exists a prograpof complexityk that maps all
sufficiently large numbers tg. If an oracleQ’ is available, this program can be considered as a
0’-description ofx. Indeed, given this program, we search fbandy such thatp does not map
anyn > N into an object that differs frog. The emphasized property can be checked by using
0’-oracle since it has an enumerable negation. And our assumguarantees that equalsx.
Therefore,
KS? (x) < lim KS(x|| > n) +O(1).

On the other hand, lgtbe a description of with respect to & optimal decompressor and let
k be the length of.. Consider a following program that has additional inplutmakeN steps of
the enumeration of the universal €6and then use the set of enumerated elements as a oracle for
decompression of. This program can be constructed effectively giyetherefore its complexity
does not exceelS(y) +O(1) < I(y) + O(1) = k+ O(1). On the other hand, N is large enough,
this program generatesince only finite number of oracle calls are performed dytire decom-
pression ofy, for all sufficiently largeN these questions get correct answers even if the oracle is
replaced by itdN-approximation) >

161

It turns out that a similar question is true if we repldc®(x|| > n) by sup,.,KS(x|m). Note

that

SupKS(x|m) < KS(x|| = n),

m=n
since the optimal program in the right-hand side can be usedrfym in the left-hand side. This
is easy; the surprising result is that both sides have the $iamt asn — co (up toO(1) term):

{large-numt
Theorem 108
limsupKS (x|n) = KS% (x) + O(1).

Nn—oo

<1 We have to prove that if (for some strizgand integek)
KS(x|n) < k for any sufficiently largen,

then 0'-complexity ofx does not exceedl+ O(1). The difficulty here is that here (unlike the
previous theorem) the program of length less tkaan depend on, and none of them works for
all sufficiently largen.

Note that there is less tharf &tringsx with this property (for a giverk). Indeed, if we have
more of them, then for sufficiently largewe run out of programs of length less thian

It would be enough to prove that the setofthat have this property is @-enumerable set
whose enumeration effectively dependskaim other terms, it would be enough to prove that the
functionx — limsupKS(x|n) is 0'-enumerable from above). However, the natural descripifon
this set,

AN (Vn > N) [KS(x|n) < K],

shows only that it is &3-set (the condition in brackets is enumerable and two gii@rgtiprecede
it), so we choose an another approach.

Note that we do not really need that this se®/inumerable. It is enough to show that it is a
subset of ai/-enumerable set that contains less th&el2ments for a givek. This can be done
as follows.

Consider the two-dimensional enumerable set of pgirs) such thatKS(x|n) < k. This set
(for anyK) is “thin” in the following sense: all vertical sections dii$ set (for fixedh) contain less
than ¥ elements.

Consider some poinfn, x). Let us try to add a horizontal ray that goes on the right frboia t
point, to our set (i.e., add all paifsn,x) for all m > n). The set may remain thin or not, and this
two cases can be distinguished byGamracle. Indeed, the negation of being thin is an enumerable
property (there exists a section that has at lekslifferent elements including the added one).

Let us perform this attempts (to add the horizontal ray isigufrom some paiKn,x)) sequen-
tially for all pairs in some order. (If some ray is added sstelly, then its elements are taken into
account for all subsequent attempts.) This proce8sé®mputable and therefore the ordinates of
all added rays form &-enumerable set.

This set has less tharf 2lements (since we add rays only if the resulting set istiitl) and
contains every such that limsup(x|n) < k. Indeed, for such am there is some ray that lies
entirely is the initial set, and this ray can be added at ang ti>

162

(This proof is a simplified version of the proof given iA.)
We can also obtain the results for prefix complexity that arelar to Theorem 107 and 108.
However, the definition of a conditional prefix complexitytivrespect to a set is quite subtle, so
we postpone its discussion and start with the second theorem
{large-numt
Theorem 109
limsupKP (x|n) = KP Y (x) + O(1)

N—oo

<1 Using a priory probabilities (conditional and uncondi@dyn we rewrite the statement as
follows:
liminf m(x|n) = md(x)

N—o0

(the equality is understood up to a bounded factor in botkctions).

Let us show first that the left-hand side does not exceedghé-hand side (or, more precisely,
exceeds it at most by @(1) factor). Indeed, let us consider &koracle probabilistic machine
whose output has distribution®. Then for any integem we may run this machine with a changed
oracle: instead of the entire oracle we use its approximatiained aften steps. This, of course,
changes the output distribution, however, the liminf of grebabilities to get somg usingn-
approximation to the oracle (as— o) is greater than or equal to the probability to getith the
entire oracle. Indeed, ¥ appears in & -computation for some combination of random bits, then
this computation depends only on some finite part of the eraictl therefore the same random bits
will give the same output if the approximation to the oracle is good enough (nes sufficiently
large). (Note that liminf can be bigger than the probabildygetx with a correct oracle, since
approximate oracles can lead to outgdior a combinations of random bits that do not generate
with a correct oracle.)

Now let us prove the reverse inequality. This proof resestile proof of Theorem 108. We
have a lower semicomputable family of semimeasures: fon eabe functionx — m(x|n) is a
semimeasure (i.e},,m(x|n) < 1 for eachn). It follows that the function

m (X) = liminf m(x|n)
is also a semimeasure, i.e., the sggM(x) does not exceed 1. If this function webelower-
semicomputable, this would finish the proof; however, weetittie equivalence

r< ”E‘Lio@f m(x|n) < (3q>r)3N(Vn> N)[q < m(x|n)]

where the right-hand side has too many quantifiers (notethiegbroperty in the brackets is enu-
merable, not decidable). But again we may replace the fomatl by any larger function, so it
remains to construct abi-lower-semicomputable upper bound faof.

To achieve this goal let us consider tripl@g x, € (wheree is a positive rational number). For
a given triple we try to increase the valueé|-) up to € on a ray that consists of paitg, x) for
fixedx and for alln > N. This change is performed only if we get semimeasures faeeveryn
the sum over atk does not exceed 1).

163

As before, we can check whether such an increase is possinlg @f-oracle. (Indeed, the
violation is an enumerable event.) Let us consider secalgnéll triples and perform the increase
when possible (the increased values are taken into accauhesubsequent steps). Then for each
possible increase we keep the valuexainde. In other words, we consider a function that on
everyx is equal to the upper bound of allthat are used for increase together with thaln this
way we get &’-enumerable family of semimeasures that is an upper bouna fdndeed, ifn'
is greater tham for somex, the functionmis greater tharg on some ray, increase does not really
change anything and therefore is possible.

To formulate a similar statement f&® (x|| > n) we should first of all define this prefix com-
plexity relative to a set. Here we have several possitslitend it is unclear which of the is “the
right thing”.

We may try to defin&kP (x||A) and the minimal prefix complexity of a program that outputs
when applied to any element 8f However Problem 79 (p. 94) shows that this definition does
not matchKP (x|a) for singleton conditions, so probably this definition is agood one.

Another definition is similar to the approach used in Problé&s@. Consider an arbitrary com-
putable function(p,x) — D(p,X) that is prefix-stable with respect to its first argument (& th
second one is fixed). For amyand for any sef we then defin&kP p(k||A) as the minimal length
of a stringp such thatf (p,n) = k for all n € A. The difference (compared to plain complexity) is
that we require the conditional decompressor to be predilstwith respect to the first argument.
There exists an optimal decompressor in this class thas gheleast functioiKP p (up to O(1)
additive term). This function can be called prefix complgXP (x||A).

Show that the same complexity (up@1)) is obtained if decompressors are computable
continuous mappings — I (hereZ is the space of finite and infinite sequences of zeros and ones,
andF is the space of partial functions frofd to N) and complexity is a shortest string that is
mapped to some partial function that is equak t; any element oA.

We can also define the prefix complexity with set conditiomggirefix-free functions instead
of prefix-stable ones. Again, in the class of computableyifedie functions there exists an optimal
one (that gives the smallest complexity functiéR ¢ (x||A)). In this way we get the definition of
some functiorKP’(x||A) that resembles the conditional complex#i?’(k/n) and coincides with
it (uptoO(1)) if A= {n}.

Finally one can define a priori probabilitp(x||A). For that we consider some probabilistic
machine that has inpytand the measure of the set of all sequenwes Q that (being used as
random bits) makes the machine transform any inpatA into x. Again, there exists an opti-
mal machine that maximizes this probability (up@¢1) constant factor) and for singletons this
definition coincide with our definition of the conditional aqxi probability.

The inequalities

—logm(k||A) < KP(K||A) +O(1) < KP'(K[|A) +O(1),

can be proved as we did for conditional prefix complexity, it argument that showed us that
all three expression coincide does not work as before, atiftbesido not know whether these
inequalities are strict. But it is easy to see that all thogeessions are greater than

—log inf m(k|x) = supKP (x|a),
XeA xeA

164

so any of them can be used in the theorem similar to Theorem IkDparticular forKP (x||A)

(which seems to be most natural among all three) we get thanfiolg result:
{large-numt
Theorem 110
lim KP (x| = n) =KP%(x) +0(1).

N—oo0

[It would be nice to find out whether the inequalities indesslsrict.]

6.4.2 Limit frequencies and @-a-priori-probability

We conclude this section by a result froff];[it relates the frequencies in computable sequences
to theO'-relativized prefix complexity.

Let f(0), f(1),... be a computable sequence of natural numbers. For a gk let us
count the appearances lomongf (0),..., f(n—1) and divide the result by. The ratio can be
called thefrequencyof k among the firsh terms of the sequence.

Now for a fixedk consider the limit inferior of this frequency as— o; we call it lower
frequencyof elemenk in the sequencé.

Let pc be a lower frequency d€in a given sequence. It is easy to check fap < 1. Indeed,
if some partial sum of this series exceeds 1, then a finite dumimib inferiors exceeds 1, and for
sufficiently largen the sum of the frequencies among the firserms of the sequence exceeds 1,
which is impossible.

The following statement is true for any computable sequdnce

{zero-prime
Theorem 111 The function k— py is 0'-lower-semicomputable.

(Here py is lower frequency ok; the definition of the lower semicomputable function is give
in Section 4.1; now we considéf-relativized version of this definition.)

< Indeed, the statemenk px (wherer is some rational number) is equivalent to the following
one:

there exist a rational numbe@r> r and integeiN such thathe frequency of k among
the first n terms of f exceeds p for anyriN.

The property printed in italics is co-enumerable (has amerable negation): if it is not
true, we can establish it by showing the numhbehat violates it. Therefore this property 05
decidable (we apply the oracle to the algorithm that seartdrethatn). So the property < p is
0’-enumerablex>

In fact we use the following general observation:

Letr, be a computable sequence of rational numbers. Show thatflimis a0'lower-
semicomputable real number and the correspon@iadgorithm can be effective found given an
algorithm forry,.

By the way, the reverse statement is also true:

Any 0'-lower-semicomputable real number is a limit inferior ofamputable sequence(y jpins—cr-
of rational numbers.

165

[Hint: This number is a supremum ofCdcomputable sequence of rational numhgrsEach
rn is an ultimate values of a stabilizing sequemgg. Let s, be the maximum ofqy, ..., r—1x
wheret is the smallest number such thiak # re x—1.]

It turns out that for an appropriate sequerfcéhe functionk — py is a maximalQ'-lower-
semicomputable semimeasure. This is a corollary of thevatig result:
{zero-prime
Theorem 112 For any 0'-lower-semicomputable sequencg q, ... of non-negative reals such
that 3;g; < 1 there exists a computable sequen¢8)ff(1),... such that lower frequency of any

k in the sequence f is at leastq

This allows us to give an equivalent definition@®frelativized prefix complexity ok: it is the
negative logarithm of the lower frequencyloi the optimal sequenck(that gives maximal lower
frequencies up t®(1)-factor).

< Sinceg is lower semicomputable, the set of pajrk) wherer is a rational number smaller
thangqy is 0’-enumerable. As we know from the general computability th€see, e.g.,7]), 0'-
enumerable sets ake-sets, i.e., there exists a decidable prop&such that

r < gk < JuvvR(r, Kk, u,v)

We use a slightly different representation Di-sets: there exists a computable total function
(r,k,n) — S(r,k, n) with 0/1-values such that< gy if and only if the sequencg(r, k,0), S(r,k,1)...
has finite number of zeros. The sequeBtek,0),S(r,k,1)... can be constructed as follows: we
consider (sequentially) the values-=0,1, 2, ... and for eactlu we search fov such thaR(r, k, u, v)
is false. While searching, we extend the sequence adding;z2e&henv is found, we add 1 to the
sequence and switch to the next valueuofThe number of zeros in the constructed sequence is
finite if and only if the search was unsuccessful for samiee., ifr < g.

It is convenient to visualize this process as follows: frammetto time the request “please make
Ok greater than” appears for somé& andr, (and the previous request with the saknandr is
canceled). Then we consider the requests that appear ane\emecanceled later; they correspond
to pairs(r,k) such that < gx. (The moments when requests appear correspond to zeros in th
sequence&.) This process is computable. We may also assume withositoiogenerality that at
any given moment there is only finite number of requests £x{3this does not matter since only
the limit behavior of the sequence is important.)

Recall that we need a computable sequef(@, f(1),... for which the lower frequency df
is at leastg,. To achieve this goal, it is enough to represent the gi¥dower-semicomputable
semimeasure as a limit inferior of a computable sequencesasores with rational values, i.e., to
construct a two-dimensional table of rational numbers

p§ p‘%) p‘%

p(z) p% p%

Po P1 P
such that each row has only finite humber of non-zero elentbatshave sum 1, and that limit
inferior in thekth column is at least,. Indeed, let us assume that such a table is constructed.

166

Without loss of generality we may suppose that initheow all the numbers are multiples ofil
(we can take approximation with precisiofii hot changing the limit). Then the sequenfcean
be constructed as follows: first we use the first row as thestabfrequencies, then switch to the
second row and use it much longer (to make the influence ofrsterdw negligible), then use the
third row even longer (to make the influence of the first andsdaows negligible) etc.

So it remains to construct a tahb%z with the following property: if some request “please make
Ok greater tham” appears at some moment and is not canceled later, thektthadlumn has limit
inferior at leasigk. This is done as follows: constructimgh row (at timen), we try to satisfy all
current requests (that have been appeared and are note@dnaetording to their age (the oldest
request is treated first). For each request we increase thespondingok up to a giverr if this is
possible (does not make the sum greater than 1). We may askantleere are many requests and
at some point the sum becomes greater than 1; at that momenutulee last request (so the sum
is 1) and this finishes the constructionrdih row.

Why this helps? Imagine that< g is true. Then the request “please majeyreater tham”
at some moment appears and is never canceled later. (It oééadl lme the first appearance of this
request.) Let us look at all requests that appear beforeotigs Some of them are canceled later
(while others are “final”). Let us wait until all these caraéibns happen. After that only “true”
requests (that are never canceled later) are older tharequest, and for these true requests we
haver’ < gy. Their sum therefore does not exceed 1 together with ouesgsio the requests with
high priority at that time will not interfere with our reques-

Prove that there exists a computable sequence where the fegeiencies coincide
with g.
[Hint: combine the proof of this theorem with the solutionRybblem 153.]

Prove that theorem 112 remains true if we consider partia@pdable functiond from
N to N instead of sequences: for any partial computable functidrom N to N there exists a
(total) computable sequengg0),g(1),... that have the same (or bigger) lower frequencies: for
anyk the lower frequency df in gis at least its lower frequency if10), f (1), ... (which is defined
as the limit inferior of the number of appearancekamongf(0),..., f(N — 1) divided byN).
[Hint: for everyN the frequencies in the initial segment of lengtliorm a lower semicomputable
semimeasure (it was a measure for total sequences); th&wdien used in the proof of The-
orem 109 allow to find an upper bound for the limit frequendigsa 0'-lower-semicomputable
semimeasure. Then we apply Theorem 112.]

[Here could be the argument about oracles that do not chiiRgand new proof of the exis-
tence of nonT-complete enumerable sets]

167

7 Shannon entropy and Kolmogorov complexity

{entropy}

7.1 Shannon entropy
{entropy-d
Consider an alphabe that containk lettersay,...,ax. We want to encode each lettarby a

binary stringc;. Of course, we want al; to be different to avoid confusion. But this is not enough
if we write codewords without any separator. Example: tet#e B and C are encoded by strings
0, 1 and 01. All three codes are different, but two strings AB#nd ABC have identical codes
0101. So additional precautions are needed to guarantgaeidecoding.

We want the code to allow unique decoding. At the same time am Wto be space-efficient.
It is good to have the strings as short as possible (without violating the unique decognog-
erty). And if we cannot make all codewords short, the pryosihould be given to the frequent
letters. (Similar considerations were taken into accoumgmiMorse code was designed.)

7.1.1 Codes

{prefix-coc

Let us give formal definitions now. Aodefor a k-letter alphabeA = {ay,...,ax} consists ok
binary stringsc, ..., ck. These strings are calleddewordgfor the code considered); lettarhas
encoding ¢ Any A-string (finite sequence of letters taken frégxnhas arencoding to get it we
encode each letter and write these codes one after anotiieo(tvseparators).

A code isinjectiveif different letters have different codes. A codesursquely decodablé
any two differentA-strings have different codes. pgrefix codes a code where no codeword is a
prefix of another codeword. (This is a traditional term; hegrethe more logical nametefix-free
code” is also used.)

Theorem 113 Every prefix code is uniquely decodable.

< The first codeword (the encoding of the first letter) is detead uniquely (due to the prefix
property), so we can separate it from the rest. Then the semmeword is determined, ets.

Show that there exist uniquely decodable codes which arprefik codes. [Hint. Con-
sider a “suffix” code.]

Construct an explicit bijection between the set of all inérsequences of digits 0,2
and the set of all infinite sequences of digitd 0 [Hint. Use the prefix code 8- 00, 1+— 01,
2—1]

Consider two prefix codesy, ..., ¢k (for ak-letter alphabet) andy,...,d, (for al-letter
alphabet). Show that stringgl; (concatenations of codewords from these two codes) forrafexpr
code for &l-letter alphabet.

Before asking which of two codes is more space-efficient, maukl fix frequencies of the
letters. Letps, ..., px be non-negative reals such that+ ...+ pn = 1. The numbemp; will be
calledfrequencyor probability of lettera. For each code;,...,ck (for alphabetay,...,a) its
average lengtls defined as

S pil (c)
|

168

Now we can formulate our goal: for givem, ..., px we want to find a code of minimal average
length inside some class of codes, e.g., an uniquely det®dabe of minimal average length.

Which injective code has minimal average length (amongctije codes) for
given p1,..., pn? [Hint: Put all letters in the decreasing frequency orded all binary strings
in the increasing length order.]

7.1.2 The definition of Shannon entropy ;
entropy-c«

Shannon entropgrovides a lower bound for the average length of a uniquetpdable code. It is
defined (for given non-negatiy@ such thaty; pi = 1) as

H = p1(—logp1) + p2(—logpz) + ...+ pk(—log pk)

(We assume thgtlog p = 0 for p = 0 making functionplog p continuous at the poimg = 0.)

Some motivation for this definition: lettar appears with frequenqy;, and each occurrence of
g carries—log p; “bits of information”, so the average number of bits perdets H. But then we
should explain also why we believe that each occurrenceedletiter that has frequengy carries
—logp; bits of information. OK, imagine that somebody has in miné ofi 2" possible numbers
and you want to guess this number by asking yes or no quesiities you need questions, and
each answer gives you one bit of information; so when evevinggrobability /2" happens it
brings usn bits of information.

Of course, the previous paragraph is just a mnemonic ruléhiodefinition of entropy. The

formal reason to introduce this notion is given by the follogvtheorem:
{prefix-co

Theorem 114 Let p, ..., pn be non-negative reals such thatp ...+ ph = 1.
(a) The average length of every prefix code.c., ¢ is at least H(the entropy.

}E[}|(CO > H.

(b) There exists a prefix code such that

}E[ml(q)«< H-+1.

<1 Note that this theorem deals only with the lengths of codeadbut not the codewords
itself). So itis important to know when given integers. . ., nk could be lengths of codewords in
a prefix code. Here is the criterion:
Lemma (Kraft inequality). Assume that non-negative integeis.n. , ng are fixed and we want {xraft-1em
to find binary strings ¢, .. ., ¢k of these lengthé (ci) = n;) that form a prefix codé.e., g is not a
prefix of g fori # j). This is possible if and only if

27N L1
2

This statement already appeared, see lemmas in the prodfseofrems 50 (p. 82) and 52
(p. 83). It is easy to explain: i€ is never a prefix of other string;, then the corresponding

169

intervals of lengths 2" are disjoint, and the sum of their lengths does not exceedlging the
probabilistic language: a random string of Os and 1 has pogfixith probability 2°™; thesek
events are disjoint, so the sum of probabilities does natexd..)

Going in the opposite direction, we can use a simpler argtitivert was used before (see the
proof of Theorem 52). The simplification is possible sincelvage only a finite numbeik] of
integers and they are given in advance. We can simply placeditesponding intervals of lengths
27" inside[0, 1] from left to right going in decreasing length order. Thenteterval is properly
aligned and corresponds to a binary string of length

Let us prove the theorem now. Without loss of generality wg assume that afb; are strictly
positive (since null values change neither Shannon entnopyverage code length). The part (a)
of our theorem says thatiif are non-negative integers afgl2~" < 1, theny pin; > 1. Itis true
for any reals (even if they are not integers). Indeed, dgbe equal to 2". In these coordinates
the statement reads as followsgif> 0 andy ¢i < 1, then

> pi(—logai) > 3 pi(—logpi).

This inequality is sometimes calléggibbs inequality To prove it, we rewrite the difference be-
tween right-hand side and left-hand side as

o d "
IZp.logloi (*)

Then we use the convexity of the logarithm function: the &g sum of logarithms does not
exceed the logarithm of the weighted suprp; logu; < log(3; piui) (if U are positive). In our case
we see thafx) does not exceed

log (.Z p%) ~log (Y &) <log1=0.

The item () is proven.
Let us mention also that the non-negative number

Pi
ilog—
IZpl gQi

is calledKullback — Leibler distancbetween two probability distributions andg; (so we assume
thaty o = 1), orKullback — Leibler divergencehe latter name is better since this ‘distance” is not
symmetric. The convexity of logarithm (its second derivaiis negative everywhere) guarantees
that this distance is always non-negative and equals zeydfop; = g for all i.
To prove item (b), consider the integexs= | —log, pi| (where[u] is a minimal integer greater
than or equal ta). Then 0
|

E <27ni < Pi

The inequality 2" < p; allows to use the lemma, so there exist codewords of corneipg
lengths. The inequality;/2 < 2~ implies thatn; exceeds—logp;) less than by 1, and this

170

remains true after averaging: the average code lerggry) exceeds$d = 5 pi(—logp;) less than
by 1.>

In a sentence the idea of the proof can be explained as fallibwe forget that code-lengths
should be integers and allow amy such thaty;2~" < 1, the optimal choice i = —logp;
(convexity of the logarithm function); making integers, we lose less than 1.

Theorem 115 The entropy of the distributionip..., pn (with n possible valugsdoes not exceed
logn. It equaldogn only if all p are equal.

< If nis a power of 2, the inequalitd < logn follows from Theorem 114 (consider a prefix
code wheren codewords have length log In general case we use Gibbs inequalitydpt= 1/n
(for all i) and recall the this inequality becomes an equality onfy ¥ q;. >

7.1.3 Huffman code

{huffman-er
We have shown that the average length of an optimal prefix godeiven p,..., pk) iS some-
where betweeR andH + 1. But how can we find this optimal code?
Let ny,...,ng be the lengths of codewords for and optimal code (for gigen. ., px). Rear-
ranging the letters, we may assume that

Prs P2 < Pe

It this case
nN=zn2z...2n

Indeed, if a letter has longer code than another letter fhass frequent, the codewords exchange
(between these two letters) decreases the average lengpldef

One can not also thai; = n, for an optimal code (the two less frequent letter have theesam
code-length). Indeed, if; > ny, thenny is greater than ahy. So the first term in the suip; 27" is
smaller than all other terms, and the inequajity—" < 1 cannot be an equality (all terms except
the first one are multiples of the second term) and the diffsgdetween its two sides is at least
2-™. Therefore, we can decreasgby 1 and still do not violate the inequalify; 2~" < 1. This
means that the code is not optimal (in contrary to our assiomypt

So we can look for an optimal code among codes that haweny; this optimal code minimizes
the sum

P1N1+ P2nz + P3Nz + ... + PNk = (P1+ P2)N+ Panz+ . .. + Pk

(heren is the common value afi; andny). In the last expression the minimum should be taken
over all sequenceas ns, ..., N, such that

2Ny Ny My 4271
This inequality can be rewritten as

2 (=D oMy 42k

171

and the expression that is minimized can be rewritten as

(p1+p2) + (p1+p2)(N—1) + psnz+ ... + PNk

The term(p1 + p2) is a constant that does not influence the minimal point, sptblelem reduces
to finding an optimal prefix code fdr— 1 letters that have probabilitigs + po, ps, .. ., Pk-

So we obtain the recursive algorithm that finds the optimefipicode as follows:

e combine the two most rare letters into one (adding their godlies);

e find the optimal prefix code for the resulting probabilitiagécursive call);

e replaces codewaox for a “virtual” combined letter by two codeword® andxl which are
one bit longer (note that this replacement keeps the predpety).

The optimal code constructed by this algorithm is caltedfman coddor a given distribution

pl,...,pn.

7.1.4 Kraft — McMillan inequality

{kraft-mcm:
So far we have studied prefix codes. It turns out that they sireffecients as general uniquely

decodable codes, as the following theorem shows.

{mcmillan-:
Theorem 116 (McMillan inequality) Let ¢,...,cx be a code words of an uniquely decodable

code and p=1(c;) be their lengths, Then

271,
2

Therefore (recall the lemma above) for any uniquely dectededde there is a prefix code with
the same code-lengths.

< Let us use lettersi andv instead of digits 0 and 1 when constructing codewords. (E.g.
the code 0, 01 and 11 is now written asuv, vv.) Now take a formal sunfc; + ...+ cx) of
all codewords and compute idth power (for someéN that we choose later). Then we open the
parentheses without changing the order of factcaadv (as ifu andv were two non-commutative
variables). For example, the code above givesifer 2) the expression

(U4 uv+ v) (U-+ UV+ V) = UU+ UUV-+ UVVH UVU+ UVUVH UVVVAH VWU VWUVH VWV

Each term in the right-hand side is a concatenation of sordewords. The unique decoding
property guarantees that all the terms are different. Nowetve =v = 1/2. The left-hand side
(c1+...+c)N becomeg2—™ ... + 2N, For the right-hand side we have an upper bound:
if it consisted ofall strings of lengtht, it would contain 2 terms equal to 2 (each), so the sum
would be equal to 1 (for each length Therefore, the right-hand side does not exceed the méxima
length of strings in the right-hand side, which equdimax(n;).

If ¥27" > 1, we immediately get a contradiction, since for large etdNgdhe left-hand side
grows exponentially iltN while the right-hand side is linear M. >

This proof looks as an extremely artificial trick (though aenone). A more natural proof (or,
better to say, a more natural version of the same proof) sngbelow, see p. 178.

172

7.2 Pairs and conditional entropy

{entropy-p:
7.2.1 Pairs of random variables

{entropy-p:
Dealing with Shannon entropies, we use the terminology Wisistandard for probability theory.
Leté be arandom variable which takes finitely many valégs. ., §x with probabilitiespy, . . ., pk.

Then theShannon entropgf a random variablé is defined as

H(&) = pu(—logpa) + ...+ pk(—logpk)

This definition allows us to consider the entropy of a pairasfdom variableg andn (that have

a common distribution, i.e., are defined on the same prababpace). Indeed, this pair is also a
random variable with a finite range. The following theoreryssthat the entropy of a pair does not
exceed the sum of entropies of its components:

{entropy-p:
Theorem 117

H((&) <H (&) +H(n)

We consider random variables with finite ranges, so thisssgame inequality involving log-
arithms. Let is write this inequality. Assume thathask valuesé;, ..., & andn hasl values
ni,...,Nn. Then the maximal possible number of values for the p&in) is kl and these values
are (&,nj) (some of them may never appear or have probability 0). Theilalision for (¢, n)
is therefore a table that h&srows andl columns. The numbep;; (ith row, jth column) is the
probability of the event (¢ = &) and(n = n;)” (herei =1,....kandj =1,...,1). All p;; are
non-negative and their sum equals 1. (Somgjptan be equal to 0.)

Adding the numbers in each row, we get the probability dstion for &: the probability of
valueé; equalsy j pij. We denote this sum b;... Similarly, n takes valug; with probability p,
which equals the sum of all numbersijith column.

Therefore, the theorem in question is an inequality thapieable to any matrix with non-
negative elements and sum 1.:

> pij(—logpij) <) pir(—logpi) + 5 pej(—logp.j)
[N [J

(herepi. p.j are rows’ and columns’ sums).

This inequality again is a consequence of the convexity gduldhm, but it is useful to under-
stand its intuitive meaning. Let us forget for a while thatrepy is not exactly equal to the length
of the shortest prefix code (and ignore the difference thasamt exceed 1). Then this inequality
can be proven as follows. Assume that space-efficient pretiesforé andn are given that have
codewordscy,...,cx anddi,...,d respectively. Then consider a code fdr,n) that assigns to
the value(é;, nj) the stringcid; (concatenation o€ andd; without separator). We get a prefix
code (indeed, to separate codeword that starts an infirgteesee, we first find prefig; and then
prefixd; in the remaining part; both operation can be performed wiiquThe average length of
this code equals the sum of the average lengths of its compgnEhis code may be non-optimal
(which is natural, since the inequality could be strict); provides an upper bound for the length
of the optimal code.

173

< Let us transform this informal argument into a proof. Ret¢ladl proof of Theorem 114
(p. 170). We have seen there that the entropy is a minimaéwail§; pi(—l0g, ;) taken over all
tuples of non-negative reats that have sum 1. In particular, the entropy of the pair (heftd
side) is the minimal value of

Z pij (—logaij)

taken over all tupleg;; of non-negative reals that sum up to 1. Let us restrict oenétin to “rank
1” tuples that have the form

Qij = Cix - O«
for some tuples of non-negative reajs ¢.; (both tuples have sum 1). Thér-logg;j) can be

decomposed into suifr-logq;.) + (—logg.j), and the entire sum is decomposed into two parts,
which after partial summation over one coordinate beconualdq

E:pw —logq«)

and
Z p.j(—loga;)

respectively. The minimal values of the two parts &) andH ().
Therefore, the left-hand side of our inequality is the mimmover all tuples and the right-hand
side is the minimum over rank 1 tuples, and the inequalityosen. >

7.2.2 Conditional entropy
{condition:
Recall the definition of conditional probability. L& and B be two events. Theonditional

probability of B with conditionA (denoted as PB|A]) is defined as the ratio xandB]|/ Pr{A].
This definition assumes that[Rf > 0. The motivation is clear: we look at the fraction of outceme
whenB happened but restrict our attention to the case whkappened.

Let A be an event (that has non-zero probability) andéléte a random variable with finite
rangeé, ..., k. Then we may consider tlenditional distributionof £ whenA happens. We get
a new random variable: nod has probability F& = &)|A] instead of P = &]. The entropy
of this distribution is callecdonditional entropy o€ with condition Aand is denoted b (¢|A).
(The distribution itself could be denoted b§|A).)

Show thatH (&|A) can be greater thaH (&) and can be less thef (&). [Hint: the
distribution(&|A) has not much in common with the distribution ®r especially ifA has small
probability.]

Informally speakingH (&|A) is the minimal average code length if average is taken ordy ov
the cases wheA happens.

Now let us consider two random variablésandn (as it was done in the previous section).
Let as assume that each value of b&t#ndn has non-zero probability (zero-probability outcomes
could be ignored). For each valge(for) consider the evemt = ;. (Its probability was denoted
by p.j.) Consider the conditional entropy of varialfldaving this event as the condition. In other

174

terms, consider the entropy of the distributien pjj /p.j. Then we average these entropies, using
probabilities of the eventg = n; as weights. The resulting average is calbesditional entropy
of & with conditionn. It is denoted byH (£|n). So by definition

H(&[n) = ZPrn nilH(&[n = nj)

or, using the notation above,

H(&[n) = zp*J > S:, (—log%>~

The following theorem sums up the basic properties of comuad entropy (that are true for
any random variables andn):
{condition:

Theorem 118 (a) H(&|n) >0

(b) H(&|n) =0ifand only if§ = f(n) with probability1 for some function {in other terms,
we ignore the cases that have zero probabjlity

(© H(&[n) <H(E)

(@A) H((¢,m)=H(n)+H(|n)

< The item (a) is evident: alH(&|n = nj) are non-negative, so the same is true for their
weighted sum.

(b) If the weighted sum of non-negative terms equals zeem #il the terms that have non-zero
weights are equal to zero. So for each vafyehe restricted variablg |n = ni) has zero entropy,
and therefore has only one value if we ignore values that peseability O.

The statement (c) can be explained as follolWsé |) is the average length of an optimal code
for & if we allow different codes fo€ for different values ofy (for each value of; we consider
the code that is optimal with respect to conditional disttiln). This provides some additional
freedom (compared to the case when the same code shoulddé&usdl values ofn), and this
freedom can only decrease the optimal code length.

The same argument made formal: for ea¢he value oH (& |n = nj) is the minimal value of

the sum o
2 IJ(logaij)

7 Px]

taken over all non-negative values of the varialojgst gz + ... + dk; = 1 (we use different vari-
ables for each)). ThereforeH (&|n) is the minimal value of the sum

Zp*, 2 o) p” (~loga)

taken over all tables that contain non-negative rggland each column has sum 1. If we restrict
ourselves to tables where all columns are eqgak g;), the sum turns into

Xp*JZp” ~loga) =3 3 pi(~logap) = 3 pi.(~loga)
T T

175

and its minimum iH (§). ThereforeH (&|n) < H(E).
Finally, item (d) is just an exercise in transformation ajdoithms:

> pij(—logpij) ED*IZ p” gg—”j—logp*j)=
1] *

z Psj z S:, |ng—ij_)+z Ps] z%(—logp*j) =

Zp*, (€ln = m+2p*1 —logp,j) =H(&[n)+H(n).

Theorem is proverr>
This theorem implies Theorem 117 (p. 174). We see also thedmnof the pair of random
variables cannot be less than the entropy of any of varigsiese conditional entropy is non-
negative). Thus we easily obtain the following statement:
{no-new-ent
Theorem 119 Let £ be a random variable with a finite range and let f be a functiefirted on
that range. Then

H(f(£)) <H(S),

where () is a random variable that is a composition of f a&di.e., f is applied to the value

of £).

In terms of distribution the transition froi to f(&) means that we combine several values
into one summing up the corresponding probabilities.

< Indeed, the random variab{é, f (¢)) has the same distribution §sand its entropy cannot
be less than the entropy of the second coordinate.

Provide an interpretation of this result in terms of miniraagrage length of codes, and
the direct proof.

When the inequality of Theorem 119 becomes an equality?

7.2.3 Independence and entropy {
independer

The notion of independent random variables could be easgyessed in terms of entropy. Recall
the variables andn are calledndependenif the probability of the eventé = & andn = nj”
is equal to the product of probabilities of the eveéts- & andn = nj. (A reformulation: the
conditional distribution o€ with conditionn) = n; coincides with the unconditional distribution.
Also we can exchangé& andn and say that conditional distribution gf with conditioné = ¢
coincides with the unconditional distribution.)

In the notation used above the independence can be writtgn &asp;. p.j (probability matrix
has rank 1).

{independer
Theorem 120 Random variableg§ andn are independent if and only if

H((&,n)) =H(&)+H(n).

176

In other words, we get an independence criterion: the indgud Theorem 117 becomes an
equality. Using Theorem 118, we can rewrite this criteristl@é) = H(&|n) (or, symmetrically,

H(n)=H(nl¢)).

< Let us use once more that logarithm is a strictly convex fionctthe inequality

log (z piXi) > > pilogx;,

holds for all positive weightg; with sum 1 and all positivg. This inequality becomes an equality
only if all x; are equal.
Therefore, for positivgy; with sum 1 the expression

> pi(—logq;)

(whereq; are positive and sum up to 1) takes its minimal value only afpthintg; = p;.
Now recall the proof of Theorem 117 above. The minimum ovekramatrices (that makes
the right-hand side equal to the sum of entropies) was aetifr

If this minimum coincides with the minimum taken over all megsg;; (the latter is achieved for
0ij = pij), then we have
Pij = Pix - Pxj
and variable€ andn are independent-
Provide an another (though similar) proof using Theorem 118

Prove that three random variables, y are independent (this means that the probability
of the event(a = ai, 3 = Bj,y = W) equals the product of three probabilities for each of the
variables) if and only if

H({a,B,y)) =H(a) +H(B) +H(y).

Theorems 117 and 120 show that the differeibe€)+ H(n) —H((&,n)) is always non-
negative and equals zero if and only¢iandn are independent. So we can take this difference for
a quantitative measure of dependence betwieandn. This difference is denoted by¢ : n) and
called themutual informatiorof two random variable& andn. Theorem 118 allows us to rewrite
the definition forl (¢ :) in the following way:

1(&:n)=H(n)—H(Nn[&) =H(&) —H(En).

(mutual information shows how much the knowledge of one ocamglariable decrease the entropy
of the other one).
To see all these notions in action, let us return to the Mavlilhequality. Now we change the{nacmiiian-
order and prove first that a uniquely decodable code for aorandariable has the average length
of the codeword at least(&).

177

First note that for an injective code where all codewordsshangth less than the average
length is at leasH (&) —logc. Indeed, ifn; are the lengths of the codewords, the sum of 2
does not exceed(for every fixed length the sum does not exceed 1). Therefoeanequality of
theorem 114 is violated at most by lag

This is not enough, and to get a tight bound we condilerdependent identically distributed
copies of random variabl&. We get a random variable that could be denoted By Its entropy
isNH(&). Let us use our code for each Mfcoordinates and then concatenate all the strings. The
unique decoding property guarantees that this is an ingectbde. Its average lengthistimes
greater than the average length of initial code §aoflinearity of expectation). And the maximal
length does not exceezN wherec is an upper bound for the length of the codewords of the
uniquely decodable code we started with. So the previolegpaph gives us

N - (average length of the uniquely decodable goeldNH (&) —log(cN)

Now we divide oveiN and takeN — . Since logcN)/N — 0 asN — oo, this gives us the bound
H (&) for the average length of an uniquely decodable code.

Now the McMillan inequality is easy. Assume that uniquelga@able code has code-lengths
ng,...,Nncandy 27" > 1. We start with probabilitieg; = 2~™ and then proportionally decrease
all of them making their sum equal to 1. Consider the randonakbe that has the distributio
(obtained in this way) and its coding by means of our uniqdelyodable code. The average length
is ¥ pini which is less thatd = S pi(—logpi) (recall thatn; < —logp; since we have decreased
the valuesy).

Look closely at this proof and trace the correspondence deivit and the proof given
above.

7.2.4 “Relativization” and basic inequalities
{entropy-re

All the statements about entropy have “relativized” (coiotial) versions. For example, we could
add some random variabteas a condition in the inequality

H((&,n)) <H(E)+H(n)
and get its conditional version
H((&,mla) <H(&|a)+H(n|a)

The conditional version is an easy consequence of the urtcomal one. Indeed, for each fixed
valueaq; of a random variabler we have

H((&,n)la = ai) <H(§|a = ai) + H(n|a = aj)

(Theorem 117 is applied to conditional distributionséodndn with conditiona = a;). The we
sum up all these inequalities with weightddPe= o).

178

So we get a conditional inequality as a consequence of thenaitoonal one. Now, going in
the opposite direction and using the equation

H(Bly) =H((B,y)) —H(y),

we can express all conditional entropies in terms of undadil ones.
After canceling some terms we get the following inequality:
{basic-sha:

Theorem 121 (basic inequality)
H(¢,n,a)+H(a) <H(E,a)+H(n,a)

We use a simplified notation and wrik&(&,n, o) insteadH ((¢,n, a)) (or even more formal

H({(¢,n),a))).

The similar “relativization” (adding random variables amditions) can be applied to the mu-
tual information. For example, we can naturally defite : B|y) as

H(aly)+H(Bly) —H({a,B)[y).

The basic inequality (Theorem 121) says that : 3|y) > O for all random variablesa, 3, y.
Prove thal ((a,B):y) > I(a:y)

[167] Prove that
[((a,B):y)=1(a:y)+1(B:yla).

If I(a :y|B) =0, the random variables andy are calledndependent relative tf (whenf is
known). Experts in probability theory say in this case g8, y form aMarkov chainwhere the
dependence between the “past) @nd the “future” {) is caused only by the “current statgB)(

Prove that in this caséa : y) < I(a : B), and thereforé(a : y) <H(B).

To prove all these (and similar) statements one could usdittggams that are similar to the
diagrams for Kolmogorov complexity discussed in ChaptefiZ diagram for two variables con-
sists of three regions. Each region carries a non-negadivev The sum of these values for two
left regions isH (a) and for two right regions 81 (3) (see Fig.18).

a B

Figure 18: Entropies of two random variables. {entropy.1)

For three variables, 3,y we get a more complicated diagram (Fig. 19). The centrabregi
carries a number that is denoted kiyr : 3 : y). It can be defined aga : B) —I(a : Bly), or,

179

equivalently, as(a : y) — I (a : y|B) etc. In terms of unconditional entropies we get the follayvin
expression:

I(a:B:y)=H(a)+H(B)+H(y)—H(a,B)—H(a,y)—H(B,y) +H(a,B,y)

T

Figure 19: Entropies of three random variables. {entropy.2

Note that (unlike other six values shown) the valué(of : 3 : y) can be negative. For example,
this happens if variables are 3 independent, but still are dependent whaa known.

Construct three variables, 3, y with this property. [Hint. Following the example given
on p. 46, consider uniformly distributed independent J@gaa and 8 with range{0,1} and let
y=(a+B)mod 2.]

(Fano inequality) Prove that if the random variabtesand 3 differ with probability at
moste < 1/2, anda takes at mosa values, then

H(a|B) < eloga+h(e),

whereh(¢) is the entropy of a random variable with two values and praitials € and 1— ¢.
[Hint. Let y be a random variable with two valueg= 0 whena # 3 andy = 1 whena = (3.
ThenH(a|B) <H(y)+H(a|B,y). The first term ish(¢), nd the second one can be rewritten as

Prly=0]H((a|B)ly=0)+Pry=1H((a|B)ly=1),

i.e.,
Pria # BIH((a|B)|a # B) +Pra = BJH((a[B)|a = B),
which does not exceegloga+ 0.]
Assume thaH (a|B,y) = 0 andI (8 : a) = 0. Prove that (y) > H(a).

180

This problem has the following interpretation. If a spy wattsend to the headquarters a secret
message as a plain texp using a keyy (that is agreed in advance) and wants the adversary who
does not knowto get no information abowt, then the entropy of keycannot be less than entropy
of the messagea. This statement is sometimes callgédannon theorem on perfect cryptosystems

Prove that {condit-tr:
2H(a,B,y) <H(a,B)+H(B,y)+H(a.y)

for any three random variables 3, y. [Hint: see the proof of the corresponding statement about
Kolmogorov complexity, Theorem 26, (p. 44).]

7.3 Complexity and entropy
{complexit;
As you surely have noticed, the properties of Shannon epif@gfined for random variables) re-
semble the properties of Kolmogorov complexity (definedstoings, see Chapter 2). Is it possible
to formalize this similarity by converting it into exact sganents?

This question has two interpretations. First, one can ptbhaeKolmogorov complexity and
Shannon entropy have similar properties (in particulag, game linear inequalities are true for
them, see Sectio®?, p. ??). On the other hand, one may compare the numeric values for co
plexity and entropy, and this is what we do in this section.

The problem here is that Kolmogorov complexity is definedstoings while Shannon entropy
is defined for random variable, so how could one compare theon®ver, sometimes this compar-
ison is possible, as we shall see. Let us start with a veryezagd philosophical description of the
results below: Shannon entropy takes into account onlyfeqy regularities while Kolmogorov
complexity takes into account all algorithmic regulastieo in general the latter is smaller. On the
other hand, if an object is generated by a random procestimasway that it has only frequency
regularities, entropy is close to complexity with high pabbity.

Let us give now some specific results that illustrate thisegalrstatement.

7.3.1 Complexity and entropy of frequencies
{frequenci

Consider an arbitrary finite alphabAtwhich may contain more than two letters. Kolmogorov
complexity forA-strings can be defined in a natural way. (Note that we havernsed that objects
whose complexity is defined at@nary strings. However, it is important thétnary strings are
considered as descriptions: complexity measured in bybesdde eight time less than complexity
measured in bits!)

Let x be anA-string of lengthN and letps, ..., px be the frequencies of letters xn All these
frequencies are fractions with denominabbrand integer numerators. The sum of frequencies
equals 1. Leh(py,..., pk) be the Shannon entropy of corresponding distribution.

{complexit;

Theorem 122
KS(x)

N

O(logN)

<h(p1,...,pk) + N

181

HereO(logN) means something that does not exceled)N, where constartdoes not depend
on N, x and frequencie®s,..., px. However, this constant may depend loifjwe consider an
alphabet of a fixed size).

< In fact this is a purely combinatorial statement. Indé€8(x|N, p1, ..., px) does not exceed
logC(N, py,...,px) +O(1), where

N!
(PN)!(p2N)!... (pcN)!
is the number ofA-strings of lengthN that have frequenciegy, ..., px. (Each string with given
frequencies can be determined by its ordinal number in #tid she parameterhl, p1,..., px are
known, and this ordinal number has IBEN, py, ..., pk) bits.)

The numbeC(N, p1,..., pk) can be estimated using Stirling’s approximation. Ignofaagors
bounded by a polynomial il (that appear due to the tergi27k in Stirling’s approximation
formulak! ~ v/2rk(k/e)¥), we get exactly BN(P1--PJ_ This computation was performed (for
k = 2) when we proved the strong law of large numbers (Theorem.Z,). The general case (for
arbitraryk) can be treated in the same way.

Finally, note that we need aboktogN bits to specifyN, p1,..., px (We need to specifk
integers whose sum i), so by deleting the condition iKS(x|N, p1,..., px) we increase the
complexity byO(logN) (and the constant i@(logN)-notation is close t&). >

Another proof uses the upper bound for monotone compleXibheorem 81, p. 124). Con-
sider a probability distribution on infinitA-sequences that corresponds to independent trials with
probabilitiesps, ..., px in each trial.

The event “a sequence with prefappears” whereis aA-string of lengthN that has frequen-
ciesqy,...,0k equals

C(Na P1,..., pk) =

aqiN akN
pl .« e . pk

(letter & has probabilityp; and appears;N times). The binary logarithm of this probability is
equal to

—N-(qu(—logpa) + ...+ ok(—logpx)).
For the special casg = p; we get—Nh(pa,..., pk), therefore monotone complexity has upper
boundNh(ps,...,pk). (Recall also that monotone complexity differs from othemplexity ver-
sions by a tern©(logN) for strings of lengthN.)

In fact, this argument is flawed, When we proved the upper 8danmonotone complexity,
we have assumed that distribution is fixed. The constant tiwenefore, may depend on the distri-
bution. And now we try to estimatéM (x) using measure that depends on the letter frequencies
in the stringx. So formally Theorem 81 is not applicable. But if we recalproof, we see that
it provides a bound for “conditional” monotone complexithenp;, ..., px are given. The differ-
ence between this conditional complexity and the uncowwtti one i<O(logN), so we indeed get
another proof for Theorem 122.

What is a value of a constant hidden@logN) (as a function ok)? [Hint: both proofs
givek(1+0(1))logN.]

Show that when all frequencigs, ..., px are not very close to 0, the statement of the
previous problem could be improved up(tg/2+ O(1))logN. [Hint. In the first proof one should

182

take into account the square roots in Stirling’s approxiomtmost of them are in the denominator.
The second proof can also be modified: instead of exact valusquencies one can consider
approximate frequencies with error of ord®{1/+/N). This gives a weaker bound, but the differ-
ence is bounded by a constant. (Recall that a smooth funistigmadratic near its minimum.) In
this way we can save half of the bits when specifymg. . ., p«.]

Note that the inequality provided by Theorem 122 may be varnfrbm equality. Indeed, if
A has two letters and they alternate in a stnqdhen the right hand size equals 1 and the left-
hand size is of ordeflogN)/N. This is not surprising and fits well into the general pictuttee
complexity is small since it reflects all the regularitiest(only frequencies). In the next sections
we prove that the complexity of a randomly generated stringlose to the entropy with high
probability.

7.3.2 Expected complexity

Let us fixk, ak-letter alphabeA andk positive numbergs, ..., px whose sum is 1 (for simplicity
we assume that afl; are rational numbers).

Consider a random variabde whose values are lettersAfand probabilities ares, . . ., pk. For
eachN consider a random variabfg, consisting ofN independent identically distributed copies
of . Its values aréA-strings of lengthN. Now we may ask a question: what is the expected
complexity of a string generated according to this distidmf?

Theorem 123 The expected values of KBN|N) is NH(&) +O(1) (the constant in Q1) may
depend or€ but not on N.

{expected-

Note that (for positivep;) all A-strings of lengthiN are among the values &f. Some of them
have complexity much greater th&H (except for the case of uniform distribution), but others
have complexity much less th&iH.

< For eachA-string of lengthN (i.e., for any value ofy) consider its shortest description
(with respect to some fixed prefix decompressor). These igésas form a prefix code (in the
sense of Section 7.1.1). The average length of the codewoeadctly the expected value of
KP (éEN). Therefore Theorem 114 (p. 170) guarantees that this egi@elue cannot be less than
H(&EN) = NH(&). The lower bound is proved (and even tBgl)-term can be omitted).

The same theorem is useful for the upper bound, too. Indeeniarantees that there exist
prefix codes that have average length of a codeword atlfhest. Such a code can be constructed
by an algorithm ifN (and numberg;, which are fixed) is given. For example, one may use the
construction used in the proof of Theorem 114, or use Huffew@de, or even just try all codes
until a good one is found.

Anyway, the constructed code can be used as a conditionahg®essor (withN as the con-
dition) such that average length of the shortest descrigifoN does not exceedi (EN) +1 =
NH(&) + 1. Replacing this decompressor by an optimal one, we inertfasaverage length by
0(1). >

Show that one can slightly improve the upper bound and ptoatthe average value of
monotone complexitkKM (V) does not exceeMH (&) +O(1). [Hint. Apply Theorem 81 to the
distribution ofé*.]

183

We assumed thaty, .. ., px are fixed rational numbers. One may wish to get a uniform bound
that is true for all tuple®, . . ., px. To this end we should ada, .. ., px in the condition and prove
bounds for the expected valuelP (EN|N, py,..., px) instead olKP (EN|N). The lower bound is
not affected at all, since it is true for any prefix code, andfie code construction the information
in the condition is sufficient. (We assume tipatare rational numbers; this is not very important,
since one may replace arbitrary reals by their approximatwith sufficiently small error.)

Formulate the exact statement and prove it.

This theorem says thaveragecomplexity equals entropy though individual values of com-
plexity could be much smaller or much larger. In fact, a sge@nstatement it truemostvalues
of &y have complexity close tdlH(&). More formally, the event “the complexity of string\
differs significantly fromNH(&)” has small probability. This statement could be consider®dn
algorithmic version of the Shannon theorem on (noiseldsahigel capacity, and we will return to
this question in Section 7.3.4.

7.3.3 Prefixes of random sequences and their complexity
{complexit;
In this section we consider infinite Martin-Lof random segaes and compare complexities of
their prefixes with the entropy of a generating distributidret A again be an alphabet that has
k letters and lepy,. .., px be a probability distribution oA. We assume thaty, ..., px are com-
putable positive reals.
Consider the spacA™ of infinite A-sequences and the probability distribution on this space
that corresponds to independent identically distributadables with distributiomnps, ..., px. This
is a computable probabilistic measureAsfy so Martin-Lof definition of randomness can be used.
(In fact, we have considered two-letter alphabet, but ésgdrthe same definition can be used for
any finite alphabet.)
{complexit;
Theorem 124 Let w be a Martin-Lof random sequence with respect to this distribution. (k&
be its prefix of length N. Then
KS((w)n) _
N - I
where H is the Shannon entropy, i.e./Hy pi(—logp;).

lim

Prove this statement for the uniform distribution this eta¢nt as an immediate conse-
guence of the randomness criterion (Theorem 82, p. 1255 <are occasion when the uniform
case is really special.)

The statement refers to plain complexKy; however, this is not important, since different
versions of complexity differ only byp(logN) = o(N). So we may use monotone complexity in
the proof, and this is convenient.

< The Schnorr—Levin randomness criterion (Theorem 82, p) $a%s that complexity of a
prefix of a random sequence is close to the minus logarithnmadfgbility that this prefix appears.
The probability refers to the distribution && considered above, and the minus logarithm equals
NS oi(—logpi) wheregq; is the frequency oith letter in(w)n. It remains to use the Strong Law of
Large Numbers that guarantees thatends top; asN — oo for a random sequence:.

184

Looking at this proof we see that the difference between trmeptexity (per letter) and en-
tropy has three reasons: first, “the randomness deficiemogi Schnorr—Levin theorem that gives
O(1)/N difference; second, the difference between the plain antbtene complexities (of order
O(logN/N)) and, finally, the difference between frequencies and gitiias which is the most
important term. (The law of iterated logarithm says that thads to a difference that is a bit larger
thanO(y/N)/N.)

We have assumed thptare computable reals, otherwise the notion of Martin-ladfdomness
cannot be used. If they are not computable, we can still densghe set of sequences such that
complexity of their prefixes (per letter) do not have entragylimit. Then we can prove that this
set has measure zero (with respect to the correspondintpdtsin).

Prove this statement. [Hint. For an upper bound we can use smproximations for
pi; the precision IN? is enough if we consider prefixes of lendth The additional information
needed to specify these approximate values is ofGizegN). The lower bound does not use at
all the algorithmic properties qgb; for example, we can get a bound for relativized complexity
with any oracleA that makes alp; computable.]

7.3.4 The complexity deviation
{complexit;
Theorem 124 is asymptotic. One may look for a bound of dififeeebetween complexity and
entropy of frequencies for finite sequences. (This folloneséxample provided by the probability
theory that has Strong Law of Large Numbers for the limit eglas well as large deviation bounds
for finite sequences.)

Let A be ak-letter alphabet and lgby, ..., px be a distribution orA. Again we assume for
simplicity thatp; are rational (or at least computable). Consider the prodisttibution onAN
that corresponds thl independent trials with probabilitigs, . .., px. So eachA-string of length
N has certain probability (and certain complexity). We alyenow from Theorem 123, that the
average value of complexity SH, whereH = S pi(—logp;). But we want to know also how far
this complexity deviates from its average value.

The simplest case of two equiprobable letters (which isequiittypical, as we shall see) gives
a uniform distribution on all binary strings of length We know that all these strings have com-
plexity at mostN + O(1) and the (overwhelming) majority of strings has complexityse toN:
the fraction of strings that have complexity less thdir- ¢ is at most 2¢. So in this case the
significant difference between complexity and entropy ha®oeentially small probability.

The case of uniform distribution ditletter alphabet is similar. However, if not all the letters
have the same probability, the situation changes significan

Here is the key observation. For any strin@f lengthN we compare probabilitiep; with
“empirical frequenciest;(x) (frequencies of letters ir). It turns out that with high probability
the complexity of a random (with respect to our distributmmAN) string is close tok(x) =
NY;iqi(X)(—logpi). Indeed, Theorem 81 (p. 124) says that monotone complexityegceedk(x)
by at mostO(1). On the other hand, the argument used in the proof of Levinr@t theorem
(p. 125, Lemma 1) shows that for anyhe probability of the everKM (x) < k(x) — ¢ (according
to the distribution considered) does not exceetl 2

185

Therefore, the question about the complexity reduces tajtiestion about the distribution
of empirical frequencies. This question has been studigbarprobability theory for centuries.
It is known (Moivre—Laplace theorem) that this distributtis close to a normal (Gaussian) one:
the expectation of frequency equals the probability, aredabverage of the deviation square is
proportional to ¥N. This is the main term, since it is much larger than termsealyO(logN)
difference between different complexity versions and bggisl as a condition, etc. This argument
(made precise) gives us the proof of the following statement

{square-ro
Theorem 125 Let ¢ be a random variable with k values. For each positéve O there exists ¢
such that for all N the probability of the event N&) — cyv/N < KS(x) < NH(&) +cy/N is at least
1—¢. (Probability is taken over the distribution where N copie< aire independeni.

In fact our arguments assumed thatare computable. However, this assumption can be
dropped if we replacg; by their approximations with sufficiently small error (theepision /N2
is enough and requires on@}(logN) additional bits).

7.3.5 Shannon coding theorem
{shannon-c
The theorem of the last section is a natural translationadgsital Shannon results into the com-

plexity language. These results deal with the length of a&dbdt allows us to transmM-letter
blocks with high probability (according to the given dibtrtion).

Let ¢ be (again) a random witk values (letters o) and some fixed distribution. Le¥
be a positive integer. B¥N we denote a random variable with rang® that is formed byN
independent copies ¢f. We want to encode values &I by m-bit strings (see Figure 20):

)

N __,) ‘5 ZN
3 encoder T hits decoder 3

Figure 20: Usingn bits for transmission of N. {entropy.3

Here “coder” is any mapping of typ&N — B™, and “decoder” is any mapping of tyj&" —
AN A given value oféN causesan error if the input and outpufA-strings (of lengthN) differ.
The probability of error is measured according to the distion of EN. The question is: what
conditions ormandN guarantee the existence of a code that has small error pliojgaFirst, let
us make the following evident remark:

Theorem 126 For given N m ande > Othe code with error probability at mostexists if and only
if the 2™ most probable values g™ have total probability at least — ¢.

< Indeed, wherm bit are used for encoding, one may transmit (without erratsnost 2"

values. To minimize the error probability, we should cho@¥enost probable values:
In the next theorem the alphab®tnd the random variable are fixed.

186

Theorem 127 For eache > 0 there exists a constant ¢ such that:

(a) The values ofN can be encoded/decoded with K + cy/N bits with error probability
at moste;

(b) Any code foEN of length at most NKE) — cy/N has error probability at least — ¢ (i.e.,
the probability of correct decoding is at mast

< (a) As we know, for a suitable the value of random variabl&N has complexity less than
m= NH(&) +cv/N with probability at least 1- €. So for these values one can use shortest de-
scriptions (see the definition of plain complexity) as codésrmally speaking, we get strings not
of lengthm, but of length less tham, but there are s less thaR &f them and they can be replaced
by strings of lengtim.)

Note that coding is not performed by an algorithm, but thetam (as stated) does not say
anything about that, it claims the existence of a code mappin

(b) Here we need to use some trick. If there exists a code ehdength, then such a code can
be constructed algorithmically using the previous theofenjust by an exhaustive search). Then
the decoding function for this code can be considered asdittmmal decompressor (where condi-
tions arep; andN). Therefore, all values of that are decoded without error, have complexity at
mostNH(&) —cv/N +O(logN) (the latter term corresponds to the complexity of paranseded
can be omitted if we increas®. As we know (Theorem 125, p. 187), the probability of thismt
is at moste. >

As before, we assume that probabilitipsare known exactly, and ip; are not com-
putable, we get some problems. Correct the argument raglgciby their approximation with
sufficient precision.

Give a statement and proof for a similar result about comaiai coding and conditional
entropy. [Hint. Assume that two dependent random variablasdn are given. We maka trials,
the value ofN is known both to the sender and the receiver, and the sendgs weasendn bits
in such a way that receiver could reconstruct the valugfHow large should ben?]

7.4 Markov chains

for the viewpoint of Kolmogorov complexity and entropy (wleknown here? Andrey?) lempel-
ziv? how to compute the entropy of a Markov chain?

187

8 Some applinations

L : {appl}
8.1 There are infinitely many primes

{appl-prime
Let us start with a toy example and prove that there are iefinihany primes.

Assume that there are onty different prime numbergy, ..., pm. Then every positive integer
x has prime decomposition of the form

Ky k
X=pypy...pem

and can be described by the list of powkys.. ., ky. Each ofk; does not exceed log(since the
base is at least 2) and has complexity at n@$bg logx) (its binary representation h&loglogx)
bits). Sincemis fixed (i.e., the same for differer}, the complexity of the tupléks, ko, ... k) IS
O(loglogx) and therefore the complexity &f(that can be obtained from that tuple)@¢loglogx).
But for a “random” (incompressibleibit integerx the complexity is close ta and is notO(logn)
as this formula says (the logarithm ofnebit number does not exceedy. Euclid’s theorem is
proven.

What should one say about this argument? It is a real apjlicaf Kolmogorov complexity
or just cheating? A skeptical observer would say that we netgll some counting argument in
terms of Kolmogorov complexity. This counting argumentsdallows: if there are onlyn prime
numbers, then there are t m@kigx)™ different integers between 1 ardsince any integer in this
range is determined by the powers in its decomposition, and each power is less thax [dQis
immediately leads to a contradiction, since (logx)™ for largex.

This argument is indeed true: our reasoning using Kolmogooonplexity is a direct transla-
tion of this argument (and is a bit more cumbersome due to pytra notation). However, such a
translation may still have sense, since new language pesvogw intuition, and this intuition may
be useful even if later the same argument can be translatethm standard language.

We return to this discussion after looking at other appioce.

8.2 Moving information along the tape
{appl-tape
The other toy example is a well knows result saying that dagilbn of anbit string on the tape of
a Turing machine (with one tape only) requim® steps in the worst case. This classical result
was obtained in 1960ies using the so-called “crossing semss; our proof is just a translation of
this argument into the language of Kolmogorov complexiye(@ssume that the reader is familiar
with the basic notions related to Turing machines, see, [€]3.

Consider a zone of sizeon a tape of an one-tape Turing machine; this zone is coresides a
“buffer” and we want to transmit information through thiseg say, from left (L) to right (R), see
Figure 21.

Initially the buffer zone andR are empty (filled with blanks) are empty, ahds arbitrary. We
want to give an upper bound for the complexityRodftert steps. The upper bound(dogm)/b+
O(logt) wherem is the number of states that our Turing machine hastaisdthe width of the

buffer zone. Informally the argument is quite simple: eaigtesof the TM carries log bits of

188

Figure 21: A buffer zone of size. {tape-buffe

information, and during one computation step this infoioratan be moved to the neighbor sell,
S0 moving it at the distanderequiresb more time.
Now we have to convert this intuitive explanation into a fatrargument.

Theorem 128 Let M be a Turing machine that has m states. Then there exsisistant ¢ such
that for any b and for any computation that starts with emptifdy zone of size b and empty tape
on the right of the buffer zone the complexity of the contR(ttsof the right part of the tape after

t steps of computation does not exceed

tlogm
b

< Let us consider some line between cell inside the buffer zsne “border”, and let us write
down the state d¥1 when it crosses the border from left to right (as it was dorteétimes of iron
curtain). The sequence of states is calleddiussing sequencé&nowing the crossing sequence,
we can reconstruct the behaviorMf‘abroad” (on the right of the border) not using the contenits o
the tape on the left. Indeed, we should artificially put thehnae into the first state of the crossing
sequence and let it go abroad. Whdrreturns back, we put it in the second state of the crossing
sequence and let it go abroad again. In this way we correetlgrnstruct the abroad behavior of
the machine (since it does not remember anything exceptaits hen crossing the border). In
particular, at some mometitthe tape on the right of the buffer zone contaRr(s). Note that’ may
be different fromt since we do not take into account the tilespends on the left of the border,
butt’ cannot exceetl Therefore, to reconstrug(t) we need to now the crossing sequeritand
the distance between the border &idone. So there exists a constarftiepending oM but not
on b andt) such that for any crossing sequergand anyb andt we have

+4logt +c.

KS(R(t)) < 1(S)logm+4logt +c.

Here we multiply the length(S) of the crossing sequence by lmginceSis a string in an-letter
alphabet and each letter carries ogits. To addy’ andt’ in a self-delimiting encoding we need at
most 2logh+ 2logt bits. We may assume thit> b, otherwiseR(t) is empty since the head never
visitedR. The constant appears when we switch to the optimal decompressor.

This inequality is true for any contents bfand for any placement of the border. Now if for a
given contents ok we consider the shortest crossing sequence, the lengtisddfuence is less
thent /b (there isb+ 1 possible positions of the border, and at each step only bt gositions
is crossed, so the sum of the lengths of crossing sequenessidbexceed). In this way we get
the inequality stated by the theorem.

189

n n/2

Figure 22: Buffer zone for duplication {tape-copy-

Show that this bound can b e improved by repladiig the denominator byl2 [Hint:
The return trips need almost the same time (the differenatnsostb).]

The quadratic lower bound for the duplication afi-®it string immediately follows.

Assume that a one-tape Turing machMeduplicates its input: if initially the tape contains a
binary stringx (followed by blanks), at the end of the computation the taggedsecond copy af
(i.e., containxx).

Theorem 129 There exists a constagt> 0 such that for every n there exists a n-bit string that
requires at leastn? steps to duplicate it.

< For simplicity let us assume thatis even, and lek be a string whose second halthas
complexity close to its length (i.e., t9'2). Then apply the inequality we have proven considering
the zone of size/2 on the right o as the buffer (Figure 22).

Assume that duplication takeéssteps. Then the complexity & zone aftert steps (which is
at leastn/2) does not exceedogm/b+4logt +, whereb is the size of the buffer zone, i.e/2.

Therefore,
n _tlogm

27 nj2
We may assume without loss of generality thatn® (otherwise the statement is trivial). Then we
replace 4log by 8logn and conclude that

+4logt +c,

n2

t> — O(nlogn);

4logm
the second term is small compared to the first one whien largen (we may then formally extent
the result to every by decreasing the coefficieaj.

Is the Kolmogorov complexity essential in this proof? Theskcal observer may say again
that we in fact just counted the number of different strirtgst ttcan be copied in a limited time
(using the fact that different string should have differenoissing sequences, otherwise the behavior
of the machine at the right of the boundary would be identidateed, the original proof follows
this scheme (in fact, it deals with palindrome recognitioot, the duplication, but the technique is
the same). Does the language of complexity make the proc# maritive and easy to understand?
Probably this is a matter of taste.

Many bounds in the computational complexity theory can lwvgn in the same way, using
the string of maximal complexity as the “worst case” and prguhat the violation of the bound

190

would imply this string to be compressible. Many applicai@f this type (and further references)
are given in the classical textbooR]] its authors, Ming Li and Paul Vitanyi, played an important
role in development of this approach, called “incompragsibmethod”. Note that in many cases

the historically first proof was obtained using Kolmogorawplexity.

In the next section we consider one more application of tbermpressibility method. Then we
switch to other applications. The most interesting thinthigse applications is not the statements
in itself but the various methods that allow us to apply Kofjomv complexity to prove statements
that do not mention it.

8.3 Finite automata with several heads

A finite automaton with k heads similar to the ordinary one (we assume that the reader-is ac
guainted with basic notions related to finite automata, sgg, [?]) but hask one-way read-only
heads. Here “one-way” means that the head can only move #&firntolright.

Initially all k heads observe the leftmost character of the input stringagl step the behavior
of the automaton is determined by its state &symbols it observes (und&rmeads): automaton
changes the state and instructs some heads (at least oneyédarthe right. Then the automaton
performs the next step, etc.

The input string is followed by a special marker; the autmnaerminates if all the heads
observe this marker. (We assume that the head that sees tkerrdaes not move to the right.)
Automatonacceptghe string if it gets into amcceptingstate after processing this string. We say
that automatomecognizeghe set of all accepted strings.

Example. Consider the language (=set of string#X wherex is any binary string. It is well
known that this language cannot be recognized by a standaedi{ead) automation. However, it
is easily recognized by a two-head automaton. Indeed, weldglsend one head to look for the
separator #, when the separator is found, two heads movasyrausly and check that they read
the same symbol.

So two heads are better than one (more languages can be imsmhgift turns out that the same
is true for more heads+ 1 heads are (strictly) better tharmeads.

Theorem 130 For every k there exists a language that can be recognized (fy+al)-head au-
tomaton but not by a k-head one.

< For eachm > 1 consider th languadsay, that consists of all strings
Wi . . Wi Wit . .. Wy

(for any binary stringsvy, ..., wWy). Eachw; is repeated twice, and in the right half the strings
go in the reversed order (this is crucial for the argument).

A k-head automaton can recognize this language as followsofahe heads goes to the right
half, and remainingk — 1 heads are placed befong,...,wx_;. Then each of these— 1 heads
checks its string while the first head passes by its copy.r it the firsk— 1 strings are checked,
the first head is of no use (it is at the end of the input stribg) remainingc— 1 heads are useful
since they are on the left of the remaining strimgswi 1, Now we repeat the same trick: one

191

of k— 1 heads is sent across the right h&lf; 2 check nexk — 2 strings etc. Repeating this, we
can check (ke 1
(k=1 +(k=2)+...+1= (5)
string. (Note thatnis fixed, so the search for a substring with a given number ttiee fmemory
is enough.)

Therefore the languagé, can be recognized bykahead automaton mh < CE

It remains to show thaf m> C&, the languagkn, cannot be recognized bykahead automaton
Assume that is not the case and sokAeead automatoM recognizes this language. To get a
contradiction, let us consider independent random stfing. . , Wy, of sufficiently large lengthN.
More formally, consider a string of lengthN and complexity at leashN and split it intom strings
of lengthN denoted byws, ..., wm. By assumption, the string

=C?

W = wWi#. . . WyWintt. . . Wy

is accepted by; we get a contradiction by showing that eitivey. . . wy, iIs compressible or the
automaton does not recogniizg.

Let us say that a given pair of headsMfvisited v if at some moment (while processing
by M) these heads were simultaneously inside two copieg.oA key observationa given pair
of heads cannot visit both; andw; fori # j. Indeed, consider the moment whenwas visited.
After that the left heads reads onky with j > i and the right head visits only; with j <.

By our assumptiomn > CZ; therefore there existissuch thaw; is not visited by any pair of
heads. Let us show that either this string is compressibbmerof its copies can be counterfeited
in such a way thai! will still accept the string (s does not work correctly).

Let us observe the actions bf onW. A special attention is needed when one of the heads
enters or leavew; (any of two copies): we write down the positions of all headd &e state
of M at these moments. The obtained “log-filB"has complexityO(logN) where the hidden
constant depends d&gmmand the number of states v but not onN. Indeed, there are at modt 4
moments to consider (4 per head) and at each moment we rdeosiate of the automaton and
head positions, which i©(logN) bits.

Let us show that (iM recognized.,, correctly) the stringy; can be uniquely reconstructed if all
otherw; (with j # i) andP are given. This implies that the complexity of the strimg .. wy, does
not exceedm— 1)N (the number of bits in othew;) plusO(logN) (the complexity of protocol)
plusO(1), which is less thamN for largeN, so we get a desired contradiction.

The reconstruction goes as follows: we place all strings§thmin place ofw; (keepingw;
with j =i intact). For each candidate we rivhon the resulting string and check whether we get
the same protocd?. There are three possible cases:

(1) If (for somew) M rejects (does not accept) the string, tHdndoes not recognize our
language.

(2) M accepts all these strings (for all candidates) and the pob#® appears only once, for
w = w;. Then the reconstruction is possible (amd . .wp, is compressible).

(3) M accepts all these strings aR&ppears both fon; and for somav =£ w;. Let us show that
in this caseM accepts a string not iby, i.e., the stringV’ that hasw; in the left half while in the
right halfw; is replaced byv.

192

Indeed, the are two accepting computatiombfone ifw; is used on both sides and the other
one forw. Let us split both of them into parts; the splitting pointe anoments when one of the
head enters or leaveg (or w). The positions of all other heads and the statell @fre recorded
in P so they are the same for both computations. (Note that theentmof time can be different
since they are not recorded. In fact, we may add them alsahisut not needed.) So we can glue
the computation intervals for both cases; let us show thatameget an accepting computation of
M on a bad string (the left half hag while the right half hasv).

By our assumption during the processiny¥there is no moment when both copieswtarry
some heads; since the border crossings for both copiesasdextinP, the same is true whe;
is replaced byw. So for each interval between two protocol events related iw there are three
possibilities: (a) there is a head in thh string on the left; (b) there is a head in title string on
the right; (c) none of the above. Then we can copy-paste thevals into a new computation: for
(a)-parts we use the computationdfon W; for b-parts we use the computation Mfof changed
input (wherew; is replaced by); for (c)-parts we can use either of two (they are the samieg¢nT
we get a computation dfl on a mixed stringV’, soM does not work properly>

8.4 Laws of Large Numbers

{appl-11n}
The Strong Law of Large Numbers was proven in Section 3.2 @fidma 27, p. 51) without any
references to Kolmogorov complexity, by a straightforwaadinting. We consider (mainly) the
uniform case. In the case the SLLN says that the set of allesempsw = wywy . . ., such that the

sequence
_ Wt @t G

Pn
n

has limit 1/2 asn tends to infinity, has full measure (with respect to the umif@ernoulli measure
on Q). In other words, SLLN says that the complement of this set, (ihe set of sequencessuch
that p, either has no limit or has limit not equal tg2) is a null set. Later (Theorem 32 (p. 60) we
have shown that this null set is in fact an effectively nutl seis implies that for any ML-random
(with respect to the uniform measure) sequesadbe sequencp, converges to 12 (Theorem 33,
p. 60).

However, we can go in the other direction. Namely, we mayfirsve that for any ML-random
sequence the frequencies converge 2 asing the randomness criterion in terms of complexity
(Theorem 82, p. 125). This criterion says that for a ML-ramd@vith respect to the uniform
Bernoulli measure) sequence the monotone complexity of its prefifw), of lengthn is n+
O(1). This property implies that the frequency of 1s(m), (i.e., pn) converges to A2. Indeed,
Theorem 122 says that the complexityafdoes not exceedh(pp, 1— pn) +O(logn), soh(pn, 1—
pn) = 1+ O(logn/n) for any ML-random sequence. (Note that the difference betwsain and
prefix complexity ofay is O(n), so any of them can be used.) This implies that— 1/2 as
n — infty (see the graph of entropy function, Figure 8, p. 52). So theNSis true for all ML-
random sequence, which form a set of full measure.

The skeptical observer would say that this is not a diffegobf, or we have just repeated
the same arguments using different language. And he is plphbght: If we recall the proof of
Theorem 122, we see that it uses the same estimate (basedlimg’Stapproximation) that was

193

used for the proof of SLLN. (Another argument, where monetoomplexity is bounded by a
negative logarithm of the measure, Theorem 81, also hasatdmanslation in the probabilistic
language; it was discussed in Section 3.2 after the proohebiem 27 on p. 51).

So why do we get by using the complexity language? First, wefical a broader class of
sequences that satisfy SLLN:

{11n-comple
Theorem 131 Let w be a binary sequence such that K®),,) = n+o0(n). Then the sequence p

(frequency of ones ifw),) converges td./2.

< The proof remains essentially unchanged: in this ¢tépg, 1 — p,) is still 1+0(1). >

Second, we can not only prove that— 1/2 but also give some estimates for the convergence
speed. The corresponding result in probability theory ieddahelLaw of Iterated Logarithmand
Kolmogorov complexity can be used to give a (rather simpteppof the upper bound provided
by this law.

{iterated-:
Theorem 132 Let w— be a ML-random sequence with respect to the uniform mealsetrgy, be

the frequency of ones {fw)n. Then for any > 0 the inequality

Inlnn

Pn—1/2] < (L+8)) [T

holds for any sufficiently large n.

< Let us look which bound is obtained by the argument abové (thes Kolmogorov com-
plexity). We know that

n—0(1) < KM((e)n) < nh(pn, 1~ pn) +O(logn),

therefore
h(pn,1—pn) = 1—0O(logn/n)
The function
p— h(p,1—p) = p(—logp) + (1 - p)(—log(1—p))
has maximum ap = 1/2, and the second derivative at this point is non-zero (esqud)In2).
Therefore, Taylor expansion gives us

h(1/2+8) =1— %5%0(52)

asd — 0, and foréd, = p,— 1/2 we have
82 = O(logn/n),

\pn—1/2\=0(\/'°$>-

194

So we get at least something, though the bound we need is nnacigsr. (Let us mention that
in the probability theorem the final bound was obtained inyr&teps. First Hausdorff (1913) has
proven the boun®(nf/,/n); then Hardy and Littlewood (1914) have improved itjffogn; then
Steinhaus (1922) came with the bouiidt €)+/(2Inn)/n, and only later Khinchin (1924) got the
final result. So we are now on the level of Hardy and Littlewoothis respect — not that bad.)

Let us think about possible improvements for the upper baboatwe had foKM ((w)y,). This
upper bound was obtained by comparkig ((w)n) and the negative logarithm of the probability
of the prefix (w)n with respect to the Bernoulli measure with parameggr This logarithm is
exactlynh(pn,1— pn), but the Bernoulli measure used for comparison depends sa the con-
struction used in the proof of Theorem 81 needs an additienal that iSKP (p,) (we start with a
self-delimiting encoding opy). HereKP (pn) does not excee + €) logn, since both numerator
and denominator of the fractigo, do not exceea. Altogether we get the bound

m(pn - 1/2)2 ~1- h(pml— pn) < (2+£) IOgn/n,
which is still not good enough.

What else can we do? Note that we may already know phas rather close to A2: with
denominaton the numerators differs from/2 by \/n or a bit more. So (when the denominator
is knows) we can use less bits to describe the numeratiorthesdllows us to replace 2 by3.in
the right-hand side. But this is still not enough for us.

The crucial idea is to use approximations fay. Let us assume that, = 1/2+ &, > 1/2.
Instead ofp, we use (while constructing the Bernoulli measure used taagaipper bound for
complexity) its approximation /2 + &/ whered/, is an approximation t@, from below with a
small (fixed) relative error. For example, let us taKesuch that ®d, < &, < &,. Such ad, can
be founded among the geometric sequef@®)X, and its complexity is about Idg i.e., about
log(—logdn/1090,9) = log(—logdn) + c. Note that ifd, < 1/4/n then we have nothing to prove,
do the complexity oB, can be upper-bounded %+ €) loglogn (for everye this bound holds for
all sufficiently largen).

This is good news; the bad news is that we have a more congaditatund for the complexity
of (w)n. Now instead oh(pn,1— pn) we have

pn[—log pp] + (1 — pn)[—log(1— pp)], (*)

wherep}, = 1/2+ §/; recalling our discussion of entropy, we may say that a secgigv),, where
frequencies of zeros and ones g@gand 1— p, is encode by a code that is based on simplified
frequenciesp;, and 1— pj,. The expressiofi«) can only increase if we replags by pj,: since
Pn > P, > 1/2, the second expression in brackets is greater than thefiestand increasing its
weight by decreasing, increases the entire expressie:).

Finally we get the bound

n—0O(1) < nh(pp, 1—pp) + (1+€)loglogn
for everye > 0 (the inequality holds for all sufficiently largg. As before, it implies

&, < (14¢€)4/In2-loglogn/2n.

195

For a “true” &, we get a slightly bigger bound (0.9 times bigger); since.® can be replaced by
any number less than 1 we get the desired statement (the fa@ds used to convert the binary
logarithm to the natural one, while the replacement of tle®sd binary logarithm by the natural
one can be compensated by a changeiofthe factor(1+ ¢€)). >

Show that this argument can be used to prove the statemeheoidm 132 not only for
ML-random sequence but for every sequeacsuch than — KM ((w),) = o(loglogn).

8.5 Forbidden substrings

{appl-1111
The statement we prove in this section is interesting as ampbe of a non-trivial application of
Kolmogorov complexity (that cannot be directly translaitet a counting argument).

{no-forbidx
Theorem 133 Leta < 1 be a positive real numbers. Assume that for each n some bgatangs

are calledforbiddenstrings and there are at mo2t" forbidden strings for any length n. Then there
exists some ¢ and an infinite sequence of zeros and ones gwhdbhave forbidden substrings of
length ¢ or more.

For example, we can declare strings of leng#md (plain) complexity less thamn as forbid-
den strings. Then we get the following corollary:
{no-simple-
Theorem 134 Leta < 1 be a positive real number. There exists an infinite sequehzeros and
ones such that any its substring of sufficiently large lemgilas complexity at leasin.

It is instructive to compare this statement with the randessrcriterion for the uniform mea-
sure (Theorem 86, p. 129). In this criterion we considerdg tive prefixes of the sequence (in-
stead of all substrings); on the other hand the lower bounddmplexity washn— O(1) instead of
a weaker boundrn that we have now. (The boumd— O(1) was for the monotone complexity; it
impliesn— O(logn) bound for plain complexity that we use now). The followin@lplem shows
that such a strong bound cannot be true for all the substrings

For any infinite sequence of zeros and ones there exist< 1 and infinitely many
substrings that have complexity per letter (the ratio caxipy/length) at mostr. [Hint: Consider
two cases: if the string haall binary strings as substring, the claim is evident. If it does
contain some stringl of lengthk, we can split long substrings into blocks of lendtland use
efficient coding that takes into account that blacls never used and does not need a code; this
gives complexity per letter at modbg(2k — 1)) /k.]

The proof of Theorem 133 goes in two steps. First we provepgsial case, Theorem 134.
Then it turns out (surprisingly) that the general case fedidrom this special one.

<1 To prove Theorem 134 let us consider an intermedaseich thaitor < 3 < 1. Using Theo-
rem 65 (p. 102) we find a numbak with the following property: to each stringwe can append
N bits (on the right) in such a way that prefix complexity of theng increases at least [§N.

Let us use this property iteratively starting from the emgitying. We get an infinite sequence
of N-bit blocks; the prefix complexity increases at leasi3y when the next block is appended.

196

This implies that the complexity of any group of consecutvklocks is at leasBkN — O(1).
Indeed, appending this group we increase complexit@hkiy at least, but the inequalitgP (xy) <
KP (x) + KP (y) + O(1) shows thakP (y) > KP (xy) — KP (x) — O(1).

This implies that for every substring(not necessarily block-aligned) the complexityuat at
leastfI(u) — 1 since the change in complexity and length due to boundéegtsf(by cutting the
incomplete block on the border) &(1). It remains to note that we have some reserve due to the
difference betweenr and 3, and this reserve is enough to compensate both the bounffiecyse
and the difference between plain and prefix complexities.

Give a similar argument that uses plain complexity insteagrefix one. [Hint: Use
Problem 34, p. 38.]

<1 Now let us prove Theorem 133; the simplest approach in toelaéivized complexity. Let
us consider the sdt of forbidden strings as an oracle; this means that we considerithms
that can ask (for free) whether a given string is forbiddematr As usually, this relativization
goes smoothly both in the statement of Theorem 134 and iwf,paod this theorem is true for
F-relativized complexity.

Note that now all forbidden strings of lengtthaveF -complexity at mostrn+ O(logn), since
each forbidden string can be determinedni@nd by its ordinal number in the list of all forbidden
strings of lengtm. In fact the stronger boundn+ O(1) is valid since we can use the list of all
forbidden strings in the order of increasing length, bus tthoes not matter much since a small
change inx covers this difference>

One can also make the following (rather unexpected) obBernval heorem 133 can be derived
from Theorem 134 directly, without any relativization, bsing the following statement:

Theorem 135 If for some rationala and some set F of forbidden strings the statement of Theo-
rem 133 is fals€F has less tharR?" forbidden strings for any n, but there is no infinite sequence
without long forbidden stringsthen the same happens for sodezidableset F.

(Note that for a decidabl& the relativization does not change anything; the restmcto
rationala is also not important, since we can increast a greater rational number.)

<1 Assume that for soma < 1 and some sdf the statement of Theorem 133 is false. Then
for eachc we may find a sef; in such a way that

(a) F; contains only string of length greater then

(b) F; contains at most%¥ strings of lengttk (for everyk);

(c) any infinite sequence contains at least one substririgpghangs td-.

(Indeed, we can Idt; be the set of all strings iR that have length greater thar)

The standard argument (compactness, Konig's lemma) stimvsiny sufficiently long string
has at least one substringkg, so one can findinite F. with the same properties. Moreover, such
a finite set can be found by an exhaustive search, so wie. gleat has these properties and can be
found effectively whert is given.

(Why do we need first switch to finite sets? to make the searskilple.)

Now we construct the sequencesuch that;. 1 is greater than the lengths of all stringsH.
The union of all;, is a decidable set that violates the statement of Theoremr133

197

Note the structure of our arguments: knowing that objedt gatme property exists, we perform
an exhaustive search and effectively find (may be, diffé¢rebject with the same property. This
observation is often useful when dealing with Kolmogoromngbexity.

[Here the argument in the reverse direction can be addedL | application to twodimensional
sequence, the corollary about subsequences (Rumyantsev)]

8.6 A proof of an inequality

As we have said (see p. 15), the inequalities for Kolmogommwmglexity have quite unexpected
consequences. In this section we explain one of them (this will be continued in Chapte??).

{triple-fu
Theorem 136 Let X, Y, and Z befinite sets. Let X xY - R, g: Y xZ—R,andh XxZ—R
be functions with non-negative values. Then

2
(Z f(x,y>g(y72)h(><72)> < (z fz(x,y>> : (Z gz(y,Z)> : (Z hz(Xl))
XY,z Xy v,z Xz

< It looks very suspicious, but this inequality in fact is aatary of the inequality
2KP (x,y.2) < KP (x,y) + KP (y,2) + KP (x,2) + O(logn)

for prefix complexity (Theorem 26, p. 44). We wrote the lagtgunality for prefix complexity, not
the plain one, but this does not matter since the differen@€logn). (For prefix complexity this
inequality is true up t@®(1)-precision, see Problem 84, p. 101; for now @g@ogn)-precision is
enough.)

It is convenient to assume that elements of the finiteX$e¥s Z are binary strings. It is enough
to show that if the sums in the right-hand side of the inedqydlb not exceed 1, the same is true for
the left-hand side. (Indeed we can multidlyoy any constant, and both sides of the inequality
are multiplied by the same factor, so we can “normalizgthe same fog andh.)

Now assume tha¥y f2(x,y) = 1 and that the same is true for two other sums. We have to
show thaty y, f(X,¥)g(y,2)h(x,2) < 1.

The idea is simple: the functiof? is a probability distribution on pair&,y), SOKP (x,y) <
—log f2(x,y) = —2logf(x,y) (we temporarily ignore the constant in the comparison of tis-
tribution and the a priori one). Similarl¥sP (y,z) < —2logg(y,z) andKP (x,z) < —2logh(x, z).
Then we apply the inequality f&€P (x,y, z) (temporarily ignoring the logarithmic term) and get

KP (X7 Y, Z) < - |Og f (X7 y) - |Ogg(y, Z) - |Ogh(X, Z)'

Since the sum of 2P (*¥2) gver all triplesx, y, z does not exceed 1 (Theorem 51, p. 82), we get
the desired inequality.

This argument is, of course, too simple to be valid: all ownrmts are of asymptotic nature so
we have to switch somehow from individual strings to seqasraf strings. Let us show how it
can be done.

198

We start with a simple remark: it is enough to prove the inétyutor functions f, g, h with
rational values (by continuity argument).

Let N be an arbitrary natural number (later we take the limitslasnds to infinity). Consider
the setXN, YN, andzN whose elements aié-tuples (of elements oX, Y, Z respectively). Con-
sider a probability distribution oXN x YN = (X x Y)N that corresponds tu mdependent copies of
distributionf? on X x Y. (Formally speaking, the probability of a poifiky, ..., Xn), (Y1, ..., YN))
is the productf?(xy,y1)... f2(xn, Yn).) We get a family of distributions that computably depends
onN. Therefore, there exists a constarsuch that

KP(<X17"'7XN>7<y17 S\ |N 22 |ng X|,y|
I

for all N and foe allxy,...,Xn,Y1,-..,Yn (we compare our distribution with a priori probability).
We can delete the conditidd in the left-hand side replacing by clogn in the right-hand side.

Then (as before) we add three inequalities if this type ampdyagme inequality for complexities.

Then we get

KP(<X17---7XN>7<Y17 YN > <Zl7 7ZN>>

<) (—logf(x, 1))+ (—logg(yi,z)) + 3 (—logh(x,z)) + clogN

| | |
for some constant and for allN, X1,...,XN, V1,---,YN, Z1,--.,2Zn (NOte that total length of all
the stringsx;,y;,z for i =1,...,N is O(N), so all logarithmic terms are absorbed blpgN).
Combining this bound with the inequalify, 2~ KP(U) < 1, we conclude that for evely the sum

§:r1f Xi,¥i)9(Yi,z)h(X, z)

(over all tuplesxy, ..., xn, Y1,...,YN, Z1,...,2n) does not exceed®@99N) je., is bounded by a
polynomial inN. But this sum iNth power of the sum

fF(xy)a(y,2h(x,2),
(XY,2)EXXY XZ

so the polynomial growth is possible only is the latter suragdnot exceed 1, and this ends the
proof. >

Show that this inequality implies the bound for the volumadhree-dimensional body
in terms of its two-dimensional projections mentioned ol %. [Hint: we can letf,g,h be the
characteristic functions of the projections. This works tlie discrete case; for the continuous
case we should either approximate the body using a cube gridpproximate the integral by
finite sums.]

For comparison let us give two other proofs of the same inl@guaHere is the first one
(rather simple) that uses Cauchy inequality that says(tha)? < ||u||?- ||v||?, or, in coordinates,

199

(T uvi)2 < (S Uu?) (3 v2)). We can argue as follows:

2
(z f<x,y>g<y,z>h<x,z>> <
X\y,Z

2
< (f2(x,y)> (<zg(y,z)h(x,z)>) <
X’y Xay z
< (fz(x,y)> ((Zgz(y,z)> <Zh2(x,z)>> =
X>y Xay z zZ
= (Zfz(x,y)> (Zgz(y,2)> (th(x,2)>
Xy Y,z Xz

Another proof uses Shannon entropy (and can be consideradrasslation of Kolmogorov
complexity argument into the probabilistic version). Asmuthaty f2 =y g? =yh?=1. We
wantto prove thay , ,, p(X,Y,2) < 1, wherep(x,y,2) = f(x,y)a(y,2)h(x,z). Assume that is not the
case and this sum equals- 1. Then we can multiply it by Ac and get a probability distribution
ponXxY xZ:

p'(%Y,2) = %f(x, y)a(y, 2)h(x,2).

The corresponding random variable (whose rangé isY x Z) is denoted by. It can be con-
sidered as a triple of (dependent) random varialjlesty, ;. One can also consider the joint
distributionséyy = (&x, &y) etc. For example, the random varial§lg takes valugx,y) with prob-
ability 3,p'(x,y,2).

Recall that by definition the Shannon entropy of the distidou (p1,...,px) equals
S pi(—logpi); it does not exceed pi(—logq;) for any other distributiomny; + ... +gx = 1. There-
fore the entropyH (éy) can be bounded (from above) by usifgfx,y) as the “other” distribution:

H(&xy) <) (Z p’(x,y,2>> (—2logf(x,y)).

Xy
Then we write similar bounds for two other projections anglgphe inequality
1

5 (H(éxy+H(&yz) +H(éx2)),

H(E) = H(EX? Eyfz) g 2

(Problem 172, p. 181). We conclude that

H (E) < Z p’(X,y, Z)(—'ng(X,y) - IOgg(y, Z) - |Ogh(X, Z)) =

X’y’z

= z p/(X, ¥,2)(—logp(x,y,2)).

X7y7Z

By definitionH(&) = 3«,,P'(X,y,2)(—logp'(x,y,2)), and we get a contradiction, singe is ¢
times smaller thap (and therefore-log p’ exceeds-log p by logc).

200

8.7 Lipschitz transformations are not transitive

In this section we apply Kolmogorov complexity to analydishe properties of infinite sequences.
Let us start with the following definition related to the Gantimetric) space& of infinite binary
sequences.

A mappingf: Q — Q is aLipschitzone if

d(f (), f(ar)) < cd(wr, w2)

for some constant and for allaw, wy € Q. Hered is the standard distance in the Cantor space
defined as 2% wherek is the first place where two sequences differ.

Informally speaking, Lipschitz property means that the firdigits of the sequencé(w) are
determined byn+ O(1) first digits of w. In particular, all mappings defined by local rules (each
bitin f(w) is determined by some its neighborhooduwhhave Lipschitz property.

We are interested in the following property of a mappingor every two sequenceas;, w,
and for everye > 0 there exists a numbét and sequences] andw, such that

w,=f(f(f(...f(a})...))) (N iterations)

and
d(ew, w)) <€, d(wp,wh) <Ee.

(In other terms, for any two open neighborhoods there eaistrbit that starts in the first one and
get inside the second one.) We call this property “trangythof f (in this section).

It is easy to check that left shift (that deletes the first bithe sequence) is transitive: if we
need a sequence that starts wighand is transformed (after several shifts) into a sequenrae th
starts withx,, just take a sequence that starts witky.

Now the question: does the left shift remains transitiveefetnange the definition and replace
Cantor distance by the so-calledesicovitchdistance:

p(wr, wp) = limsupdn(w, az)/n,
Nn—oo
whered, is a number of discrepancies among the firg¢rms, i.e., the number of n such that
ith terms ofw; andw, differ.
It turns out that in this case the left shift is no more trawsitis not “Besicovitch-transitive”).
Moreover, the following statement is true:

{durand-ce:
Theorem 137 No Lipschitz mapping can be Besicovitch-transitive.

(Speaking about the Lipschitz property, we have in mind thgiral definition using Cantor
distance.)

The reason is quite simple: the Lipschitz mapping does rmoease significantly the complex-
ity of the prefixes of a sequence, sintéits of the output sequence are determinedbyO(1)
bits of the input sequence (we assume that transformatierigiwomputable; if not, we have to

201

relativize complexity by a suitable oracle). On the othemndhaf two sequences are Besicovitch-
close, then their prefixes have almost the same complexéiebange in a small fraction among
the firstn bits can be encoded by a short string compareg.to

< For a formal proof it is convenient to use the notion of effecHausdorff dimension of a
sequence (which is equal to limf KS(awy...wh-1)/n for a singletor{ w}), see Theorem 97 in
Section 5.8, p. 139).

Lemma 1. A computable Lipschitz mapping does not increase the @feeelausdorff dimen-
sion of a sequence.

(Speaking about computability of a Lipschitz mappingQ — Q, we mean than first bits of
f(w) are effectively determined hy+ c first bits of w for somec.)

Indeed, iff (c1) = wyp, then the complexity ofi-bit prefix of w, does not exceed (up ©(1))
the complexity ifn+ c bit prefix of c, and for the dimension these constants are not important.

Lemma 2. If Besicovitch distancg (w1, wy) is less tharg, then effective Hausdorff dimensions
of wy andwy, differ at most byH ().

(HereH (¢) is the Shannon entropy of a random variable with two valuasttave probabilities
gand 1-¢.)

Indeed, if the firsh terms ofw; andw;, differ in k places, then the complexities differ at most
by the complexity of the bitwise XOR of these two sequenagcgsknowing one sequence and the
XOR we easily get the other one). And any sequence of lemgtat hask ones has complexity at
mostnH(k/n) 4+ O(logn) (see Section 7.3.1, Theorem 122, p. 182). Lemma 2 is proven.

So if we take a sequence of a zero dimension (say, a compsadplence), then any sequence
that is Besicovitch-close to it has small dimension, and patable Lipschitz mapping does not
increase this dimension, so we can get only sequences dfaiffieative Hausdorff dimension. On
the other hand, any sequence that is Besicovitch-closeaodom sequence (that has dimension
1) has dimension close to 1 (Lemma 2 again).

So we have proven our theorem fmymputabld_ipschitz mappings. It remains to note that all
our arguments are relativizable and that every Lipschitppireg is computable relative to some
oracle.>

[What is the right name for transitivity? What are the cormeferences? Laurent knows for
sure.]

8.8 Ergodic theorem

Vyugin’s proof? needs to be reconstructed

202

()

10

),

-2

(-2 ?)

203

[

]

204

