
Contents

What is this book about? 4

1 Plain complexity 17
1.1 The definition and main properties 17
1.2 Algorithmic properties 22

2 Complexity of pairs and conditional complexity 30
2.1 Complexity of pairs 30
2.2 Conditional complexity 33
2.3 Complexity as the amount of information 40

3 Martin-L öf randomness 48
3.1 Measures onΩ . 48
3.2 The Strong Law of Large Numbers 50
3.3 Effectively null sets 53
3.4 Properties of Martin-Löf randomness 60

4 A priori probability and prefix complexity 65
4.1 Randomized algorithms and semi-measures onN 65
4.2 Maximal semimeasures 69
4.3 Prefix machines .. 71
4.4 A digression: machines with self-delimiting input 75

4.4.1 Prefix stable functions .. . 75
4.4.2 Prefix stable functions .. . 77
4.4.3 Continuous computable mappings 79

4.5 The main theorem on prefix complexity 81
4.6 Properties of prefix complexity 86
4.7 Conditional prefix complexity and complexity of a pair ofstrings 92

4.7.1 Conditional prefix complexity 92
4.7.2 Properties of conditional prefix complexity 94
4.7.3 Prefix complexity of a pair .. . 95

5 Monotone complexity 103
5.1 Probabilistic machines and semimeasures on the tree 103
5.2 Maximal semimeasure on the binary tree 112
5.3 A priory complexity and its properties 113
5.4 Computable mappings of typeΣ → Σ . 117

5.4.1 Continuous mappings of typeΣ → Σ . 117
5.4.2 Monotone machines with non-blocking read operation 118
5.4.3 The set of continuous mappings is enumerable 119

5.5 Monotone complexity 120

1

5.6 Levin–Schnorr theorem 124
5.7 The random numberΩ . 135
5.8 Effective Hausdorff dimension 137
5.9 Randomness deficiency using a priori complexity 141

6 General scheme for complexities 151
6.1 Decision complexity 151
6.2 Comparing complexities 154
6.3 Conditional complexities 158
6.4 Complexities and oracles 160

6.4.1 Complexity with large numbers as conditions 161
6.4.2 Limit frequencies and0′-a-priori-probability 166

7 Shannon entropy and Kolmogorov complexity 169
7.1 Shannon entropy .. 169

7.1.1 Codes . 169
7.1.2 The definition of Shannon entropy 170
7.1.3 Huffman code . 172
7.1.4 Kraft – McMillan inequality 173

7.2 Pairs and conditional entropy 174
7.2.1 Pairs of random variables 174
7.2.2 Conditional entropy .. 175
7.2.3 Independence and entropy .. . 177
7.2.4 “Relativization” and basic inequalities 179

7.3 Complexity and entropy 182
7.3.1 Complexity and entropy of frequencies 182
7.3.2 Expected complexity .. 184
7.3.3 Prefixes of random sequences and their complexity 185
7.3.4 The complexity deviation 186
7.3.5 Shannon coding theorem .. 187

7.4 Markov chains .. 188

8 Some applinations 189
8.1 There are infinitely many primes 189
8.2 Moving information along the tape 189
8.3 Finite automata with several heads 192
8.4 Laws of Large Numbers .. 194
8.5 Forbidden substrings 197
8.6 A proof of an inequality 199
8.7 Lipschitz transformations are not transitive 202
8.8 Ergodic theorem .. . 203

9 204

2

10 , , 204

3

What is this book about?

What is Kolmogorov complexity?

Roughly speaking, Kolmogorov complexity means “compressed size”. Programs likezip, gzip,
etc., compress a file (text, program, or some other data) intoa presumably shorter one. The orig-
inal file can then be restored by a “decompressing” program (sometimes both compression and
decompression are performed by the same program).

A file that has a regular structure can be compressed significantly. Its compressed size (aka Kol-
mogorov complexity) is small compared to its length. On the other hand, a file without regularities
hardly can be compressed, and its Kolmogorov complexity is close to its original size.

This explanation is very informal and contains several inaccuracies—both technical and more
essential. First, instead of files (sequences of bytes) we will consider binary strings (finite se-
quences of bits, that is, of zeros and ones). The length of such a string is the number of symbols in
it. (For example, the string 1001 has length 4, and the empty string has length 0.)

Here are the more essential points:

• We consider only decompressing programs; we do not worry at all about compression. More
specifically, adecompressoris any algorithm (a program) that receives a binary string asan
input and returns a binary string as an output. If a decompressor D on inputx terminates
and returns stringy, we writeD(x) = y and say thatx is adescriptionof y with respect toD.
Decompressors are also calleddescription modes.

• A description mode is not required to be total. For somex, the computationD(x) may
never terminate and therefore produces no result. Also we donot put any constraints on the
computation time ofD: on some inputs the programD may halt only after an extremely long
time.

Using the recursion theory terminology, we say that a description mode is a partial computable
(=partial recursive) function fromΞ to Ξ, whereΞ stands for the set of all binary strings. Let us
remind that we associate with any algorithmD (whose inputs and outputs are binary strings) a
functiond computed byD; namely,d(x) is defined for a stringx if and only if D halts onx and
d(x) is the output ofD on x. A partial function fromΞ to Ξ is calledcomputableif it is associated
with (=computed by) some algorithmD. Usually we use the same letter to denote the algorithm
and the function it computes. So we writeD(x) instead ofd(x) unless it causes a confusion.

Assume that a description mode (a decompressor)D is fixed. For a stringx consider all its
descriptions, that is, ally such thatD(y) is defined and equalsx. The length of the shortest stringy
among them is called theKolmogorov complexityof x with respect toD:

KSD(x) = min{ l(y) | D(y) = x}.

Here l(y) denotes the length of the stringy; we use this notation throughout the book. The sub-
scriptD indicates that the definition depends on the choice of the description modeD. The min-
imum of the empty set is defined as+∞, thusKSD(x) is infinite for all the stringsx outside the
range of the functionD (they have no descriptions).

4

At first glance this definition seems to be meaningless, as fordifferentD we obtain quite differ-
ent notions, including ridiculous ones. For instance, ifD is nowhere defined, thenKSD is infinite
everywhere. IfD(y) = Λ (the empty string) for ally, then the complexity of the empty string is 0
(sinceD(Λ) = Λ andl(Λ) = 0), and the complexity of all other strings is infinite.

A more reasonable example: consider a decompressorD that just copies its input to output,
that is,D(x) = x for all x. In this case every string is its own description andKSD(x) = l(x).

Of course, for any given stringx we can find a description modeD that is tailored tox and with
respect to whichx has small complexity. Indeed, letD(Λ) = x. This impliesKSD(x) = 0.

More general, if we have some class of strings, we may look fora description mode that favors
all the strings in this class. For example, for the class of strings consisting of zeros only we may
consider the following decompressor:

D(bin(n)) = 000. . .000 (n zeros)

where bin(n) stands for the binary notation of natural numbern. The length of the string bin(n) is
about log2n (does not exceed log2n+1). With respect to this description mode, the complexity of
the string consisting ofn zeros is close to log2n. This is much less that the length of the string (n).
On the other hand, all strings containing symbol 1 have infinite complexityKD.

It may seem that the dependence of complexity on the choice ofthe decompressor makes
impossible any general theory of complexity. However, it isnot the case.

Optimal description modes

A description mode is better when descriptions are shorter.According to this, we say that a de-
scription mode (decompressor)D1 is not worsethan a description modeD2 if

KSD1(x) 6 KSD2(x)+c

for some constantc and for all stringsx.
Let us comment on the role of the constantc in this definition. We consider a change in the

complexity bounded by a constant as “negligible”. One couldsay that such a tolerance makes
the complexity notion practically useless, as the constantc can be very large. However, nobody
managed to get any reasonable theory that overcomes this difficulty and defines complexity with
better precision.

Example. Consider two description modes (decompressors)D1 andD2. Let us show that there
exists a description modeD which is not worse than both of them. Indeed, let

D(0y) = D1(y),

D(1y) = D2(y).

In other words, we consider the first bit of a description as the index of a description mode and the
rest as the description (for this mode).

5

If y is a description ofx with respect toD1 (or D2), then 0y (respectively, 1y) is a description of
x with respect toD as well. This description is only one bit longer, therefore we have

KSD(x) 6 KSD1(x)+1

KSD(x) 6 KSD2(x)+1

for all x. Thus the modeD is not worse than bothD1 andD2.
This idea is often used in practice. For instance, azip-archive has a preamble; the preamble

says (among other things) which mode was used to compress this particular file, and the com-
pressed file follows the preamble.

If we want to useN different compression modes, we need to reserve initial log2N bits for the
index of the compression mode.

Using a generalization of this idea, we can prove the following theorem:
{intro-universal

Theorem 1 (Kolmogorov-Solomonoff)There is a description mode D that is not worse than any
other one: for every description mode D′ there is a constant c such that

KSD(x) 6 KSD′(x)+c

for every string x.

A description modeD having this property is calledoptimal.
⊳ Recall that a description mode by definition is a computable function. Every computable

function has a program. We assume that programs are binary strings. Moreover, we assume
that reading the program bits from left to right we can determine uniquely where it ends, that is,
programs are “self-delimiting”. Note that every programming language can be modified in such a
way that programs are self-delimiting. For instance, we candouble every bit of a given program
(changing 0 to 00 and 1 to 11) and append the pattern 01 to its end.

Define now a new description modeD as follows:

D(py) = p(y)

wherep is a program (in the chosen self-delimiting programming language) andy is any binary
string. That is, the algorithmD scans the input string from the left to the right and extractsa
programp from the input. (If the input does not start with a valid program,D does whatever it
wants, say, goes into an infinite loop.) ThenD applies the extracted programp to the rest of the
input (y) and returns the obtained result. (SoD is just an “universal algorithm”, or “interpreter”;
the only difference is that program and input are not separated and therefore we need to use self-
delimiting programming language.)

Let us show that indeedD is not worse than any other description modeP. Let p be a pro-
gram computing a functionP and written in the chosen programming language. Ify is a shortest
description of the stringx with respect toP thenpy is a description ofx with respect toD (though
not necessarily a shortest one). Therefore, compared toP, the shortest description is at mostl(p)
bits longer, and

KSD(x) 6 KSP(x)+ l(p).

6

The constantl(p) depends only on the description modeP (and not onx). ⊲

Basically, we used the same trick as in the preceding example; instead of merging two descrip-
tion modes we join all of them. Each description mode is prefixed by its index (program, identifier).
The same idea is used in practice. Aself-extracting archiveis an executable file starting with a
small program (a decompressor); the rest is considered as input to that program. The program is
loaded into the memory and then it decompresses the rest of the file.

Note that in our construction optimal decompressor works very long on some inputs (some
programs have large running time), and is undefined on some inputs.

Kolmogorov complexity

Fix an optimal description modeD and callKSD(x) theKolmogorov complexityof the stringx. In
the notationKSD(x) we drop the subscriptD and write justKS(x).

If we switch to another optimal description mode, the changein complexity is bounded by an
additive constant: for every optimal description modesD1 andD2 there is a constantc(D1,D2)
such that

|KSD1(x)−KSD2(x)| 6 c(D1,D2)

for all x. Sometimes this inequality is written as follows:

KSD1(x) = KSD2(x)+O(1),

whereO(1) stands for a bounded function ofx.
Could we then consider the Kolmogorov complexity of a particular stringx without having in

mind a specific optimal description mode used in the definition of KS(x)? No, since by adjusting
the optimal description mode we can make the complexity ofx arbitrarily small or arbitrarily large.
Similarly, the relation “stringx is simpler thany”, that is,KS(x) < KS(y), has no meaning for two
fixed stringsx andy: by adjusting the optimal description mode we can make any ofthese two
strings simpler than the other one.

One may wonder whether Kolmogorov complexity has any sense at all. Let us recall the
construction of the optimal description mode used in the proof of the Solomonoff–Kolmogorov
theorem. This construction uses some programming language, and two different choices of this
language lead to two complexities that differ at most by a constant. This constant is in fact the
length of the program that is written in one of these two languages and interprets the other one. If
both languages are “natural”, we can expect this constant tobe not that huge, just several thousands
or even several hundreds. Therefore if we speak about strings whose complexity is, say, about 105

(i.e., a text of a novel), or 106 (DNA string) then the choice of the programming language is not
that important.

Nevertheless one should always remember that all statements about Kolmogorov complexity
are inherently asymptotic: they involve infinite sequencesof strings. This situation is typical also
for computational complexity: usually upper and lower bounds for complexity of some computa-
tional problem are asymptotic bounds.

7

Complexity and information

One can consider the Kolmogorov complexity ofx as theamount of informationin x. Indeed, a
string consisting of 0s, which has a very short description,has little information, and a chaotic
string, which cannot be compressed, has a lot of information(although that information can be
meaningless—we do not try to distinguish between meaningful and meaningless information; so,
in our view, any abracadabra has much information unless it has a short description).

If the complexity of a stringx is equal tok, we say thatx hask bits of information. One can
expect that the amount of information in a string does not exceed its length, that is,KS(x) 6 l(x).
This is true (up to an additive constant, as we have already said).

{intro-length
Theorem 2 There is a constant c such that

KS(x) 6 l(x)+c

for all strings x.

⊳ Let P(y) = y for all y. ThenKSP(x) = l(x). By optimality, there exists somec such that

KS(x) 6 KSP(x)+c = l(x)+c

for all x. ⊲

Usually this statement is written as follows:KS(x) 6 l(x)+O(1). Theorem 2 implies, in par-
ticular, that Kolmogorov complexity is always finite, that is, every string has a description.

Here is another property of “amount of information” that onecan expect: the amount of in-
formation does not increase when algorithmic transformation is performed. (More precisely, the
increase is bounded by an additive constant depending on thetransformation algorithm.)

{intro-transform
Theorem 3 For every algorithm A there exists a constant c such that

KS(A(x)) 6 KS(x)+c

for all x such that A(x) is defined.

⊳ Let D be an optimal decompressor that is used in the definition of the Kolmogorov complex-
ity. Consider another decompressorD′:

D′(p) = A(D(p)).

(We apply firstD and thenA.) If p is a description of a stringx with respect toD andA(x) is
defined, thenp is a description ofA(x) with respect toD′. Let p be a shortest description ofx with
respect toD. Then we have

KSD′(A(x)) 6 l(p) = KSD(x) = KS(x).

By optimality we obtain

KS(A(x)) 6 KSD′(A(x))+c 6 KS(x)+c

8

for somec and allx. ⊲

This theorem implies that the amount of information “does not depend on the specific encod-
ing”. For instance, if we reverse all bits of some string (replace 0 by 1 and vice versa), or add a
zero bit after each bit of that string, the resulting string has the same Kolmogorov complexity as
the original one (up to an additive constant). Indeed, the transformation itself and its inverse can
be performed by an algorithm.

Let x andy be strings. How much information has their concatenationxy? We expect that the
quantity of information inxy does not exceed the sum of those inx andy. This is indeed true,
however, a small additive term is needed.

{intro-pair
Theorem 4 There is a constant c such that for all x and y

KS(xy) 6 KS(x)+2logKS(x)+KS(y)+c

⊳ Let us try first to prove the statement in a stronger form, without the term 2logKS(x). Let D
be the optimal description mode that is used in the definitionof Kolmogorov complexity. Define
the following description modeD′. If D(p) = x andD(q) = y we considerpq as a description of
xy, that is, we letD′(pq) = xy. Then the complexity ofxy with respect toD′ does not exceed the
length ofpq, that is,l(p)+ l(q). If p andq are minimal descriptions then we obtainKSD′(xy) 6

KSD(x)+KSD(y). By optimality the same inequality holds forD in place ofD′, up to an additive
constant.

What is wrong with this argument? The problem is thatD′ is not well defined. We letD′(pq) =
D(p)D(q). However,D′ has no means to separatep from q. It may happen that there are two ways
to split the input intop andq yielding different results:

p1q1 = p2q2 but D(p1)D(q1) 6= D(p2)D(q2).

There are two ways to fix this bug. The first one, which we use now, goes as follows. Let
us prepend the stringpq by the lengthl(p) of string p (in binary notation). This allows us to
separatep andq. However, we need to find wherel(p) ends, so let us double all the bits in the
binary representation ofl(p) and then put 01 as separator. More specifically, let bin(k) denote the
binary representation of integerk and letx be the result of doubling each bit inx. (For example,
bin(5) = 101, andbin(5) = 110011.) Let

D′(bin(l(p))01pq) = D(p)D(q).

ThusD′ is well defined: the algorithmD′ scansbin(l(p)) while all the digits are doubled. Once it
sees 01, it determinesl(p) and then scansl(p) digits to find p. The rest of the input isq and the
algorithm is able to computeD(p)D(q).

Now we see thatKSD′(xy) is at most 2l(bin(l(p)))+2+ l(p)+ l(q). The length of the binary
representation ofl(p) is at most log2 l(p)+ 1. Therefore,xy has a description of length at most
2 log2 l(p)+4+ l(p)+ l(q) with respect toD′, which implies the statement of the theorem.⊲

The second way to fix the bug mentioned above goes as follows. We could modify the defini-
tion of Kolmogorov complexity by requiring descriptions tobe “self-delimiting”; we discuss this
approach in detail in Section 4.

9

Note also that we can exchangep and q and thus prove thatKS(xy) 6 KS(x) + KS(y) +
2log2KS(y)+c.

How tight is the inequality of Theorem 4? CanKS(xy) be much less thanKS(x) + KS(y)?
According to our intuition, this happens whenx andy have much in common. For example, if
x = y, we haveKS(xy) = KS(xx) = KS(x)+O(1), sincexx can be algorithmically obtained from
x and vice versa (Theorem 3).

To refine this observation we will define the notion of the quantity of information in x that
is missing iny (for every stringsx andy). This value is called thethe Kolmogorov complexity
of x conditional to y(or “given y”). Its definition is similar to the definition of the unconditional
complexity. This time the decompressorD has access not only to the (compressed) description,
but also to the stringy. We will discuss this notion later in Section 2. Here we mention only that
the following equality holds:

KS(xy) = KS(y)+KS(x|y)+O(logn)

for all stringsx and y of complexity at mostn. The equality reads as follows: the amount of
information inxy is equal to the amount of information iny plus the amount of new information
in x (“new” = missing iny).

The differenceKS(x)−KS(x|y) can be considered as “the quantity of information iny about
x”. It indicates how much the knowledge ofy simplifiesx.

Using the notion of conditional complexity we can ask questions like this: How much new
information has DNA of some organism compared to another organism’s DNA? Ifd1 is the binary
string that encodes the first DNA andd2 is the binary string that encodes the second DNA, then the
value in question isKS(d1|d2). Similarly we can ask what percentage of information has been lost
when translating a novel into another language: this percentage is the fraction

KS(original|translation)/KS(original).

The questions about information in different objects were studied before the invention of algo-
rithmic information theory. The information was measured using the notion of Shannon entropy.
Let us recall its definition. Letξ be a random variable that takesn values with probabilities
p1, . . . , pn. Then its Shannon entropyH(ξ) is defined as follows:

H(ξ) = ∑ pi(− log2 pi).

Informally, the outcome having probabilitypi carries(− log2 pi) bits of information (=surprise).
ThenH(ξ) can be understood as the average amount of information in an outcome of the random
variable.

Assume that we want to use Shannon entropy to measure the amount of information contained
in some English text. To do this we have to find an ensemble of texts and a probability distribution
on this ensemble such that the text is “typical” with respectto this distribution. This makes sense
for a short telegram, but for a long text (say, a novel) such anensemble is hard to imagine.

The same difficulty arises when we try to define the amount of information in the genome of
some species. If we consider as the ensemble the set of the genomes of all existing species (or even

10

all species ever existed), then the cardinality of this set is rather small (it does not exceed 21000 for
sure). And if we consider all its elements as equiprobable (what else can we choose?) then we
obtain a ridiculously small value (less than 1000 bits).

So we see that in these contexts Kolmogorov complexity lookslike a more adequate tool than
Shannon entropy.

Complexity and randomness

Let us recall the inequalityKS(x) 6 l(x)+O(1) (Theorem 2). For most of the strings its left hand
side is close to the right hand side. Indeed, the following statement is true:

{intro-cardinality
Theorem 5 Let n be an integer. Then there are less than2n strings x such that KS(x) < n.

⊳ Let D be the optimal description mode used in the definition of Kolmogorov complexity.
Then only stringsD(y) for all y such thatl(y) < n have complexity less thann. The number of
such strings does not exceed the number of stringsy such thatl(y) < n, i.e., the sum

1+2+4+8+ . . .+2n−1 = 2n−1

(there are 2k strings for each lengthk < n). ⊲

This implies that the fraction of strings of complexity lessthan n− c among all strings of
lengthn is less than 2n−c/2n = 2−c. For instance, the fraction of strings of complexity less than 90
among all strings of length 100 is less than 2−10.

Thus the majority of strings (of a given length) are incompressible or almost incompressible.
In other words, a randomly chosen string of the given length is almost incompressible. This can
be illustrated by the following mental (or even real) experiment. Toss a coin, say, 80000 times and
get a sequence of 80000 bits. Convert it into a file of size 10000 bytes (8 bits = 1 byte). One can
bet that no compression software (existing before the startof the experiment) can compress the
resulting file by more than 10 bytes. Indeed, the probabilityof this event is less than 2−80 for every
fixed compressor, and the number of (existing) compressors is not so large.

It is natural to consider incompressible strings as “random” ones: informally speaking, ran-
domness is the absence of any regularities that may allow us to compress the string. Of course,
there is no strict borderline between “random” and “non-random” strings. It is ridiculous to ask
which strings of length 3 (000, . . . ,111) are random and which are not.

Another example: assume that we start with a “random” stringof length 10000 and replace its
bits by all zeros (one bit at a step). At the end we get a certainly non-random string (zeros only).
But it would be naive to ask at which step the string has becomenon-random for the first time.

Instead, we can naturally define therandomness deficiencyof a stringx as the differencel(x)−
KS(x). Using this notion, we can restate Theorem 2 as follows: the randomness deficiency is
almost non-negative (i.e., larger than a constant). Theorem 5 says that the randomness deficiency
of a string of lengthn is less thand with probability at least 1−1/2d (assuming that all strings are
equiprobable).

Now consider the Law of Large Numbers, which says that most ofthen-bit strings have fre-
quency of ones close to 1/2. This law can be translated into Kolmogorov complexity language as

11

follows: the frequency of ones in every string with small randomness deficiency is close to 1/2.
This translation implies the original statement since mostof the strings have small randomness
deficiency. We will see further that actually these formulations are equivalent.

If we insist on drawing a strict borderline between random and non-random objects, we have
to consider infinite sequences instead of strings. The notion of randomness for infinite sequences
of zeros and ones was defined by Kolmogorov student P. Martin-Löf (Sweden). We discuss it
in Section 3. Later L. Levin and C. Schnorr found a characterization of randomness in terms of
complexity: an infinite binary sequence is random if and onlyif the randomness deficiency of its
prefixes is bounded by a constant. This criterion, however, uses another version of Kolmogorov
complexity calledmonotonecomplexity.

Non-computability of KS and Berry’s paradox

Before discussing applications of Kolmogorov complexity,let us mention a fundamental problem
that reappears in any application. Unfortunately, the function KS is not computable: there is no
algorithm that given a stringx finds its Kolmogorov complexity. Moreover, there is no computable
nontrivial (unbounded) lower bound forKS.

{intro-nobound
Theorem 6 Let k be a computable(not necessarily total) function fromΞ to N. (In other words,
k is an algorithm that terminates on some binary strings and returns natural numbers as results.)
If k is a lower bound for Kolmogorov complexity, that is, k(x) 6 KS(x) for all x such that k(x) is
defined, then k is bounded: all its values do not exceed some constant.

⊳ The proof of this theorem is a reformulation of the so-called“Berry’s paradox”. This paradox
considers

the minimal natural number that cannot be defined
by at most fourteen English words.

This phrase has exactly fourteen words and defines that number. Thus we get a contradiction.
Following this idea consider thefirst appearing binary string whose Kolmogorov complexity is

greater than a given number N.By definition, its complexity is greater thanN. On the other hand,
this strings has a short description that includes some fixedamount of information plus the binary
notation ofN (which requires about log2N bits), and the total number of bits needed is much less
thanN for largeN—a contradiction. How to find such a string? To this end we needa computable
lower bound for Kolmogorov complexity.

We proceed as follows. Consider the functionB(N), whose argumentN is a natural number
and which is computed by the following algorithm:

perform in parallel the computationsk(Λ),k(0),k(1),k(00),k(01),k(10),k(11), . . .un-
til some stringx such thatk(x) > N appears; returnx.

If the functionk is unbounded then the functionB is defined on allN andk(B(N)) > N by
construction. Ask is a lower bound forK, we haveKS(B(N)) > N. On the other handB(N) can
be computed given the binary representation bin(N) of N, therefore

KS(B(N)) 6 KS(bin(N))+O(1) 6 l(bin(N))+O(1) 6 log2N+O(1)

12

(the first inequality is provided by Theorem 3, the second oneis provided by Theorem 2; term
O(1) stands for a bounded function). So we obtain

N < KS(B(N)) 6 log2N+O(1),

which cannot happen ifN is large enough.⊲

Some applications of Kolmogorov complexity

Let us start with a disclaimer: the applications we will talkabout are not real “practical” applica-
tions; we just establish relations between Kolmogorov complexity and other important notions.

Occam’s razor. We start with a philosophical question. What do we mean when we say that a
theory provides a good explanation for some experimental data? Assume that we are given some
experimental data and there are several theories to explainthe data. For example, the data might be
the observed positions of planets in the sky. We can explain them as Ptolemy did, with epicycles
and deferents, introducing extra corrections when needed.On the other hand, we can use the
laws of the modern mechanics. Why do we think that the modern theory is better? A possible
answer: the modern theory can compute the positions of planets with the same (or even better)
accuracy given less parameters. In other words, Kepler’s achievement is a shorter description of
the experimental data.

Roughly speaking, experimenters obtain binary strings andtheorists find short descriptions for
them (thus proving upper bounds for complexities of those strings); the shorter the description is,
the better is the theorist.

This approach is sometimes called “Occam’s razor” and is attributed to the philosopher William
of Ockham who said that entities should not be multiplied beyond necessity. It is hard to judge
whether he would agree with such interpretation of his words.

We can use the same idea in more practical contexts. Assume that we design an automaton that
reads handwritten zip codes on envelopes. We are looking fora rule that separates, say, images of
zeros from images of ones. An image is given as a Boolean matrix (or a binary string). We have
several thousands of images and for each image we know whether it means 0 or 1. We want to
find a reasonable separating rule (with the hope that it can beapplied to the forthcoming images).
What means “reasonable” in this context? If we just list all the images in our list together with
their classification, we get a valid separation rule—at least it works until we receive a new image—
however, the rule is way too long. It is natural to assume thata reasonable rule must have a short
description, that is, it must have low Kolmogorov complexity.

Foundations of probability theory. The probability theory itself, being currently a part of
measure theory, is mathematically sound and does not need any extra “foundations”. The difficult
questions arise, however, if we try to understand why this theory could be applied to the real world
phenomena and how it should be applied.

Assume that we toss a coin thousand times (or test some other hardware random number gener-
ator) and get a bit string of length 1000. If this string contains only zeros or equals 0101010101. . .
(zeros and ones alternate), then we definitely will concludethat the generator is bad. Why?

Usual explanation: the probability of obtaining thousand zeros is negligible (2−1000) provided
the coin is fair. Therefore the conjecture of a fair coin is refuted by the result of the experiment.

13

On the other hand, we do not always reject the generator: there should be some sequence
α of thousand zeros and ones which is consistent with this conjecture. Note, however, that the
probability of obtaining the sequenceα as a result of fair coin tossing is also 2−1000. So what is
the reason of our complaints? What is the difference betweenthe sequence of thousand zeros and
the sequenceα?

The reason is revealed when we compare Kolmogorov complexities of these sequences.
Proving theorems of probability theory. As an example, consider the Strong Law of Large

Numbers. It claims that for almost all infinite binary sequences the limit of frequency of 1s in their
initial segments equals 1/2 (according to the the uniform Bernoulli probability distribution).

In more detail: LetΩ be the set of all infinite sequences of zeros and ones. The uniform
Bernoulli measure onΩ is defined as follows. For every finite binary stringx consider the setΩx

consisting of all infinite sequences that start withx. For example,ΩΛ = Ω. The measure ofΩx is
equal to 2−l(x). For example, the measure ofΩ01, which consists of all sequences starting with 01,
equals 1/4.

For each sequenceω = ω0ω1ω2 . . . consider the limit of the frequencies of 1s in the prefixes
of ω, that is,

lim
n→∞

ω0+ω1 + . . .+ωn−1

n
We say thatω “satisfies” the Strong Law of Large Numbers (SLLN) if this limit exists and is
equal to 1/2. For instance, the sequence 010101. . . , having period 2, satisfies the SLLN and the
sequence 011011011. . ., having period 3, does not.

The Strong Law of Large Numbers says that the set of sequencesthat do not satisfy SLLN has
measure 0. Recall that a setA ⊂ Ω has measure 0 if for allε > 0 there is a sequence of strings
x0,x1,x2, . . . such that

A⊂ Ωx0 ∪Ωx1 ∪Ωx2 ∪ . . .

and the sum of the series
2−l(x0) +2−l(x1) +2−l(x2) + . . .

(the sum of the measures ofΩxi) is less thanε.
One can prove SLLN using the notion of a Martin-Löf random sequence mentioned above. The

proof consists of two parts. First, we show that every Martin-Löf random sequence satisfies SLLN.
This can be done using Levin–Schnorr randomness criterion (if the limit does not exist or differs
from 1/2, then the complexity of some prefix is less than it should be for a random sequence).

The second part is rather general and does not depend on the specific law of probability theory.
We prove that the set of all Martin-Löf non-random sequences has measure zero. This implies
that the set of sequences that do not satisfy SLLN is includedin a set of measure 0 and hence has
measure 0 itself.

The notion of a random sequence is philosophically interesting in its own right. In the be-
ginning of XXth century Richard von Mises suggested to use this notion (he called it in German
“Kollektiv”) as a basis for probability theory (at that timethe measure theory approach was not
developed yet). He considered the so-called “frequency stability” as a main property of random
sequences. We will consider von Mises’ approach to the definition of a random sequence (and the
subsequent developments) in Section??.

14

Lower bounds for computational complexity. Kolmogorov complexity turned out to be a
useful technical tool in proving lower bounds for computational complexity. Let us explain the
idea using the following model example.

Consider the following problem: Initially a stringx of lengthn is located in then leftmost cells
of the tape of a Turing machine. The machine has to copyx, that is, to getxxon the tape (the string
x is intact and its copy is appended) and halt.

Since the middle of 1960ies it is well known that (one-tape) Turing machine needs time pro-
portional ton2 to perform this task. More specifically, one can show that forevery Turing machine
M that does copying (for all stringsx) there existsε > 0 such that for alln there is a stringx of
lengthn whose copying requires at leastεn2 steps.

Consider the following intuitive argument supporting thisclaim. The number of internal states
of a Turing machine is a constant (depending on the machine).That is, the machine can keep in its
memory only a finite number of bits. The speed of the head movement is also limited: one cell per
step. Hence the rate of information transfer (measured inbit · cell/step) is bounded by a constant
depending on the number of internal states. To copy a stringx of lengthn, we need to moven bits
by n cells to the right, therefore the number of steps should be proportional ton2 (or more).

Using Kolmogorov complexity, we can make this argument rigorous. A string is hard to copy
if it contains maximal amount of information, i.e., its complexity is close ton. We consider this
example in detail in Section 8.

A combinatorial interpretation of Kolmogorov complexity. We consider here one example
of this kind. One can prove the following inequality for complexity of three strings and their
combinations: {intro-triple

2KS(xyz) 6 KS(xy)+KS(xz)+KS(yz)+O(logn)

for all stringsx,y,zof length at mostn.
It turns out that this inequality has natural interpretations that are not related to complexity at

all. In particular, it implies the following geometrical fact:
Consider a bodyB in a three-dimensional Euclidean space with coordinate axes OX, OY and

OZ. LetV beB’s volume. ConsiderB’s orthogonal projections onto coordinate planesOXY, OXZ
andOYZ. Let Sxy, Sxz andSyz be the areas of these projections. Then

V2
6 Sxy ·Sxz·Syz.

Here is an algebraic corollary of the same inequality. For every groupG and its subgroupsX,
Y andZ we have

|X∩Y∩Z|2 >
|X∩Y| · |X∩Z| · |Y∩Z|

|G| ,

where|H| denotes the number of elements inH.
Gödel incompleteness theorem.Following G. Chaitin, let us explain how to use Theorem 6

in order to prove the famous Gödel incompleteness theorem.This theorem states that not all true
statements of a formal theory that is “rich enough” (the formal arithmetic and the axiomatic set
theory are two examples of such a theory) are provable in the theory.

Assume that for every stringx and every natural numbern, one can express the statement
KS(x) > n as a formula in the language of our theory. (This statement says that the chosen optimal

15

decompressorD does not outputx on any input of length at mostn; one can easily write this
statement in the formal arithmetic and therefore in the set theory.)

Let us generate all the proofs (derivations) in our theory looking for the proofs of statements of
the formKS(x) > n wherex is some string andn is some integer (statements of this type have no
free variables). Once we have found a new theorem of this type, we comparen with all previously
foundn’s. If the newn is greater than all previousn’s we write the newn into the “records table”
together with the correspondingxn.

There are two possibilities: either (1) the table will grow infinitely, or (2) there is the last
statementKS(X) > N in the table which remains unbeaten forever. If (2) happens,there is an entire
class of true statements that have no proof. Namely, all truestatements of the formKS(x) > n with
n > N have no proofs. (Recall that by Theorem 5 there are infinitelymany such statements.)

In the first case we have infinite computable sequences of strings x0,x1,x2 . . . and numbers
n0 < n1 < n2 < .. . such that all statementsKS(xi) > ni are provable. We assume that the theory
proves only true statements, thus all the inequalitiesKS(xi) > ni are true. Without loss of generality
we can assume that allxi are pairwise different (we can omitxi if there existsj < i such thatx j = xi ;
every string can occur only finitely many times in the sequencex0,x1,x2 . . . sinceni → ∞ asi → ∞).
The computable functionk, defined by the equationk(xi) = ni , is then an unbounded lower bound
of Kolmogorov complexity. This contradicts Theorem 6.

16

1 Plain complexity

1.1 The definition and main properties
{simpledf}

Let us recall the definition of Kolmogorov complexity from the Introduction. This version of
complexity was defined by Kolmogorov in his pioneer paper [?]. In order to distinguish it from later
versions we call it theplain Kolmogorov complexity. Later we will consider also other versions
of Kolmogorov complexity, including the prefix one and the monotone one. In this section by
Kolmogorov complexity we always mean the plain one.

Recall that adescription mode, or adecompressor, is a partial computable functionD from the
set of all binary stringsΞ into Ξ. A partial functionD is computableif there is an algorithm that
terminates and returnsD(x) on every inputx in the domain ofD and does not terminate on all other
inputs. We say thaty is adescriptionof x with respect to Dif D(y) = x.

The complexity of a stringx with respect to description mode Dis defined as

KSD(x) = min{l(y)|D(y) = x}.
The minimum of the empty set is+∞.

We say that a description modeD1 is not worsethan a description modeD2 if there is a con-
stantc such thatKSD1(x) 6 KSD2(x)+c for all x and write this asKSD1(x) 6 KSD2(x)+O(1).

A description mode is calledoptimal if it is not worse than any other description mode. By
Kolmogorov–Solomonoff universality theorem (Theorem 1, p. 6) optimal description modes exist.
Let us remind shortly its proof. LetU be an interpreter of a universal programming language, that
is,U(p,x) is the result of the programp on inputx. We assume that programs and inputs are binary
strings. Let

D(p̂x) = U(p,x).

Here p 7→ p̂ stands for any computable mapping having the following property: given p̂ we can
effectively findp and also the place where ˆp ends (in particular, if ˆp is a prefix ofq̂, thenp = q).
This property implies thatD is well defined. For any description modeD′ let p be a program of
D′. Then

KSD′(x) 6 KSD(x)+ l(p̂).

Indeed, for every descriptiony of x with respect toD′ the string ˆpy is a description ofx with respect
to D.

Fix any optimal description modeD and letKS(x) (we drop the subscript) denote the complex-
ity of x with respect toD.

As the optimal description mode is not worse than the identity functionx 7→ x, we obtain the
inequalityKS(x) 6 l(x)+O(1) (Theorem 2, p. 8).

Let A be a partial computable function. Comparing the optimal description modeD with the
description modey 7→ A(D(y)) we obtain the inequalityKS(A(x)) 6 KS(x)+O(1), which can be
interpreted as the non-growth of complexity under algorithmic transformations (Theorem 3, p. 8).

Using this inequality, we can define Kolmogorov complexity of other “finite objects” like nat-
ural numbers, graphs, permutations, finite sets of strings,etc., which can be naturally encoded by
binary strings.

17

For example, let us define the complexity of natural numbers.A natural numbern can be
written in binary notation. Another way to represent a number by a string is as follows. Enumerate
all the binary strings in the lexicographical order

Λ,0,1,00,01,10,11,000,001,010,011,100, . . .

using the natural numbers 0,1,2,3, . . . as indexes. This enumeration is more convenient compared
to binary representation, as it is a bijection. Every stringcan be considered as an encoding of its
index in this enumeration. Finally, a natural numbern can be represented by a string consisting of
n ones.

Using either of these three encodings we can define the complexity of n as the complexity of
the string encodingn. Three resulting complexities ofn differ at most by an additive constant.
Indeed, for every pair of these encodings there is an algorithm translating the first encoding into
the second one. Applying this algorithm, we increase the complexity at most by a constant. Note
that anyway the Kolmogorov complexity of binary strings is defined up to an additive constant.

As the length of the binary representation of a natural number n is equal to logn+ O(1), the
Kolmogorov complexity ofn is at most logn+O(1).

Here is another application of the non-growth of complexityunder algorithmic transformations.
Let us show that deleting the last bit of a string changes its complexity at most by a constant.
Indeed, all three functionsx 7→ x0, x 7→ x1, x 7→ (x without the last bit) are computable.

The same is true for the first bit. However this does not apply to every bit of the string. To
show this, consider the stringx consisting of 2n zeros, its complexity is at mostKS(n)+O(1) 6

logn+O(1). (By log we always mean binary logarithm.) There are 2n different strings obtained
from x by flipping one bit. At least one of them has complexityn or more. (Recall that the number
of strings of complexity less thann does not exceed the number of descriptions of length less than
n, which is less than 2n, Theorem 5, p. 11.)

Incrementing a natural numbern by 1 changesKS(n) at most by a constant. This implies that
KS(n) satisfies “Lipschitz property”: for somec and for allm,n we have|KS(m)−KS(n)| 6

c|m−n|.
1 Prove a stronger inequality:|KS(m)−KS(n)|6 |m−n|+c for somec and for allm,n∈N,

and, moreover,|KS(m)−KS(n)| 6 2log|m−n|+c (the latter inequality assumes thatm 6= n).

We have used several times the upper bound 2n for the number of stringsx with KS(x) < n.
Note that, in contrast to other bounds, it involves no constants. Nevertheless this bound has a
hidden dependence on the choice of the optimal description mode: if we switch to another optimal
description mode, the set of stringsx such thatKS(x) < n can change!

2 Show that the number of strings of complexity less thann is in the range[2n−c;2n] for some {distribution-plain-comple
constantc for all n. [Hint: the upper bound 2n is proved in Introduction, the lower bound is implied
by the inequalityKS(x) 6 l(x)+c: the complexity of all the strings of length less thann−c is less
thann.]

Show that the number of strings of complexity exactlyn does not exceed 2n but can be much
less: e.g., it is possible that this set is empty for infinitely manyn. [Hint: Change an optimal
description mode by adding 0 or 11 to each description, so that all descriptions have even length.]

18

3 Prove that the average complexity of strings of lengthn is equal ton+ O(1). [Hint: let {average-plain-complexity
αk denote the fraction of strings of complexityn−k among strings of lengthn. Then the average
compexity is by∑k kαk less thann. Use the inequalityαk 6 2−k and the convergence of the series
∑k/2k.]

In the next statement we establish a formal relation betweenupper bounds of complexity and
upper bounds of cardinality.

{simple-upper
Theorem 7 (a)The family of sets Sn = {x |KS(x) < n} is enumerable and|Sn|< 2n for all n. Here
|Sn| denotes the cardinality of Sn.

(b) If Vn (n = 0,1,2, . . .) is an enumerable family of sets of strings and|Vn| < 2n for all n, then
there exists c such that KS(x) < n+c for all n and all x∈Vn.

In this theorem we use the notion of an enumerable family of sets. It is defined as follows. A
set of strings (or natural numbers, or other finite objects) isenumerable(=computably enumerable)
if there is an algorithm generating all elements of this set in some order. This means that there is
a program that never terminates and prints all the elements of the set in some order. The intervals
between printing elements can be arbitrarily large; if the set is finite, the program can print nothing
after some time (unknown to the observer). Repetitions are allowed but this does not matter since
we can filter the output and delete the elements that have already been printed.

For example, the set of alln such that the decimal expansion of
√

2 has exactlyn consecutive
nines is enumerable. The following algorithm generates theset: compute decimal digits of

√
2

starting with the most significant ones. Once a sequence of consecutiven nines surrounded by
non-nines is found, printn and continue.

A family of setsVn is called enumerable if the set of pairs{〈n,x〉 | x∈Vn} is enumerable. This
implies that each of the setsVn is enumerable. Indeed, to generate elements of the setVn for a
fixedn we run the algorithm enumerating the set{〈n,x〉 | x∈Vn} and print the second components
of all the pairs that haven as the first component. However, the converse statement is not true.
For instance, assume thatVn is finite for everyn. Then everyVn is enumerable, but at the same
time it may happen that the set{〈n,x〉 | x ∈ Vn} is not enumerable (sayVn = {0} if n ∈ S and
Vn = ∅ otherwise, whereS is any non-enumerable set of integers). One can verify that afamily
is enumerable if and only if there is an algorithm that given any n finds a program generatingVn.
A detailed study of enumerable sets can be found in every textbook on computability theory, for
instance, in [?].

⊳ Let us prove the theorem. First, we need to show that the set{〈n,x〉 | x ∈ Sn} = {〈n,x〉 |
KS(x) < n}, wheren is a natural number andx is a binary string, is enumerable.

Let D be the optimal decompressor used in the definition ofKS. Perform in parallel the com-
putations ofD on all the inputs. (Say, fork = 1,2, . . . we makek steps ofD on k first inputs.) If
we find thatD halts on somey and returnsx, the generating algorithm outputs the pair〈l(y)+1,x〉.
Indeed, this implies that the complexity ofx is less thanl(y)+1, asy is a description ofx. Also it
outputs all the pairs〈l(y)+2,x〉,〈l(y)+3,x〉 . . . in parallel to printing of other pairs.

For those familiar with computability theory, this proof can be compressed to one line:

KS(x) < n⇔∃y(l(y) < n∧D(y) = x).

19

(The set of pairs〈x,y〉 such thatD(y) = x is enumerable, being the graph of a computable function.
The operations of intersection and projection preserve enumerability.)

The converse implication is a bit harder. Assume thatVn is an enumerable family of finite
sets of strings and|Vn| < 2n. Fix an algorithm generating the set{〈n,x〉 | x ∈ Vn}. Consider the
description modeDV that deals with strings of lengthn in the following way. Strings of lengthn
are used as descriptions of strings inVn. More specifically, letxk be thekth string inVn in the
order the pairs〈n,x〉 appear while generating the set{〈n,x〉 | x ∈ Vn}. (We assume there are no
repetitions, sox0,x1,x2 . . . are distinct.) Letyk be thekth string of lengthn in the lexicographical
order. Thenyk is a description ofxk, that is,D(yk) = xk. As |Vn| < 2n, every string inVn has a
description of lengthn with respect toD.

We need to verify that the description modeDV defined in this way is computable. To compute
DV(y) we find the indexk of y in the lexicographical ordering of strings of lengthl(y). Then we
run the algorithm generating pairs〈n,x〉 such thatx∈Vn and wait untilk different pairs having the
first componentl(y) appear. The second component of the last of them isDV(y).

By construction, for allx∈Vn we haveKSDV (x) 6 n. ComparingDV with the optimal descrip-
tion mode we see that there is a constantc such thatKS(x) < n+ c for all x ∈ Vn. Theorem 7 is
proven.⊲

The intuitive meaning of Theorem 7 is as follows. The assertions “the number of strings with
certain property is small” (is less than 2i) and “all the strings with certain property are simple” (have
complexity less thani) are equivalent provided the property under considerationis enumerable and
provided the complexity is measured within to an additive constant (and the number of elements is
measured within to a multiplicative constant).

Theorem 7 can be reformulated as follows. Letf (x) be a function defined on all binary strings
and taking as values natural numbers and a special value+∞. We call f upper semicomputable, or
enumerable from above, if there is a computable function〈x,k〉 7→ F(x,k) defined on all stringsx
and all natural numbersk such that

F(x,0) > F(x,1) > F(x,2) > . . .

and
f (x) = lim

k→∞
F(x,k),

for all x. The values ofF are natural numbers as well as+∞. The requirements imply that for
everyk the valueF(x,k) is an upper bound off (x). This upper bound becomes more precise ask
increases. For everyx there is ak for which this upper bound is tight. However, we do not know
the value of thatk. (If there is an algorithm that given anyx finds suchk, then the functionf is
computable.) Evidently, any computable function is upper semicomputable.

A function f is upper semicomputable if and only if the set

Gf = {〈x,n〉 | f (x) < n}

is enumerable. This set is sometimes called the “upper graphof f ”, which explains the strange
names “upper semicomputable” and “enumerable from above”.

20

Let us verify this. Assume that a functionf is upper semicomputable. LetF(x,k) be the
function from the definition of semicomputability. Then we have

f (x) < n⇔∃kF(x,k) < n.

Thus, performing in parallel he computations ofF(x,k) for all x andk, we can generate all the
pairs in the upper graph off .

Assume now that the setGf is enumerable. Fix an algorithm enumerating this set. Then define
F(x,k) as the best upper bound off obtained afterk steps of generating elements inGf . That is,
F(x,k) is equal to the minimaln such that the pair〈x,n+1〉 has been printed afterk steps. If there
is no such pair, letF(x,k) = +∞.

Using the notion of an upper semicomputable function we can reformulate Theorem 7 as fol-
lows.

{simple-upper-reformulated
Theorem 8 (a)The function KS is upper semicomputable and|{x | KS(x) < n}| < 2n for all n.

(b) If a function KS′ is upper semicomputable and|{x | KS′(x) < n}| < 2n for all n, then
KS(x) < KS′(x)+c for some c and for all x.

Note that the upper bound 2n of the cardinality of|{x |KS′(x) < n}| in item (b) can be replaced
by a weaker upper boundO(2n).

Theorem 8 allows to define Kolmogorov complexity as a minimal(up to an additive constant)
upper semicomputable functionK that satisfies the inequality|{x | K(x) < n}| = O(2n). One can
replace the requirement of minimality in this definition by some other properties ofKS. In this
way we obtain the following “axiomatic” definition of Kolmogorov complexity.

{simple-axiom
Theorem 9 Let K be any function defined on binary strings and taking natural values. Assume
that K satisfies the following properties:

(a) K is upper semicomputable;[enumerability axiom]
(b) for every partial computable function A fromΞ to Ξ the inequality K(A(x)) 6 K(x)+c is

valid for some c and all x in the domain of A;[complexity non-increase axiom]
(c) the number of strings x such that K(x) < n is in the range[2n−c1;2n+c2] for some c1,c2 and

for any n.[calibration axiom]
Then K(x) = KS(x)+O(1), that is, the difference|K(x)−KS(x)| is bounded by a constant.

⊳ Theorem 8 implies thatKS(x) 6 K(x)+ O(1). So we need to prove thatK(x) 6 KS(x)+
O(1).

Lemma 1. There is a constantc and a computable sequence of finite sets of binary strings

M0 ⊂ M1 ⊂ M2 ⊂ . . .

with the following properties: the setMi has exactly 2i strings andK(x) 6 i +c for all x∈ Mi and
all i.

Computability ofM0,M1,M2, . . . means that there is an algorithm that given anyi computes the
list of elements ofMi.

21

Proof. By axiom (c) there exists a constantc such that for alli the setAi = {x | K(x) < i +c}
has at least 2i elements. By item (a) the familyAi is enumerable. Remove fromAi all the elements
except 2i strings generated first. LetBi denote the resulting set. The list of the elements ofBi

can be found giveni: we wait until the first 2i strings are generated. The setBi is not necessarily
included inBi+1. To fix this we defineMi inductively. We letM0 = B0, and we letMi+1 be equal
to Mi plus any 2i elements ofBi+1 that are outsideMi . Lemma 1 is proved.

Lemma 2. There is a constantc such thatK(x) 6 l(x)+c for all x (recall thatl(x) denotes the
length ofx).

Proof. Let M0,M1,M2, . . . be the sequence of sets from the previous lemma. There is a com-
putable one-to-one functionA defined on the union of allMi that mapsMi+1 \Mi onto the set of
binary strings of lengthi. (Recall that the setMi+1 \Mi has exactly 2i strings.) By item (b) we
haveK(A(y)) 6 K(y)+c′ for somec′ and allx. For allx of lengthi there isy∈ Mi+1\Mi such that
A(y) = x henceK(x) 6 K(y)+c′ 6 i +c for somec and alli. Lemma 2 is proved.

Let us finish the proof of the theorem. LetD be the optimal description mode and letp be a
shortest description ofx with respect toD. ThenK(x) = K(D(p)) 6 K(p)+O(1) 6 l(p)+O(1) =
KS(x)+ O(1). Note that we have used twice the property (b): in the proof ofLemma 2 and just
now.⊲

4 Assume that strings over the alphabet{0,1,2,3} are used as descriptions. Prove that in this
case the Kolmogorov complexity, defined as the length of the shortest description (with respect to
an optimal description mode) is equal to the half of the regular complexity.

5 (Continued.) Formulate and prove a similar statement for then-letter alphabet.

6 Assume thatf : N → N is a total computable increasing function and liminff (n + {complexity-bound
1)/ f (n) > 1. Let An be an enumerable family of finite sets such that|An| 6 f (n) for all n. Prove
that there is a constantc such thatKS(x) 6 log f (n)+c for all n and allx∈ An.

7 Prove that for some constantc and for everyn the following holds. For every stringx
of lengthn one can flip a bit inx so that the resulting stringy satisfies the inequalityKS(y) 6

n− logn+ c. [Hint. For a given naturalk consider a Boolean matrix of sizek× (2k−1) whose
columns are all nonzero strings of lengthk. (Such matrix is used for Hamming codes.) Consider
the linear mappingB2k−1 → Bk defined by this matrix, whereB denotes the field{0,1}. It is easy
to verify that for every vectorx one can flip one bit inx so that the resulting stringy is in the kernel
of this mapping, and the elements of the kernel have complexity at most 2k−k+O(1). This gives
the desired result forn = 2k−1; if n has not the form 2k−1 we can flip one of the first 2k−1 bits
for an appropriatek.]

1.2 Algorithmic properties
{simpleal}

The functionKS is upper semicomputable. On the other hand, it is not computable and, moreover,
it has no unbounded computable lower bounds (Theorem 6 on page 12).

This implies that all optimal description modes are necessarily non-total, that is, some strings
describe nothing. Indeed, if a description modeD is total then we can computeKSD(x) just by
trying all descriptions in the lexicographical order untilwe find a shortest one.

22

At first glance, this contradicts to our intuition: the bigger the domain ofD is, the betterD is.
If optimal decompressorD is undefined on some stringy then we can define another description
modeD′ as follows. LetD′(y) be equal to a stringz of complexity (with respect toD) greater than
l(y) and letD′ coincide withD on all other strings. The description modeD′ is a bit better than
D, as the complexity of all strings exceptz remains the same while the complexity ofz has been
decreased.

There is no formal contradiction here, asD is still not worse thanD′ (the difference is only
for one point, bounded by a constant, and bothD and D′ are optimal). However, this is still
a bit strange. This observation was made by Yu. Manin in his book “Computable and non-
computable” [?] (by the way, in this book he also discussed the power of quantum computers
long before quantum computing became fashionable).

Note that the domain of every optimal description mode is undecidable. (The set of strings is
calleddecidableif there is an algorithm that for any given string decides whether it belongs to the
set or not.) Indeed, if there were an algorithm deciding whetherD(x) is defined or not, then there
would be a total computable extension ofD (sayD(x) = 0 for all x outside the domain ofD). This
extension would be a total optimal description mode, but this is impossible as we have seen.

As a byproduct we get an algorithm whose domain is undecidable. This is one of the central
theorems in computability theory (see, for example, [?]).

Below we consider other applications of Kolmogorov complexity in Computability theory.

Simple strings and simple sets

In this section, the word “simple” has two unrelated meanings. First, when applied to strings,
it means that the Kolmogorov complexity of the string is small. Second, it is applied to sets of
strings. The notion of a simple set was introduced by an American logician Emil Post and has no
relation to Kolmogorov complexity.

Definition. An enumerable setA is simple(according to Post) if its complement is infinite but
has no infinite enumerable subsets.

Call a stringx “simple” if KS(x) < l(x)/2.
{simple-set

Theorem 10 The set of all “simple” strings is simple in the sense of Post.

⊳ That setSof all “simple” strings is enumerable. Indeed, the functionKS is upper semicom-
putable. Run an algorithm that generates all the pairs〈x,n〉 such thatKS(x) < n. Once we see a
pair 〈x,n〉 with n 6 l(x)/2 we printx.

The number of strings of complexity less thann/2 does not exceed 2n/2. Therefore the fraction
of “simple” strings among strings of lengthn is negligible, and the complement ofS is infinite.

Assume now that the complement ofShas an infinite enumerable subsetC. We can useC to
obtain a computable unbounded lower bound ofKS. To find a string of complexity greater thant
we can generate elements ofC until we find a stringct of length greater than 2t. As C is infinite,
there is such string. The complexity ofct is greater thant, otherwisect is simple. Without loss of
generality we can assume that the stringsct , t = 1,2, . . . are pairwise different. Thus the function

23

ct 7→ t is a computable unbounded lower bound ofKS. This contradicts to Theorem 6 (page 12).
Theorem 10 is proved.⊲

Note that the choice of the boundl(x)/2 in the definition of a simple string was not essential.
The proof Theorem 10 would work as well withl(x)−1 or loglogl(x) in place ofl(x)/2.

Complexity of large numbers

Let us identify a natural numberm with the binary string having indexm in the standard enumer-
ation of binary strings. In this wayKS becomes a function of a natural argument. The function
KS(m) goes to infinity asm→ ∞. Indeed, for alln there are only finitely many integers of com-
plexity less thann. However the convergence is not effective. That is, there isno algorithm that
for every givenn finds a numberN such that the complexity ofN and of all larger numbers is
bigger thann. Indeed, such an algorithm would provide an effective way todescribe the number
N, whose complexity is at leastn, in logn+O(1) bits. We have seen this in the proof of Theorem 6
on page 12.

In this section, we study in detail the rate of convergence ofKS to infinity. For every naturaln
consider the largest numberB(n) whose complexity is at mostn:

B(n) = max{m∈ N | KS(m) 6 n}

The functionn 7→ B(n) may be called the “regulator” of the convergence ofKS(m) to infinity.
Indeed,K(x) > n for all x > B(n). It can happen, for small values ofn, thatKS(m) > n for all m.
In this case we letB(n) = −1.

m

KS(m)

n−1

B(n−1)

n

B(n) = B(n+1)

n+1

Figure 1: The definition ofB(n): the valueKS(m) does not exceedn−1 for m= B(n−1) (the case
whenKS(B(n−1)) = n−1 is shown), andKS(m) > n for all m> B(n−1). At the pointm= B(n)
the value ofKS does not exceedn (the case whenKS(B(n)) = n is shown), andKS(m) > n for
all m> B(n). The case whenKS(m) is even greater thann+ 1 for all m> B(n) is shown, thus
B(n+1) = B(n). Form∈ (B(n−1),B(n)] the value of the functionKS>(m) is equal ton.

The functionB is in a sense an inverse function to the functionKS>(N) = min{KS(m) | m>

N}. The functionKS> increases very slowly. It takes the valuen on the segment(B(n−1),B(n)].
The slow increase ofKS> corresponds to the fast increase ofB . The latter can be illustrated by
the following

24

Theorem 11 Let f be a computable function fromN to N. Then B(n) > f (n) for all but finitely
many n.

Note thatf may be a partial function. In this case we claim thatB(n) > f (n) for all sufficiently
largen that are in the domain off .

⊳ As algorithmic transformations do not increase complexity, for some constantc for all n we
have

KS(f (n)) 6 KS(n)+O(1) 6 logn+c.

On the other hand, the definition ofB and the inequalityf (n) > B(n) imply KS(f (n)) > n. Thus

n < KS(f (n)) 6 logn+c

wheneverf (n) > B(n). This can happen only for finitely manyn. ⊲

Let us reformulate the definition ofB(n) as follows. LetD be the optimal description mode
used in the definition of Kolmogorov complexity. ThenB(n) is the maximal value ofD on strings
of length at mostn:

B(n) = max{D(x) | l(x) 6 n}.
Recall that we identify natural numbers and binary strings and consider the values ofD as natural
numbers. The minimum of the empty set is defined as−1.

Consider now any partial computable functiond : Ξ → N in place ofD and let

Bd(n) = max{d(x) | l(x) 6 n andd(x) is defined}.
Next theorem shows that the functionB is the largest function among all functionsBd, in the
following sense:

Theorem 12 For every function d there is a constant c such that Bd(n) 6 B(n+c) for all n.

⊳ For everyx of length at mostn the complexity ofd(x) is less thann+c for some constantc.
Indeed, the complexity ofd(x) exceeds at most by a constant the complexity ofx, which is less
thann+ O(1). Henced(x) does not exceed the largest number of complexityn+ c or less, i.e.,
B(n+c). ⊲

This observation is useful in the following particular case. Let M be an algorithm andX a set
of binary strings. Ahalting problemfor M restricted toX is the following problem: given a string
x∈ X, find out whetherM terminates onx or not.

A classical result in computability theory states that for some algorithmM the unrestricted
halting problem (X = Ξ) for M is undecidable.

We are interested now in the case whenX is the set of all strings of bounded length. Fix some
algorithmM and consider the running timet(x) of M for some inputx. If M does not halt onx,
thent(x) is undefined. Thus the domains oft andM coincide. By definition,B t(n) is the maximal
running time ofM on inputs of length at mostn. If we know B t(n) or any larger numberm, we
can solve the halting problem forM and every inputx of length at mostn: RunM on inputx if the
computation does not terminate afterm steps, it never terminates.

We have seen thatB t(n) 6 B(n+ c) for some constantc (depending onM). Therefore the
knowledge ofB(n+ c) or any greater number is enough to solve the halting problem of M on
inputs of length at mostn. In other words, the following holds:

25

Theorem 13 For every algorithm M there is a constant c and another algorithm A having the
following property. For every n and for every number t> B(n+c) the algorithm A, given n and t,
produces the list of all strings x of length at most n such thatM halts on input x.

This theorem says that the halting problem for inputs of length at mostn is reducibleto the
problem of finding a number greater thanB(n+c).

If M is the optimal decompressorD then the converse is also true: givenn and the list of all
stringsx of length at mostn in the domain ofD we can findB(n).

Continuing this argument, we can show the following:
{b-versus-bb

Theorem 14 Let BB(n) denote the largest running time of the optimal decompressorD on strings
of length at most n(in the domain of D). Then

BB(n) 6 B(n+c) and B(n) 6 BB(n+c)

for some c and all n.

⊳ Let αn be the most time-consuming description of length at mostn, that is, the stringx of
length at mostn in the domain ofD that maximizes the running time ofD on x. The list of all
strings of length at mostn in the domain ofD, and hence the numberBB(n), can be found givenn
andαn. This information can be encoded in one string of lengthn+1, the string 0. . .01αn (there
aren− l(αn) zeros in the beginning). Thus Kolmogorov complexity ofBB(n) is at mostn+O(1),
and thereforeBB(n) 6 B(n+c) for somec and alln.

Let us prove the second inequality of the theorem. Given anyt > BB(n) andn we can find
a string of complexity bigger thann: we runD on all inputs of length at mostn within t steps to
find the list of all strings of complexity at mostn and then take the first string that is not listed.
SoKS(t) bits plus 2 logn bits for self-delimiting description ofn are enough to specify a string of
complexity greater thann. Therefore,KS(t) > n−2logn−O(1) for all t > BB(n). This implies
thatBB(n) > B(n−2logn−c).

This inequality is weaker than claimedBB(n) > B(n−c). To get rid of the term 2logn note
that actually we do not need to known exactly. It is enough to know anyn′ > n. Indeed, we can
run D on all inputs of length at mostn′ within t steps and then take the first string that has not
appeared as the output ofD.

As suchn′ we can taket itself. Indeed, we havet > BB(n) > B(n−2logn−c) ≫ n provided
n is large enough. Thus given everyt > BB(n) we can find a string of complexity bigger thann,
therefore the complexity oft is at leastn−O(1). HenceBB(n) > B(n−O(1)). ⊲

This theorem shows that, within to an additive constant in the argument,B(n) is the maximal
running time of the optimal decompressor on descriptions oflength at mostn. A similar function
appeared in the literature under the name of “busy beaver function”. It is defined as the maximal
number of 1s on the tape of Turing machine withn states and binary tape alphabet (1 and blank)
after it terminates (starting with blank tape).

More generally, givenn and any object from the following list we can find any other object
from the list for a little bit smaller value ofn:

26

(a) the list of all strings of Kolmogorov complexity at mostn with their Kolmogorov complexities;

(b) the number of such strings;

(c) the numberB(n);

(d) the numberBB(n);

(e) the list of all strings of length at mostn in the domain of the optimal decompressor (the halting
problem for the optimal decompressor restricted to inputs of length at mostn);

(f) the number of such strings;

(g) the most time-consuming description of length at mostn;

(h) the graphTn of the functionKS(x) on stringsx of lengthn;

(i) the lexicographically first stringγn of lengthn with Kolmogorov complexity at leastn (it exists
since the number of strings of complexity less thann is less than 2n).

More specifically, the following statement holds.
{quasi-omega-words

Theorem 15 The complexity of all objects in items(a)–(i) is equal to n+O(1). They are equivalent
to each other in the following sense: Let Xn and Yn are objects from any two of items(a)–(i). Then
there is a constant c and an algorithm that given n and Xn finds Yn−c.

⊳ The equivalence of (d), (e), (f) and (g) is easy. Each of the objects (d), (e), (f) and (g)
together withn determines the list of all terminating computations of the optimal decompressor
D on strings of length at mostn. Indeed, knowingBB(n) we can runD on all inputs of length at
mostn for BB(n) steps. Knowing (e), that is, the list of strings of length at mostn in the domain
of D, we can runD on all those strings until all the computations terminate (and we know that this
happens). Knowing (f), the number of strings on whichD terminates, we runD on all strings of
length at mostn until the desired number of computations do terminate. Knowing the string (g),
we runD on that string, count the number of stepst and then runD on all other strings of length at
mostn for t steps.

Conversely, the list of all halting computations of the optimal decompressorD on strings of
length at mostn together withn identifies each of the objects (d)–(g), as well as the objects(a)–(c).
Therefore, by transitivity (which is easy to check) all the objects (d)–(g) are equivalent.

Let us prove now that (a)–(c) are equivalent to each other andequivalent to (d)–(g). Given the
list of strings of complexity at mostn we can find the number of them ((a)→(b)) and the largest
number of complexity at mostn ((a)→(c)).

It is not that easy to find (a) given (b) andn. Givenn and the number of strings of complexity
at mostn we can reconstruct the list of these strings (generating them until we obtain the desired
number of strings). But we still do not know Kolmogorov complexity of the generated strings.
We will prove the implication (c)→(a) indirectly, by showing (c)→(d); we know already that (d)
implies (a). This will prove that all objects (a)–(g) are equivalent.

27

The implication (c)→(d) follows from Theorem 14. GivenB(n), we can find an upper bound
for BB(n−c) (for appropriatec). Thus we can findBB(n−c) as follows: runD on all inputs of
length at mostn−c within B(n) steps. Then findBB(n−c) as the number of steps in the longest
run.

It remains to consider the objects (h) and (i). The implication (a)→(h) is easy. Indeed, for some
constantc the complexity of every string of lengthn−c does not exceedn. If we know the list (a)
andn, then removing all the strings of length different fromn−c from the list, we get (h) forn−c.

The conversion (h)→(i) is straightforward.
Thus it remains to prove (i)→(a). It is enough to show that given the lexicographically first

string γn of lengthn and complexity at leastn we can findBB(n−O(1)) or a number greater
thanBB(n−O(1)). This can be done as follows.

Givenγn find n and for each stringx of lengthn precedingγn in the lexicographical order find a
descriptionpx of x that has lengthn or less, and find out the running timetx of D on px. (Note that
px may be not the shortest description ofx.) Let T be the maximum oftx for thosex. We claim that
T > BB(n−c) for somec that does not depend onn. Assume that this inequality is false, that is,
T 6 BB(n−c). We will prove that thenc is small. Consider the most time-consuming description
αn−c of length at mostn−c; let n−c−d be its length. Givenαn−c andc+d we can findn and
BB(n−c). From this we can findγn: runD on all strings of length at mostnwithin BB(n−c) steps.
Consider all the strings of lengthn for which we have found descriptions of lengthnor less. Thenγn

is the lexicographically first remaining string (sinceT 6 BB(n−c) according to our assumption).
As the complexity ofγn is at leastn we haven6 KS(γn) 6 (n−c−d)+2log(c+d)+O(1), hence
(c+d) = O(1).

We have thus proved the equivalence of objects (a)–(h). It remains to prove that complexity of
each of them isn+O(1).

Let Xn be one of objects (a)–(h). We have just proved thatXn can be obtained fromγn+c andn
(actually, we do not needn, asn= l(γn+c)−c). Therefore,KS(Xn) 6 KS(γn+c)+O(1)6 n+O(1).

To prove the lower bound ofKS(Xn) let n−d be the complexity ofXn. For some constantc the
stringγn−c can be obtained from the shortest description ofXn of lengthn−d and fromd (note that
n can be retrieved from the length of the shortest descriptionandd). Thus,n− c 6 KS(γn−c) 6

(n−d)+2logd+O(1). Therefored 6 2logd+c+O(1) and henced = O(1). ⊲

8 The objects in Theorem 15 depend on the choice of the optimal decompressor. In the proof
we assumed that the same optimal decompressor is used in all the items (a)–(h). Prove that the
statement of the theorem remains true if different decompressors are used.

9 Prove that the complexity of all the objects in Theorem 15 becomesO(logn), if we relativize
the definition of Kolmogorov complexity by0′, that is, if we allow the decompressor to query the
oracle for the halting problem.

We have seen that there exist a constantc and an algorithmA that given the stringγn solves the
halting problem for the optimal decompressor on inputs of length at mostn−c. This means that
given an “oracle” that findsγn for every givenn we can solve the Halting problem. The same can be
done given an oracle deciding whether a given stringx is “incompressible”, that is,KS(x) > l(x).
Indeed, using that oracle we can findγn by probing all strings of lengthn.

28

Using the terminology of computability theory, we can say that halting problem isTuring
reducibleto the set of incompressible strings. This implies that halting problem is also reducible
to the “upper graph” ofKS, that is, to the set{〈x,k〉 | KS(x) < k}. Using the terminology of
computability theory we can say that the set of compressiblestrings isTuring completein the
class of enumerable sets (this means that it is enumerable and that the halting problem is Turing
reducible to it).

10 Find an upper bound for the number of oracle queries (for the set {〈x,k〉 | KS(x) < k})
needed to solve the halting problem for a fixed machineM and for all strings of length at mostn.

11 Let f be a computable partial function fromN to N. Prove that there is a constantc such
that for alln such thatf (B(n)) is defined we haveB(n+c) > f (B(n)). [Hint: the complexity of
f (B(n)) is at mostn+O(1).]

12 Call a setU r-separable[?] if every enumerable setV disjoint with U can be separated
from U by a decidable set, that is, there is a decidable setR that includesV and is disjoint withU .

(a) Prove that the the set{〈x,k〉 | KS(x) < k} (the upper graph ofKS) is anr-separable set.
[Hint: assume that this set is disjoint with an enumerable set V. The set of the second components
of pairs inV is finite, otherwise we get an unbounded computable lower bound forKS. That is,V
is included in a horizontal strip of finite height. The intersection of the strip with the upper graph
is finite.]

(b) We say that a setU1 is m-reducible to a setU2 if there is a total computable functionf
such thatU1 = f−1(U2). Prove that ifU2 is r-separable andU1 is m-reducible toU2 thenU1 is
r-separable as well. [Hint. IfV is an enumerable set disjoint withU1 then f (V) is an enumerable
set disjoint withU2. If R is a decidable set separatingf (V) andU2 then f−1(R) is a decidable set
separatingV andU1.]

(c) Prove that there is an enumerable set that is notr-separable (such set does notm-reduce to
the upper graph ofKS). [Hint: there is a pair of disjoint enumerable inseparablesets.]

This problem shows how Kolmogorov complexity can be used to construct an enumerable
undecidable set that is notm-complete.

Theorem 15 selects some very special objects among all objects of complexityn (in fact, one
object up to equivalence described above). At first glance, this seems strange: our intuition says
that all “random” strings of lengthn should be indistinguishable. (A string of lengthn is “random”
if its complexity is close ton.) If there is a property that distinguishes a string of lengthn from other
strings then this property can be used to compress the string. However we have found a very special
random stringγn of lengthn. This paradox can be explained as follows: the individual property
of γn does allow to find a short description ofγn but we need the oracle for0′ to decompress that
description.

We will come back to this question in Section 5.7 discussing “the number of wisdom”Ω and
in Section?? studying two-part descriptions.

Finally, let us note that although all the objects in Theorem15 are equivalent, they have very
different lengths. The lengths of (a), (b), (e)–(i) is aboutn while the length of (c) and (d) grows
faster than every computable function ofn.

29

2 Complexity of pairs and conditional complexity
{conditional

2.1 Complexity of pairs
{conditp}

As we have discussed, we can define complexity of any constructive object using (computable)
encodings by strings. In this section we deal with pairs of strings. A pairx,y can be encoded,
e.g., by a string[x,y] = x01y; herex stands forx with doubled bits. Any other computable en-
codingx,y 7→ [x,y] could be used (of course, we need that[x,y] 6= [x′,y′] if x 6= x′ or y 6= y′). Any
two encodings of this type are equivalent (there are translation algorithms in both directions), so
Theorem 3 (p. 8) guarantees that complexities of the different encoding of the same pair differ by
O(1).

So let us fix some encoding[x,y]. Kolmogorov complexity of a pair x,y is defined asKS([x,y]).
Notation:KS(x,y). Here are some evident properties:

• KS(x,x) = KS(x)+O(1);

• KS(x,y) = KS(y,x)+O(1);

• KS(x) 6 KS(x,y)+O(1); KS(y) 6 KS(x,y)+O(1).

The following theorem gives an upper bound for the complexity of a pair in terms of complex-
ities of its components:

{condit-pair1
Theorem 16

KS(x,y) 6 KS(x)+2logKS(x)+KS(y)+O(1);

KS(x,y) 6 KS(x)+ logKS(x)+2log logKS(x)+KS(y)+O(1);

KS(x,y) 6 KS(x)+ logKS(x)+ log logKS(x)+2loglog logKS(x)+KS(y)+O(1);

. . .

(We can continue this sequence of inequalities indefinitely. Also, one can exchangex andy.)
⊳ This proof (for the first inequality) was already explained in the Introduction (Theorem 4,

p. 9). The only difference is that we considered the concatenationxy instead of a pair. Let us repeat
it for pairs.

A computable mappingx 7→ x̂ (herex andx̂ are binary strings) is called aprefix-free encoding,
if for any two different stringx andy the string ˆx is not a prefix of the string ˆy. (In particular, ˆx 6= ŷ
if x 6= y.) This guarantees that bothx andy can be uniquely reconstructed from ˆxy.

An examplex 7→ x01, wherex stands forx with doubled bits, is a prefix-free encoding. Here
the block 01 are used as a delimiter. However, this encoding is not the most space-efficient one,
since it doubles the length. A better prefix-free encoding:

x 7→ x̂ = bin(l(x))01x

(bin(l(x)) is the binary representation of the lengthl(x) of the stringx). Now

l(x̂) = l(x)+2logl(x)+O(1).

30

This trick can be “iterated”: for any prefix-free encodingx 7→ x̂ we can construct a new (and also
prefix-free) encoding

x 7→ ̂bin(l(x))x.

Indeed, if a string ̂bin(l(x))x is a prefix of ̂bin(l(y))y, then one of the stringŝbin(l(x)) and ̂bin(l(y))
is a prefix of the other one, and therefore bin(l(x)) = bin(l(y)). Thereforex is a prefix ofy, and
l(x) = l(y), so x = y. (In other terms, we uniquely determine the length of the string, since a
prefix-free code is used for it, and then get the string itselfknowing where it ends.)

In this way we get a prefix-free encoding such that

l(x̂) = l(x)+ logl(x)+2loglogl(x)+O(1),

then (one more iteration)

l(x̂) = l(x)+ logl(x)+ loglogl(x)+2loglog logl(x)+O(1)

etc.
Now we return to the proof. LetD be the optimal decompressor used in the definition of

Kolmogorov complexity. Consider a decompressorD′ defined as follows:

D′(p̂q) = [D(p),D(q)],

wherep̂ is a prefix-free encoding and[·, ·] is the encoding of pairs (used in the definition of pairs
complexity). Since ˆp is a prefix-free encoding,D′ is well defined (we can uniquely extract ˆp out
of p̂q).

Let p andq be the shortest descriptions ofx and y. Then p̂q is a description of[x,y], and
its length is exactly as we need in our theorem. (The more iteration we use for the prefix-free
encoding, the better bound we have.)⊲

Theorem 16 implies that

KS(x,y) 6 KS(x)+KS(y)+O(logn)

for stringsx andy of length at mostn: one may say that the complexity of a pair does not exceed
the sum of the complexities of its component with logarithmic precision.

A natural question arises: is it true thatKS(x,y) 6 KS(x)+KS(y)+O(1)?
A simple argument shows that this is not the case. Indeed, this inequality would imply

KS(x,y) 6 l(x)+ l(y)+O(1). Consider someN. For eachn= 0,1,2, . . . ,N we have 2n stringsx of
lengthn and 2N−n stringsy of lengthN−n. Combining them, we (for a givenn) obtain 2N different
pairs〈x,y〉. The total number of pairs (alln = 0,1, . . . ,N give different pairs) is(N+1)2N.

Assume that indeedK(x,y) 6 l(x)+ l(y)+O(1) = N +O(1) for all these pairs. Then we get
(N+1)2N different strings[x,y] of complexity at mostN+O(1), but this is impossible (Theorem 7,
p. 19, gives the upper boundO(2N)).

13 Prove that there is no constantc such that {conditp-no-improvement

KS(x,y) 6 KS(x)+ logKS(x)+KS(y)+c

31

for all x andy. [Hint: ReplaceKS in the right hand side byl and count the number of corresponding
pairs.]

14 Give a (natural) definition of complexity for triples of strings (instead of pairs). Prove that
KS(x,y,z) 6 KS(x)+KS(y)+KS(z)+O(logn) for stringsx,y,zof length at mostn.

15 (a) Prove that

∑
x∈Ξ

2−l(x̂)
6 1

for any prefix-free encodingx 7→ x̂ (hereΞ is the set of all binary strings).
(b) Prove that if a prefix-free encoding increases the lengthat most by f (n) (wheren is the

initial length), i.e., ifl(x̂) 6 l(x)+ f (l(x)), then∑n2− f (n) < ∞.

This problem explains why a coefficient 2 appears in the Theorem 16 (p. 30): the series

∑ 1
n2 , ∑ 1

n(logn)2 , ∑ 1
nlogn(loglogn)2 , . . .

are convergent, while the series

∑ 1
n
, ∑ 1

nlogn
, ∑ 1

nlognloglogn
, . . .

are divergent.

16 Prove that all the inequalities of Theorem 16 become false ifthe coefficient 2 is replaced
by 1, but remain true with the coefficient 1+ ε for any ε > 0. [Hint: the first inequality was
considered in Problem 13.]

17 Prove that

KS(x,y) 6 KS(x)+ logKS(x)+KS(y)+ logKS(y)+O(1).

18 (Continued) Prove a stronger inequality:

KS(x,y) 6 KS(x)+KS(y)+ log(KS(x)+KS(y))+O(1).

(note thatKS(x)+ KS(y) can be replaced by max(KS(x),KS(y)), this gives a factor at most 2,
which makesO(1) after taking logarithms).

19 Prove thatKS(x,KS(x)) = KS(x)+ O(1). [Hint: Obviously,KS(x,KS(x)) > KS(x)+ {complexity-added
O(1). On the other hand, the shortest description ofx determines bothx andKS(x).]

32

2.2 Conditional complexity
{condit-c}

When transmitting a file, one could try to save communicationcharges by compressing it. The
transmission could be made even more effective if and old version of the same file already exists at
the other side. In this case we need only to describe the changes made. This could be considered
as a kind of motivation for the definition of conditional complexity of a given stringx relative to
(known) stringy.

A conditional decompressoris any computable functionD of two arguments (both arguments
and the value ofD are binary strings). IfD(y,z) = x we say thaty is a (conditional)description of
x when z is known(or relative to z) The complexityKSD(x|z) is then defined as the length of the
shortest conditional description:

KSD(x|z) = min{l(y) | D(y,z) = x}.

We say that (conditional) decompressorD1 is not worsethanD2 if

KSD1(x|z) 6 KSD2(x|z)+c

for some constantc and for allx andz. A conditional decompressor isoptimal if it is not worse
than any other conditional decompressor.

{condit-universal
Theorem 17 There exist optimal conditional decomressors.

⊳ This “conditional” version of Kolmogorov–Solomonoff theorem can be proved in the same
way as the unconditional one (Theorem 1, p. 6).

Fix some programming language where one can write programs for computable functions of
two arguments, and let

D(p̂y,z) = p(y,z),

wherep(y,z) is the output of programp on inputsy andz, andp̂ is the prefix-free encoding ofp.
It is easy to see now that ifD′ is a conditional decompressor andp is a program forD′, then

KSD(x|z) 6 KSD′(x|z)+ l(p̂).

Theorem is proved.⊲
Again, we fix some optimal conditional decompressorD and omit indexD in the notation.
Several easy facts about conditional Kolmogorov complexity:

{condit-basic
Theorem 18

KS(x|y) 6 KS(x)+O(1);

KS(x|x) = O(1);

KS(f (x,y)|y) 6 KS(x|y)+O(1);

KS(x|y) 6 KS(x|g(y))+O(1).

33

Hereg and f are arbitrary computable functions (of one and two arguments, respectively); the
inequalities are valid iff (x,y) andg(y) are defined.

⊳ First inequality: any unconditional description mode can be considered as a conditional
mode that ignores the second argument.

The second inequality: consider the conditional description modeD such thatD(p,z) = z.
Third inequality: LetD be the optimal conditional description mode used in the complexity

definition. Consider another description modeD′ such that

D′(p,y) = f (D(p,y),y)

and apply the optimality property.
Similar argument works for the last inequality, butD′ should be defined in a different way:

D′(p,y) = D(p,g(y)).

Theorem is proved.⊲

20 Prove that conditional complexity is “continuous as a function of its second argument”:
KS(x|y0) = KS(x|y)+O(1); KS(x|y1) = KS(x|y)+O(1).

21 Prove that for any fixedy the functionx 7→ KS(x|y) differs fromKS at most by 2KS(y)+
O(1).

22 Prove thatKS([x,z]|[y,z]) 6 KS(x|y)+O(1) for any stringsx,y,z (here[·, ·] stands for the
computable encoding of pairs).

23 Fix some “reasonable” programming language. (Formally, werequire the corresponding{conditional-as-problem
universal function to be a Gödel one; this means that translation algorithm exists for any other
programming language, see, e.g., [?].) Show that conditional complexityKS(x|y) is equal (up
to O(1) additive term) to the minimal complexity of a program that produces outputx on inputy.
[Hint: Let D be an optimal conditional decompressor. If we fix its first argument p, we get a
program of complexity at mostl(p) + O(1). On the other hand, if programp mapsy to x, then
KS(x|y) = KS(p(y)|y) 6 KS(p)+O(1).]

This interpretation of conditional complexity as a minimalcomplexity of a program with some
property will be considered in Chapter??.

Many properties of unconditional complexity have conditional counterparts with essentially
the same proofs. Here are some of these counterparts:

• FunctionKS(·|·) is upper semicomputable (this means that the set of triples〈x,y,n〉 such that
KS(x|y) < n is enumerable).

• For anyy andn the set of all stringsx such thatKS(x|y) < n has cardinality less then 2n.

• For anyy andn there exists a stringx of lengthn such thatKS(x|y) > n.

24 Prove that for any stringsy andz and for any numbern there exists a stringx of lengthn
such thatKS(x|y) > n−1 KS(x|z) > n−1. [Hint: both requirements are violated by a minority
of strings.]

34

{condit-ub}
Theorem 19 Let 〈x,y〉 7→ K(x|y) be an upper semicomputable function such that the set

{x | K(x|y) < n}

has cardinality less than2n for any string y and integer n. Then KS(x|y) 6 K(x|y)+c for some c
and for all x and y.

Using conditional complexity, we get a stronger inequalityfor the complexity of pairs (com-
pared with Theorem 16, p. 30):

{condit-pair2
Theorem 20

KS(x,y) 6 KS(x)+2logKS(x)+KS(y|x)+O(1)

⊳ Let D1 be an optimal unconditional decompressor and letD2 be an optimal conditional
decompressor. Construct a new unconditional decompressorD′ as follows:

D′(p̂q) = [D1(p),D2(q,D1(p))].

Here p̂ stands for the prefix-free encoding ofp, and[·, ·] is a computable encoding of pairs used
in the definition of pair complexity. Letp be the shortestD1-description ofx andq be the shortest
D2-description ofy conditional tox. Then the string ˆpq is aD3-description of[x,y]. Therefore,

KS(x,y) 6 KSD′(x,y)+O(1) 6 l(p̂)+ l(q)+O(1).

As we have seen, one can choose a prefix-free encoding in such away thatl(p̂) 6 l(p)+2logl(p)+
O(1) (see the proof of Theorem 16, p. 30), and we get a desired inequality. ⊲

As before, we can improve the bound by replacing 2logKS(x) by logKS(x)+2log logKS(x)
etc. We also can use conditional complexity in the additional term and write

KS(x,y) 6 KS(x)+KS(y|x)+2logKS(y|x)+O(1).

(In the proof we should replaceD′(p̂q) by D′(q̂p).)

25 Prove that

KS(x|z) 6 KS(x|y)+2logKS(x|y)+KS(y|z)+O(1)

for all x,y,z (a sort of a “triangle inequality”).

If we are not interested in the exact form of the additional logarithmic term, the statement of
Theorem 20 can be reformulated as follows:

KS(x,y) 6 KS(x)+KS(y|x)+O(logn).

for all stringsx,y of length at mostn.
It turns out (and this is the first nontrivial statement in this chapter) that this inequality is in fact

an equality:

35

t

At

A

x

y

Figure 2: The sectionAt of the setA of all simple pairs. {condit-c.1

{condit-pair3
Theorem 21 (Kolmogorov – Levin)

KS(x,y) = KS(x)+KS(y|x)+O(logn).

for all strings x,y of length at most n.

⊳ Since we already have one inequality, we need to prove only that KS(x,y) > KS(x) +
KS(y|x)+O(logn) for all x andy of length at mostn.

Let x andy be some strings of length at mostn. Let a be the complexityKS(x,y) of the pair
〈x,y〉. Consider the setA of all pairs whose complexity does not exceeda. ThenA is a set of
cardinalityO(2a) (in fact, at most 2a+1) and〈x,y〉 is one of its elements.

For each stringt consider the “vertical section”At of A:

At = {u | 〈t,u〉 ∈ A}

(Fig. 2). The sum of the cardinalities of allAt (over all stringst) is the cardinality ofA and does
not exceedO(2a). Therefore there are few “large” sectionsAt , and this is the basic argument we
need for the proof.

Let m be equal to⌊log2 |Ax|⌋ wherex is the first component of the pair〈x,y〉 we started with.
In other terms, assume that cardinality ofAx is between 2m and 2m+1. Let us prove that

(1) KS(y|x) does not exceedmsignificantly;
(2) KS(x) does not exceeda−msignificantly.
We start with (1). Knowinga, we can enumerate the setA. If we know alsox, we can select

only pairs whose first component equalsx. In this way we get an enumeration ofAx. To specifyy,
it is enough to tell the ordinal number ofy in this enumeration (ofAx). This ordinal number takes
m+ O(1) bits, and together witha we getm+ O(logn) bits for the conditional description ofy
givenx. Note thata = KS(x,y) does not exceedO(n) for stringsx andy of lengthn. Therefore,
we need onlyO(logn) to specifya andn, and

KS(y|x) 6 m+O(logn).

Now let us prove (2). Consider the setB of all stringst such that cardinality ofAt is at least 2m.
The cardinality ofB does not exceed 2a+1/2m, otherwise the sum|A| = ∑ |At | would be greater

36

than 2a+1. We can enumerateB if we know a andm. Indeed, we should enumerateA and group
together the pairs with the same first coordinate; if we find 2m pairs with the same value of the
first coordinate, we put this value intoB. Therefore the stringx (as well as any element ofB) can
be specified by(a−m)+ O(logn) bits: a−m+ 1 bits are needed for ordinal number ofx in the
enumeration ofB, andO(logn) are used to specifya andm. So we get

KS(x) 6 (a−m)+O(logn),

and it remains to add this inequality and the preceding one.⊲

This theorem can be considered as the complexity counterpart of the following combinatorial
statement. LetA be a finite set of pairs, andp andq be some numbers such that cardinality ofA
does not exceedpq. Then we can splitA into partsP andQ with the following properties: the
projection ofP onto the first coordinate has at mostp elements, while all the sectionsQx of Q (the
first coordinate equalsx) have at mostq elements. (Indeed, letP be the union of all sections that
have more thanq elements. The number of such sections do not exceedp. Remaining elements
form Q.) We return to this combinatorial translation in Chapter??.

Note that in fact we have not used the lengths ofx andy, only their complexities. So we have
proved the following statement:

{condit-pair3a
Theorem 22 (Kolmogorov – Levin, complexity version)

KS(x,y) = KS(x)+KS(y|x)+O(logKS(x,y))

for all strings x and y.

26 Give a more detailed analysis of the additive terms in the proof and show that

KS(x)+KS(y|x) 6 KS(x,y)+3logKS(x,y)+O(loglogKS(x,y)).

27 Show thatO(logn) terms are unavoidable in Kolmogorov–Levin theorem in both direc-
tions: for eachn there exist stringsx andy of length at mostn such that

KS(x,y) > KS(x)+KS(y|x)+ logn−O(1),

as well as stringsx andy of length at mostn such that

KS(x,y) 6 KS(x)+KS(y|x)− logn+O(1).

[Hint: For the first inequality we can refer to the remark after Theorem 16 (p. 30). For the second
one we can take asx some number betweenn/2 andn such thatKS(x) = logn+O(1) and the let
y be a string of lengthx such thatKS(y|x) = x+O(1).]

28 Prove that changing one bit in a string of lengthn changes its complexity at most by
logn+O(loglogn).

37

29 Fix some unconditional decompressorD. Prove that for some constantc and for all {number-of-descriptions
integersn andk the following statement is true: if some stringx has at least 2k descriptions of
length at mostn, thenKS(x|k) 6 n− k+ c. [Hint: Fix somek. For eachn consider all stringsx
that have at least 2k descriptions of length at mostn. The number of these strings does not exceed
2n−k, and we can apply Theorem 19, p. 35.]

Using this problem, we can prove the following statement about unconditional complexity:

30 Let D be some optimal unconditional decompressor. Then there exists some constantc
such that for any stringx the number of shortestD-descriptions ofx does not exceedc. [Hint: The
previous problems show thatKS(x) 6 n− k+ 2logk+ O(1), so forKS(x) = n we get an upper
bound fork.]

31 Prove that there exists a constantc with the following property: if for somex andn the
probability of the eventKS(x|y) 6 k (all stringsy of lengthsn are considered as equiprobable here)
is at least 2−l , thenKS(x|n, l) 6 k+ l +c. [Hint: Connect each stringy of lengthn to all stringsx
such thatKS(x|y) 6 k. We get a bipartite graph that hasO(2n+k) edges. In this graph the number
of verticesx that have degree at least 2n−l does not exceedO(2k+l). Note thatKS(x|n, l) does not
includek—this is not a typo!]

This problem could help us to find the average value ofKS(x|y) for givenx and all stringy of
some lengthn. It is evident thatKS(x|y) 6 K(x|n)+ O(1) sincen = l(y) is determined byy. It
turns out that for most stringsy (of given length) this inequality is close to an equality:

32 Prove that there exists some constantc such that for any stringx and for all natural num-
bersnandd the fraction of stringsysuch thatKS(x|y) < KS(x|n)−d (among all strings of lengthn)
does not exceedcd2/2d. Using this statement, prove that the average value ofKS(x|y) taken over
all stringsy of a given lengthn equalsKS(x|n)+O(1) (the constant inO(1) does not depend onx
andn).

33 Prove thatKS(x) = KS(x|KS(x)) + O(1). [Hint: Assume thatx has a conditional de-
scriptionq with conditionKS(x) that is shorter thanKS(x). Then one can specifyx by providing
q and the differenceKS(x)− l(q), and we get a description ofx that is shorter thanKS(x)—a
contradiction.]

34 Prove that for some constantc for any stringx and for every numbern there exists a {increasing-plain-complexi
stringy of lengthn such that

KS(xy) > KS(x|n)+n−c.

[Hint: For a givenn the number of stringsx such thatKS(xy) < k for anyy of lengthn, does not
exceed 2k/2n, and this property is enumerable. So we can apply Theorem 19 (p. 35).]

35 Prove that an infinite sequencex0x1x2 . . . of zeros and ones is computable if and only if the
setKS(x0 . . .xn−1|n) (the complexities of its prefixes conditional to their lengths) is bounded by a
constant.

[Hint: Consider an infinite binary tree. LetSbe the enumerable set of vertices (binary strings)
that have conditional complexity (w.r.t. their length) less than some constantc. The “horizontal”
sections ofS have cardinalityO(1). We need to derive from this that each infinite path that lies

38

entirely insideS, is computable. We may assume thatS is a subtree (only strings whose prefixes
are inB, remain inS).

Let ω be an infinite path that goes throughS only. At each leveln we count vertices inSon
the left ofω (ln vertices) and on the right ofω (rn vertices). LetL = limsupln andR= limsuprn.
Let N be the level such thatL andR are never exceeded after this level. KnowingL, R andN we
can compute arbitrarily large prefixes ofω. We should look for a pathπ in a tree such that at some
level aboveN there are at leastL elements ofSon the left ofπ , and at some (possibly other) level
aboveN there are at leastR elements on the right ofπ . When such a pathπ is found, we can be
sure that its initial segment (up to the first of those two levels) coincides withω.]

36 Prove that in the previous problem a weaker assumption is sufficient: instead of
KS(x0 . . .xn−1|n) = O(1) we can require thatKS(x0 . . .xn−1) 6 logn+c for somec and for alln.
[Hint: In this case we get an enumerable setSof strings (=tree vertices) with the following prop-
erty: the number of vertices on all levels belowN is O(N). This means that the average number
of vertices per level is bounded by a constant. To use the previous problem, we need a bound for
all levels and not for the average value. We can achieve this if we consider only verticesx∈ S that
have a extension of length 2l(x) that goes entirely insideS.]

37 Consider strings of lengthn that have complexity at leastn (incompressiblestrings).
(a) Prove that the number of incompressible strings of lengthn is between 2n−c and 2n−2n−c

(for somec and for alln)
(b) Prove that the cardinality of the set of incompressible strings of lengthn has complexity

n−O(1) (note that this implies the statement (a));
(c) Prove that if the stringx of length 2n is incompressible, then its halvesx1 andx2 (of lengthn)

have complexityn−O(1).
(d) Prove that if a stringx of lengthn is incompressible, then each its substring of lengthk has

complexity at leastk−O(logn).
(e) Prove that for any constantc < 1 all incompressible strings of sufficiently large lengthn

contain a substring of⌊clog2n⌋ zeros.
[Hints: (a) There is at most 2n−1 descritions of length les thann. and part of them is used for

shorter strings: any string of lengthn−d (for somed) has complexity less thann. This gives a
lower bound for the number of uncompressible strings. To prove the upper bound, note that strings
of lengthn that have prefix ofk zeros, could be described by 2logk+(n−k) bits.

(b) Let t be the number of incompressible string written in binary. Ift hasn− k bits, then
knowing t and logk additional bits we can reconstruct firstn and then the list of all incompress-
ible strings of lengthn, so the first incompressible string has complexity less thann, which is
impossible.

(c) If one part of the string is has a short description, the entire string has a short description
that starts with prefix-free encoding of the difference between the length and complexity of the
compressible part.

(d) If a string has a simple substring, then the entire stringcan be compressed (we need to
specify the substring, its position and the rest of the string).

(e) Let us count the number of strings of lengthn that do not containk zeros in a row; a recurrent
relation shows that this number grows like a geometric sequence whose base is the maximal real

39

root of the equationx = 2− (1/xk), and we can get a bound for complexity of strings that do not
havek zeros in a row.]

38 Prove that (for some constantc) for any infinite sequencex0x1x2 . . . of zeros and ones{condit-c-simple-prefix
there exist infinitely manyn such thatKS(x0x1 . . .xn−1) 6 n− logn+c.

Prove that there is a constantc and the sequencex0x1x2 . . . such thatKS(x0x1 . . .xn−1) > n−
2logn− c for all n. [Hint: The series∑1/n diverges while the series∑(1/n2) converges. For
details see Theorem 87 and??.]

39 For a stringx of lengthn let us defined(x) anddc(x) as follows:d(x) = n−KS(x) and {conditional-unconditional
dc(x) = n−KS(x|n). Show that they are rather close to each other:

dc(x)−2logdc(x)−O(1) 6 d(x) 6 dc(x)+O(1).

[Hint: We need to show that ifKS(x|n) = n−d, thenKS(x) 6 n−d+2logd+O(1). Indeed,
let us take the conditional description ofx of length n− d and put it after the self-delimiting
description ofd that has size 2 logd+O(1). Knowing this string, we can reconstructd, thenn and
finally x.]

(The intuitive meaning of the difference between the lengthof a string and its complexity is
discussed in Chapter 5 and Chapter??.)

2.3 Complexity as the amount of information
{conditi}

As we know (Theorem 18), the conditional complexityKS(y|x) does not exceed the unconditional
oneKS(y) (up to a constant). The differenceKS(y)−KS(y|x) tells us how much the knowledge
of y makesx easier to describe. So this difference can be called theamount of information in x
about y. Notation:I(x : y).

Theorem 18 says thatI(x : y) is non-negative (up to a constant): there exists somec such that
I(x : y) > c for all x andy.

Recall that
KS(x,y) = KS(x)+KS(y|x)+O(logKS(x,y)),

(Theorem 22, p. 37). This allows us to express conditional complexity in terms of unconditional
one:KS(y|x) = KS(x,y)−KS(x)+O(logKS(x,y)). Then we get the following expression for the
information:

I(x : y) = KS(y)−KS(y|x) = KS(x)+KS(y)−KS(x,y)+O(logKS(x,y)).

This expression immediately implies the following theorem:
{condit-symm

Theorem 23 (information symmetry)

I(x : y) = I(y : x)+O(logKS(x,y))

40

So the difference betweenI(x : y) and I(y : x) is logarithmically smaller thanKS(x,y). The
following problem shows that at the same time this difference could be comparable with the values
I(x : y) andI(y : x) if they are much less thanKS(x,y).

40 Let x be a string of lengthn such thatKS(x|n) > n. Show thatI(x : n) = KS(n)+O(1) and
I(n : x) = O(1).

The property of information symmetry (up to a logarithmic term) explains whyI(x : y) (or I(y :
x)) is sometimes calledmutual informationin two stringsx andy. The connection between mutual
information, conditional and unconditional complexitiesand pair complexity can be illustrated by
a (rather symbolic) picture (Fig. 3).

KS(x|y)
KS(y|x)I(x : y)

x y

Figure 3: Mutual information and conditional complexity {condit-i.1

It shows that stringsx andy haveI(x : y)≈ I(y : x) bits of mutual information. AddingKS(x|y)
bits (information that is present inx but absent iny, the left part), we obtain

I(y : x)+KS(x|y) ≈ (KS(x)−KS(x|y))+KS(x|y) ≈ KS(x)

bits (matching the complexity ofx). Similarly, the central part together withKS(y|x) (the right
part) giveKS(y). Finally, all three parts together give us

KS(x|y)+ I(x : y)+KS(y|x) = KS(x)+KS(y|x) = KS(x|y)+KS(y) = KS(x,y)

bits (all equalities are true up toO(logn) for stringsx andy of length at mostn).
In some cases this picture can be understood quite literally. Consider, for instance, an incom-

pressible stringr = r1 . . . rn of lengthn such thatKS(r1 . . . rn) > n. Then any substringu of x has
complexity l(u) up to O(logn) terms. Indeed, sinceu is a substring ofr, we haver = tuv for
some stringst,v. Then l(r) = KS(r) 6 KS(t)+ KS(u)+ KS(v) 6 l(t)+ l(u)+ l(v) = l(r) (up
to a logarithmic error) and therefore all the inequalities are equalities (with the same logarithmic
precision).

Now take two overlapping substringsx andy (Fig. 4). ThenKS(x) is the length ofx, KS(y) is
the length ofy (up toO(logn)).

The complexityKS(x,y) is equal to the length of the union of segments (since the pair〈x,y〉 is
equivalent to this union plus information about lengths, which is of sizeO(logn)).

Therefore, conditional complexitiesKS(x|y), KS(y|x) and the mutual informationI(x : y) are
equal to the lengths of the corresponding segments (up toO(logn)).

However, not always the mutual information can be extractedin form of some string (like it
happened in our example, where this common information in just the intersection of stringsx and
y). As we will see in Chapter??, there exist two stringsx andy that have large mutual information

41

x : yx|y y|x

x y

x,y

Figure 4: Common information in overlapping substrings {condit-i.2

I(x : y) but there is no stringz that represents (“materializes”) this information in the following
sense:K(z|x) ≈ 0, KS(z|y) ≈ 0 (all information that is present inz is also present both inx and in
y) andKS(z) ≈ I(x : y) (all mutual information is extracted). In our last example we can take the
intersection substring forz.

41 Prove that for any stringx of length at mostn the expected value of the mutual information
I(x : y) in x and random stringy of lengthn is O(logn).

Now we move to triples of strings instead of pairs. Here we have an important tool that can
be calledrelativization: most of the results proved for unconditional complexitiesremain valid
for conditional complexities (and proofs remain valid withminimal changes). Let us give some
example of this type.

A theorem about the complexity of pairs (p. 30) says thatKS(x,y) 6 KS(x)+ 2logKS(x)+
KS(y) + O(1). Replacing all complexities by conditional ones (with the same conditionz in all
cases), we get the following inequality:

KS(x,y|z) 6 KS(x|z)+2logKS(x|z)+KS(y|z)+O(1),

By conditional complexity of a pairx,y relative toz we mean, as one can expect, the conditional
complexity of its encoding:KS(x,y|z) = KS([x,y]|z). As for unconditional complexity, the choice
of encoding is not important (the complexity changes byO(1)).

The proof of this relativized inequality repeats the proof of the unrelativized one: we combine
descriptionp for x (with conditionz) and descriptionq for y (with conditionz) into a string ˆpq
which is a description of[p,q] (with conditionz) relative to some suitable conditional decompres-
sor.

So this is nothing really new. However, we may express all theconditional complexi-
ties in terms of unconditional ones: recall thatKS(x,y|z) = KS(x,y,z)−KS(z) andKS(x|z) =
KS(x,z)−KS(z), KS(y|z) = KS(y,z)−KS(z) (with logarithmic precision). Then we get the fol-
lowing theorem:

{condit-baseineq
Theorem 24

KS(x,y,z)+KS(z) 6 KS(x,z)+KS(y,z)+O(logn)

for all strings x,y,z of complexity at most n.

Sometimes this inequality is called thebasicinequality for complexities.
The same relativization can be applied to Theorem 21 (p. 36) that relates the complexity of a

pair and conditional complexity. Then we get the following statement:

42

{condit-pair4
Theorem 25

KS(x,y|z) = KS(x|z)+KS(y|x,z)+O(logn),

for all strings x,y,z of complexity at most n.

⊳ We can follow the proof of theorem 21, replacing unconditional descriptions by conditional
ones (withz as the condition). Doing this, we replaceKS(y|x) by KS(y|x,z). One can say that
now we work in three-dimensional space with coordinatesx,y,z and apply the same arguments
simultaneously in all planes parallel toxyplane.

If this argument does not look convincing for you, there is a more formal one. Express all the
conditional complexities in terms of unconditional ones:

KS(x,y|z) = KS(x,y,z)−KS(z),

and for the right-hand side

KS(x|z)+KS(y|x,z) = KS(x,z)−KS(z)+KS(y,x,z)−KS(x,z).

We see that both sides coincide (up toO(logn)). (A pedantic reader may note that this simplified
argument gives larger hidden constants inO(logn)-notation.)⊲

42 Proof that in Theorem 25 a weaker assumption “KS(x|z) andKS(y|x,z) do not exceedn”
is sufficient.

We also relativize the definition of mutual information and let I(x : y|z) be the difference
KS(y|z)−KS(y|x,z). As for the case of (unconditional) information, this quantity is non-negative
(up toO(1) precision). Replacing conditional complexities by the expressions involving uncondi-
tional ones (with logarithmic precision), we can rewrite the inequalityI(x : y|z) > 0 as follows:

KS(y|z)−KS(y|x,z) = KS(y,z)−KS(z)−KS(y,x,z)+KS(x,z) > 0.

So we get the basic inequality of Theorem 24 again.
In fact, almost all known equalities and inequalities that involve complexities (unconditional

and conditional) and information (and have logarithmic precision) are immediate consequences of
Theorems 21 and 24. Let us give two examples of this type.

Independent strings. We say that stringsx andy are “independent” ifI(x : y) ≈ 0. We need
to specify what we mean by “≈”, but we always ignore the terms of orderO(logn) wheren is the
maximal length (or complexity) of the strings involved.

Independent strings could be considered as some counterpart of the notion of independent
random variables, which is crucial in the probability theory. There is a simple observation: if a
random variableξ is independent with the pair of random variables〈α,β 〉, thenξ is independent
with α and withβ (separately).

The Kolmogorov complexity counterpart of this statement (if a stringx is independent with
a pair 〈y,z〉, thenx is independent withy andx is independent withz) can be expressed as an
inequality:

I(x : 〈y,z〉) > I(x : y)

43

(and the similar inequality forz instead ofy). This inequality is indeed true (with logarithmic
precision), and it is easy to see if we rewrite it in terms of unconditional complexities:

KS(x)+KS(y,z)−KS(x,y,z) > KS(x)+KS(y)−KS(x,y),

which after cancellation of similar terms gives a basic inequality (Theorem 24).
Complexity of pairs and triples. On the other hand, to prove the following theorem (which

we have already mentioned on p.15), it is convenient to replace unconditional complexities by
conditional ones:

{condit-triple
Theorem 26

2KS(x,y,z) 6 KS(x,y)+KS(x,z)+KS(y,z)+O(logn),

for all strings x,y,z of complexity at most n

⊳ Moving KS(x,y) KS(x,z) to the left-hand side and replacingKS(x,y,z)−KS(x,y) and
KS(x,y,z)−KS(x,z) by conditional complexitiesKS(z|x,y) KS(y|x,z), we get the following in-
equality:

KS(z|x,y)+KS(y|x,z) 6 K(y,z)+O(logn).

It remains to rewrite the right-hand side asKS(y)+ KS(z|y), and note thatKS(z|x,y) 6 KS(z|y)
andKS(y|x,z) 6 KS(y). ⊲

Instead we could just add two inequalities (the basic one andthe inequality for the complexity
of a pair):

KS(x,y,z)+KS(y) 6 KS(x,y)+KS(y,z)+O(logn),

KS(x,y,z) 6 KS(y)+KS(x,z)+O(logn),

and then cancelKS(y) in both sides. (This proof, as well as the previous one, have an important
esthetic problem: both treatx,y,z in a non-symmetric way while the statement of the theorem is
symmetric.)

We return to the inequality of Theorem 26 and to its geometricconsequences in Chapter??.

We can provide a more systematic treatment of the different complexity quantities related to
three strings as follows. There are seven basic quantities:three of them are complexities of indi-
vidual strings, another three are complexities of pairs andone more is the complexity of the entire
triple. Other quantities such that conditional complexityand mutual information can be expressed
in terms of these seven complexities. To understand better what conditions these seven quantities
should satisfy, let us make a linear transformation in the 7-dimensional space and switch to new
coordinates. Consider seven variablesa1,a2, . . . ,a7 that correspond to 7 regions shown in Fig. 5.

44

x y

z

1
2 3

4
5

6

7

Figure 5: New coordinatesa1,a2, . . . ,a7. {condit-i.3

Formally, the coordinate transformation is given by the following equations:

KS(x) = a1+a2 +a4+a5,

KS(y) = a2+a3 +a5+a6,

KS(z) = a4+a5 +a6+a7,

KS(x,y) = a1+a2 +a3+a4+a5 +a6,

KS(x,z) = a1+a2 +a4+a5+a6 +a7,

KS(y,z) = a2+a3 +a4+a5+a6 +a7,

KS(x,y,z) = a1+a2 +a3+a4+a5 +a6+a7.

Indeed, it is easy to see that these equations determine an invertible linear transformation ofR7:
each 7-tuple of complexities corresponds to unique value ofvariablesa1, . . . ,a7.

Conditional complexities and mutual informations could beexpressed in terms of complexities
and therefore could be rewritten in new coordinates. For example, I(x : y) = KS(x) + KS(y)−
KS(x,y) = a2+a5 andKS(x|y) = KS(x,y)−KS(y) = a1+a4.

What is the intuitive meaning of these new coordinates? It iseasy to see thata1 = KS(x|y,z)
(with logarithmic precision). The meaning ofa3 (anda7) is similar. The coordinatea2 is (with the
same precision)I(x : y|z); coordinatesa4 anda6 have similar meaning (see Fig. 6). In particular,
we conclude that for any stringsx,y,z the corresponding values of coordinatesa1,a2,a3,a4,a6,a7
are non-negative (up toO(logn) for stringsx,y,zof complexity at mostn).

The coordinatea5 is more delicate. Informally, we would like to understand itas the “amount
of common information in three stringsx,y,z”. Sometimes the notationI(x : y : z) is used. However,
the meaning of this expression is not quite clear, especially if we take into accout thata5 can be
negative.

Consider the following example wherea7 < 0. Letx andy be two halves of an incompressible
strings of length 2n ThenKS(x) = n, KS(y) = n, KS(x,y) = 2n andI(x : y) = 0 (up toO(logn)).
Consider a stringz of lengthn which is a bitwise sum modulo 2 ofx andy. Then each of the
stringsx,y,z can be reconstructed if two others are known; therefor the complexities of all pairs
KS(x,y),KS(y,z), KS(x,z) are equal to 2n (again up toO(logn)), and the complexityKS(x,y,z)
is alson. The complexity ofz is equal ton (it can not be larger, since the length isn; on the other
hand, it cannot be smaller, sincez andy form a pair of complexity 2n).

So we get the following values ofa1, . . . ,a7 for this example (Fig. 7):

45

x y

z

KS(x|y,z)

I(x : y|z) KS(y|x,z)

I(x : z|y)

I(x : y : z)

I(y : z|x)

KS(z|x,y)

Figure 6: The complexity interpretation of new coordinates. {condit-i.5

0
n 0

n
−n n

0

Figure 7: Two independent incompressible strings of lengthn and their bitwise sum mod 2. {condit-i.4

Note that even ifa5 is negative, the sumsa5+a2, a5+a4 anda5+a6, being mutual informations
for pairs, are non-negative. (In our examples these sums areequal to 0.)

This example corresponds to the simple case of secret sharing of secretz between two people:
if one of them knowsx and the other one knowsy, then none of them has any information about
z in isolation (sinceI(x : z) ≈ 0 andI(y : z) ≈ 0)), but together they can reconstructz as a bitwise
sum ofx andy.

One can check that we have already given a full list of inequalities that are true for complexities
of three strings and their combinations (allai, except fora5, are non-negative, as well as three sums
mentioned abovew). We return to this question in Chapter??.

Our diagram is a good mnenonic tool. For example, consider again the inequality

KS(x,y,z) 6 KS(x,y)+KS(x,z)+KS(y,z).

In our new variables it can be rewritten asa2+a4+a5+a6 > 0 (you can easily check it by counting
the multiplicity of eachai in both sides of the inequality). It remains to note thata2+a5 > 0,a4 > 0
anda6 > 0. (Alas, the symmetry is broken again!)

43 Prove thatI(xy: z) = I(x : z)+ I(y : z|x)+O(logn) for stringsx,y,zof complexity at mostn.
[Hint: Use the diagram.]

46

This problem shows that infromation inxy aboutz can be somehow split into two parts: in-
fromation inx aboutz and information iny aboutz (whenx is known). This is somehow similar
to the equalityKS(x,y) = KS(x) + KS(y|x), but now complexity is replaced by the quantity of
information aboutz. As a corollary we immediately get that ifxy is independent withz thenx
in independent withz and, at the same timey is independent withz whenx is known. (Here in-
dependence means that mutual information is negligible.) Asymmetric argument shows thatx is
independent withy andx is independent withzwheny is known.

44 Show that properties “x is independent withy” and “x is independent withy whenz is
known” are quite different: any one of them can be true when the other one is false.

45 We say that stringsx,y,z, t form aMarkov chain(a well known notion in the probability
theory now transferred to the algorithmic information theory) if I(x : z|y) and I(〈x,y〉 : t|z) are
negligible. (Of course, we need to specify what is “negligible” to get a formal definition.) Show
that the reversed sequence of strings also forms a Markov chain, i.e., thatI(t : y|z) andI(〈t,z〉 : x|y)
are negligible. [Hint: SinceI(〈x,y〉 : t|z) = I(y : t|z)+ I(x : t|y,z), the left-hand side in this equality
is zero if and only if both terms on the right-hand side are zero; and the second term in the right-
hand side does not change when the order ofx,y,z, t is reversed.]

47

3 Martin-L öf randomness
{random}

Here we interrupt the exposition of Kolmogorov complexity and its properties and define another
basic notion used in the algorithmic information theory, i.e., the notion of Martin-Löf random (or
typical) sequence. This chapter does not refer to the preceding one and is not used until Chapter 5
where we characterize randomness in terms of Kolmogorov complexity.

Let us remind some basic facts of measure theory for the case of infinite sequences of zeros
and ones.

3.1 Measures onΩ
{randomcl}

Consider the setΩ whose elements are infinite sequences of zeros and ones. Thisset is called
Cantor space. For a binary stringx we consider a setΩx of all infinite sequences that have initial
segmentx. For example,Ω00 is the set of all sequences that start with two zeros, andΩΛ = Ω
(whereΛ is an empty binary string).

The setsΩx are calledintervals. All intervals and all unions of arbitrary families of intervals
are calledopensubsets ofΩ. In this way we get a topology onΩ, and this topology corresponds
to a standard distance function onΩ defined as follows: the longer common prefix two sequences
have, the smaller the distance between them is:

d(ω,ω ′) = 2−n,

wheren is the smallest index such thatωn 6= ω ′
n. (Hereωn stands for thenth term of the sequence

ω = ω0ω1ω2 . . .)

46 Prove that topological spaceΩ is homeomorphic to the Cantor set on the real line. (This
set is obtained from[0,1] by deleting the middle third, then the middle thirds of two remaining
segments and so on.)

However, we are interested in measure theory rather than topology. A family of subsets ofΩ
is called aσ -algebraif it is closed under finite or countable unions and intersections and negation
(taking the complement).

A minimal σ -algebra that contains all intervalsΩx (and therefore all open sets) is called the
algebra ofBorel sets.

Consider an arbitraryσ -algebra that contains all intervals. Letµ be a function that maps every
set in thisσ -algebra into a non-negative real number, and has the following property (calledσ -
additivity):

if a setA is a union of a countable or finite family of disjoint setsA0,A1,A2, . . . that
belong to theσ -algebra on whichµ is defined, then

µ(A) = µ(A0)+ µ(A1)+ µ(A2)+ . . .

(the right-hand side is a finite sum or a converging series with non-negative terms).

48

Thenµ is called ameasureonΩ, and the valueµ(A) is called the measure of the setA.
A measureµ such thatµ(Ω) = 1 is called aprobability distributionon Ω. Elements of theσ -

algebra that is the domain ofµ are calledevents, andµ(A) is called theprobabilityof the eventA.
Any measure in monotone (A⊂B impliesµ(A) 6 µ(B)). Indeed,µ(B)−µ(A) = µ(B\A) > 0.
Another important property of measures is continuity: if a set B is a union of increasing se-

quence of sets
B0 ⊂ B1 ⊂ B2 ⊂ . . . ,

thenµ(Bn) tends toµ(B) asn → ∞. (Indeed, let us apply the additivity property to all setsAi =
Bi \Bi−1 and then to all setsAi such thati 6 n.) The similar property holds for decreasing sequences
of sets.

For any measureµ on Ω let us consider a functionp defined of binary strings as follows:

p(x) = µ(Ωx).

This function has non-negative real values and satisfies thefollowing additivityproperty:

p(x) = p(x0)+ p(x1)

for any stringx. (Indeed, the intervalΩx is the union of its two halvesΩx0 andΩx1, which are
disjoint sets.)

As we know from measure theory (Lebesgue theorem), an inverse transition is possible.
Namely, for any additive functionp on binary strings that has non-negative real values, Lebesgue
theorem provides a measureµ such thatµ(Ωx) = p(x) for all binary stringsx.

The measure provided by Lebesgue theorem has the following additional property: ifµ(A) = 0
for some setA andB⊂A, thenµ(B) is defined (and thereforeµ(B) = 0). In the sequel we consider
only measures that have this additional property.

We do not explain Lebesgue’s construction here and refer thereader to any textbook in measure
theory, e.g., [?, ?]. However, let us recall the definition of sets having measure 0, since Martin-Löf
definition of randomness uses its effective version.

Let p be an additive nonnegative real-valued function on strings. We call p(x) the measure of
the intervalΩx. A subsetA⊂ Ω is anull set(a setof measure0) if for anyε > 0 there exist a finite
or countable family of intervals that coverA and have total measure at mostε.

In other words, a setA is a null set if there exists a function〈ε, i〉 7→ x(ε, i) (first argument is a
positive real, the second argument is a non-negative integer; values are binary strings) such that

• A⊂ Ωx(ε,0)∪Ωx(ε,1)∪Ωx(ε,2) . . .

• p(x(ε,0))+ p(x(ε,1))+ p(x(ε,2))+ . . . 6 ε

for any positiveε. Note that the family of intervals can be finite, since we do not require the
functionx to be total (undefined values are skipped both in the union andin the sum).

Here are some simple but useful observations:

• The definition does not change if we restrict ourselves to rational values ofε (or even let
ε = 2−k for integerk).

49

• Any subset of a null set is a null set.

• A finite or countable union of null sets is a null set. (Indeed,to cover the union by the family
of intervals of total measure less thanε, we combine the coverings of its parts of measure
less thanε/2,ε/4,ε/8 etc.).

• Assume thatp is chosen in such a way that any singleton is a null set (it is equivalent to the
following property: for any infinite sequenceω = ω0ω1ω2 . . . the limit of p(ω0 . . .ωn) (as
n→ ∞) equals 0). Then any finite or countable set is a null set.

A uniform measureon Ω assigns to each intervalΩx the number 2−l(x):

p(x) = 2−n for all stringsx of lengthn.

The uniform measure is closely related to the standard measure onR (or, more precisely, on[0,1]).
Formally, the measure of a setA ⊂ Ω is equal to the measure of the set of reals whose binary
expansions are elements ofA. (In fact, the correspondence between binary fractions andreals in
[0,1] is not a bijection, since numbers of the formk/2l for integerk andl have two representations:
e.g., 0.01111. . . = 0.10000. . .. But this happens only for a countable family of reals and measure
theory ignores this.)

Indeed, the reals whose binary expansions start withx, form an interval, and the length of this
interval is just 2−n wheren is the length ofx. This implies that for any intervalI ⊂ [0,1] the
uniform measure of the sequences that represent reals inI is equal to the length of the intervalI .

Probability theory describes the uniform distribution as the probability distribution for the out-
comes of independent fair coin tossing. Indeed, forn independent fair coins all 2n binary strings
of lengthn appear with the same probability 2−n. The setΩx is the event “a random sequence of
zeros and ones starts withx”, and this event has probability 2−l(x).

Similarly, we can consider a biased coin, where coin tossingare still independent. The corre-
sponding measure (probability distribution) is calledBernoulli measure(or Bernoulli distribution)
with parametersq, p (probabilities of 0 and 1 respectively; we assume thatp,q > 0 andp+q = 1). {nonuniform-bernoulli

With respect to this distribution, the event “sequenceω starts with a stringx” has probability
qupv whereu andv are the numbers of zeros and ones inx. In other terms, we consider a function

x 7→ qu(x)pv(x)

whereu(x) andv(x) stand for the numbers of zeros and ones inx, respectively. (It is easy to check
that this function has the additivity property.)

3.2 The Strong Law of Large Numbers
{random-lln

To see all these notions in action, let us state and prove the so-calledStrong Law of Large Numbers.
Fix somep,q > 0 such thatp+q = 1. LetAp be the set of all infinite sequencesω0ω1ω2 . . . of

zeros and ones such that limit frequency of ones exists and isequal top, i.e.,

lim
n→∞

ω0 +ω1 + . . .+ωn−1

n
= p.

50

{randomcl-large-numbers
Theorem 27 The set Ap has measure1 with respect to Bernoulli distribution with parameters p
and q.

In other terms, the complement ofAp, i.e., the set of all sequences that either do not have
limit frequency at all or have a limit frequency different from p, is a null set (according to this
distribution).

⊳ We prove this theorem for the uniform case (i.e., forp= q= 1/2) by an explicit calculation.
The general case is left as an exercise (see also Sect.??).

Let us consider first a finite number of coin tossings and fix somen. All binary strings of length
n have the same probability. We claim that most of them have approximatelyn/2 ones. Assume
that some thresholdε is fixed. How many sequences have more than(1/2+ε)n ones? The answer
can be found using the Pascal triangle: we have to sum up all the terms in thenth row starting from
some point that is slightly on the right of the midpoint. In this part we have a decreasing sequence
of less thann terms, so the sum in question is bounded by the first term multiplied byn. (We don’t
need to be very accurate in our bounds and ignore factors which are polynomial inn. So we can
omit the factorn in our bound.)

The first term of the sum is the binomial coefficient

n!
k!(n−k)!

,

wherek is the smallest integer not less than(1/2+ ε)n. We use the Stirling’s approximation:

m! =
√

(2π +o(1))m
(m

e

)m
,

wheree is the base of natural logarithms. Ignoring polynomial (inn) factors and using the notation
u = k/n, v = (n−k)/n, we get

n!
k!(n−k)!

≈ (n/e)n

(k/e)k((n−k)/e)n−k =
nn

kk(n−k)n−k ≈

≈ nn

(un)un(vn)vn =
1

uunvvn = 2H(u,v)n,

where
H(u,v) = −ulogu−vlogv.

The valueH(u,v) is called theShannon entropyof the random variable that has two values whose
probabilities areu v. (We study the Shannon entropy in Chapter 7.) Figure 8 shows the corre-
sponding graph (note thatv= 1−u). It is easy to check thatH(u,1−u) achieves its maximal value
(equal to 1) only atu = 1/2.

Now we see that the number of binary strings of lengthn that have frequency of ones greater
than (1/2+ ε) does not exceed poly(n)2H(1/2+ε,1/2−ε)n and therefore is bounded by 2cn+o(n),
wherec is some constant less than 1 (depending onε). Therefore, the fraction of this strings

51

0 11/2 u

1

H(u,1−u)

Figure 8: Shannon entropy as a function ofu. {randomcl-entropy

(among all strings of lengthn) exponentially decreases whilen increases. The same is true for the
strings that have frequency of ones less than(1/2− ε).

Let us see where we are. For each fixedε > 0 we have proved the following statement:
Lemma. The fraction of strings of lengthn where frequency of ones differs from 1/2 at least

by ε (among all strings of lengthn) does not exceed someδn that decreases exponentially asn
increases.

This lemma (without any specific claims for the fast convergenceδn → 0) is called theLaw of
Large Numbers. To prove theStrongLaw of Large Numbers we need to know that the series∑nδn

is convergent.
We need to prove that the setA1/2 of all sequences that have limit frequency of ones equal to

1/2 has measure 1. In other terms, we need to prove that the complement of this set (we denote
this complement byB) is a null set.

According to the definition of limit the setB is the union (over allε > 0) of the setsBε . Here
Bε is the set of all sequences such that frequency of ones in their prefixes exceeds 1/2+ ε (or is
less than 1/2− ε) infinitely many times.

Evidently, we can consider only a countable set of differentε (e.g., only rational values), and
the countable union of null sets is a null set. Therefore it remains to prove that the setBε is a null
set for eachε.

The setBε consists of the sequences that have arbitrarily long “bad” prefixes. Here “bad” prefix
is a string where the frequency of ones differs from 1/2 more than byε. Therefore, for eachN the
setBε is covered by the family of intervalsΩx wherex ranges over all bad strings of length at least
N. The total (uniform) measure of all this intervals does not exceed

δN +δN+1 +δN+2 + . . . ,

and this sum can be made small since the series∑i δi is convergent.
(Probability theorists call this argumentBorel–Cantelli lemma. In its general form this lemma

says that if the sum of measures of some setsA0,A1, . . . is finite, then the set of all points that
belong to infinitely manyAi is a null set.)⊲

One can get a bound for the number of bad strings of lengthn without Stirling’s approximation.
We do it separately for bad strings that have too many and too few ones. For example, let us

52

consider the set of all “bad” strings that have frequency of ones greater than 1/2+ ε. To get a
bound for the cardinality of this set, consider two distributions (measures) on the set of all strings
of lengthn. The first one, calledL, is the uniform distribution: all strings have probability2−n. The
second one, calledS, is biased (ones are more likely than zeros) and correspondsto n independent
coin tossing where 1 appears with probabilityp = 1/2+ε. In other terms,S(x) = qupv for a string
x that hasu zeros andv ones (hereq = 1/2− ε is the probability of zero outcome). The ratio
S(x)/L(x) increases when the number of ones inx increases, and for all bad strings this ratio is
at least 2n/2H(p,q)n. Therefore, the totalL-measure of all bad strings does not exceed their total
S-measure divided by this expression. Recalling that the total S-measure of all bad strings does
not exceed 1, we conclude that the totalL-measure (i.e., the fraction) of all bad strings does not
exceed 2H(p,q)n/2n. So we get another proof of our bound, which is less technical (though more
difficult to find). This proof works not only for the uniform Bernoulli measure (p = 1/2), but also
for arbitraryp (after appropriate changes).

47 Prove the Strong Law of Large Numbers for arbitraryp. [Hint: Let p0 andq0 be fixed {non-uniform-slln
positive reals such thatp0 + q0 = 1. Then the expression−p0 logp− q0 logq, where p,q are
arbitrary positive reals such thatp+q = 1, is minimal whenp = p0, q= q0. See also Section??.]

People often say that “the Strong Law of Large Numbers guarantees that in any random (with
respect to uniform Bernoulli measure) sequence the frequency of 1s tends to 1/2”. (The the case of
nonuniform Bernoulli measures is similar.) However, in this sentence the word “random” shouldn’t
be understood literally: the phrase “any random sequence satisfiesα” (for some conditionα) is an
idiomatic expression that means that the set of all sequences that do not satisfyα is a null set.

A natural question arises: can we define the notion of random sequence in such a way that this
idiomatic expression can be understood literally? Let us fixsome distribution onΩ, say, the uni-
form Bernoulli distribution. We would like to find some subset of Ω and call its elements “random
sequences”. Our goal would be achieved if for any conditionα the following two statements were
equivalent:

• all random sequences satisfy the conditionα;

• the set of all sequences that does not satisfyα is a null set.

In other terms, the sets of measure 1 should be exactly those sets that contain all random
sequences (and, may be, some nonrandom ones).

One more reformulation: the set of all random sequences should be the smallest (with respect
to inclusion) set of measure 1, and the set of non-random sequences should be the largest (with
respect to inclusion) null set. Now it easy to see that our goal cannot be achieved. Indeed, any
singleton inΩ is a null set. However, the union of all these singletons is the entire spaceΩ.

In 1965 Per Martin-Löf (a Swedish mathematician, who was Kolmogorov’s student at that
time) found that we can save the game if we restrict ourselvesto “effectively null sets”. There exist
a largest (with respect to inclusion) effectively null set,and therefore we can define the notion
of a random sequence is such a way that any conditionα is satisfied for all random sequences
if and only if the set of all sequences that do not satisfyα is aneffectively null set. Martin-Löf
construction is explained in the next section.

53

3.3 Effectively null sets
{randomml}

Let a measure onΩ be fixed an letp(x) be the measure of the intervalΩx.
We say that a setA⊂ Ω is an effectively null set (with respect to the given measure) if for every

ε > 0 one can effectively find a family of intervals that coverA and whose total measure does not
exceedε.

Some details should be specified in this definition. First, weconsider only rational values ofε
(otherwise it is not clear howε could be given to an algorithm). Second, we need to specify how
the sequence of intervals (that coverA) is generated. We do this as follows:

Definition. A setA ⊂ Ω is called aneffectively null set(with respect to a given measure) if{effective-null-set
there exists a computable functionx(·, ·) whose first argument is a positive rational number, second
argument is a natural number and values are binary strings, such that:

1. A⊂ Ωx(ε,0)∪Ωx(ε,1)∪Ωx(ε,2) . . .;

2. p(x(ε,0))+ p(x(ε,1))+ p(x(ε,2))+ . . . 6 ε

for any rationalε > 0. Note that we do not require the functionx to be total; ifx(ε, i) is undefined,
the corresponding term (in both conditions) is omitted.

48 Show that we get an equivalent version of the definition if we consider an algorithm that
getsε > 0 as an input and enumerates a set of binary strings (by printing its elements with arbitrary
delays between elements) such that intervalsΩx for generatedx coverA and have total measure at
mostε.

49 Show that we get an equivalent definition if we consider only rational numbers of the form
2−k (for integerk) instead of all rationalε. Show that the definition does not change if we replace
the sign6 by < in the second inequality.

50 Show that we get an equivalent definition if we require that for eachε > 0 the domain of
the functioni 7→ x(ε, i) is an initial segment ofN (or N itself).

51 Show that we get an equivalent definition if we require that the family of intervals is de-
cidable (instead of enumberable). [Hint: An interval can besplit is small parts, so we may assume
that intervals in the sequence have non-increasing length,and the family of intervals becomes
decicalbe.]

Let us give some examples of effectively null subsets ofΩ (with respect to the uniform mea-
sure).

A singleton whose only element is a sequence of zeros, is an effectively null set. Indeed, for
everyε > 0 we find an integerk such that 2−k < ε, and consider a covering that consists of one
intervalΩ00...0 (corresponding to the string ofk zeros).

Formally speaking,x(ε,0) = 0k, where 0k stands for the sequence formed byk zeros, andk is
the smallest integer such that 2−k < ε. The valuesx(ε, i) are undefined fori > 0.

In this example the (identically) zero sequence can be replaced by any computable sequence of
zeros and ones; we need only to consider its prefix of lengthk instead of 0k.

However, we cannot replace it by any binary sequence, as the following problem shows:

54

52 Prove that there exists a sequenceω ∈ Ω such that singleton{ω} is not an effectively null
set. [Hint: Consider all computable functionsx that satisfy the second condition of the definition
of effectively null set. There are countably many such functions. For each of them consider the
largest setA that satisfies the requirement (1) of the definition (i.e., the intersection of unions of
coverings over allε). This set is an (effectively) null set, and the union of a countable family of
those sets is null set. Therefore, there exists a sequenceω which does not belong to this union.]

(Note that the statement of this problem is a straightforward corollary of the Martin-Löf the-
orem on the existence of the largest effectively null set (Theorem 28, p. 56)) proved later in this
section, and the hint just follows the proof of the Martin-L¨of theorem. As we see later, the set{ω}
is an effectively null set if and only if the sequenceω is not “Martin-Löf random”.)

It is easy to construct a non-computable sequenceω such that the singleton{ω} is an effective
null set. Indeed, consider any sequence of the formω = 0?0?0?0. . . (each second term is zero, the
rest is arbitrary). Let us show that{ω} is indeed an effectively null set. To find a covering with
total measure 2−n, consider all strings of length 2n that are formed byn arbitrary bits interleaved
with n zeros (as inω). There are 2n strings of this form, and each corresponds to an interval of
length 2−2n, so the total measure is 2−n.

In fact we have proved a bit more: the set of all sequences thathave only zeros at even posi-
tions, is an effectively null set. Therefore, each of its subsets (in particular, every singleton) is an
effectively null set.

Let us now return to the definition of an effectively null set and separate the requirements used
in this definition. We say that a computable functionx is “regular” if is satisfies the requirement (2).
The requirement (1) then says that for every rationalε > 0 the setA is a subset of the union

Ωx(ε,0)∪Ωx(ε,1)∪Ωx(ε,2) . . .

Therefore, a regular function “serves” all the subsets of the set
⋂

ε>0

(Ωx(ε,0)∪Ωx(ε,1)∪Ωx(ε,2) . . .) =
⋂

ε>0

⋃

i

Ωx(ε,i)

So for each (computable) regular functionx we get an effectively null set (defined by the formula
above), and effectively null sets are all these sets (for allregular functions) and all their subsets,
and that’s all.

Before we formulate Martin-Löf theorem, let us give the definition of acomputable measure
on the setΩ.

A real numberα is calledcomputableif there exists an algorithm that computes rational ap-
proximations toα with any given precision. Formally,α is a computable real if there exists a
computable functionε 7→ a(ε) defined on all positive rational numbers and having rationalvalues
such that

|α −a(ε)| < ε
for all rationalε > 0.

53 Show that we get an equivalent definition if we additionally require that all approximation
given bya are approximations from below, i.e.,a(ε) < α for all ε. [Hint: we can transform any
approximation to the approximation from below losing only factor 2 in precision.]

55

54 Prove that the sum, difference, product and quotient of two computable reals are com-
putable reals.

55 Prove thate (the base of natural logarithms) andπ are computable.

56 Prove that elementary function (roots, sine, exponent, logarithm etc.) preserve computabil-
ity, i.e., have computable values for computable arguments. (We assume, of course, that the base
is computable in case of logarithm and exponent.)

A measureµ on Ω is computable if measures of all intervals are computable reals, and, more-
over, we can effectively find an approximation algorithm forµ(Ωx) given x. Here is a formal
definition:

Definition. A measureµ on the setΩ is computableif there exists a computable function
〈x,ε〉 7→ a(x,ε), defined for all stringsx and all positive rational numbersε, such that

|µ(Ωx)−a(x,ε)|< ε

for all x andε.
This definition does not assume that the measure of the entirespaceΩ equals 1, but in fact we

will use it only in this case (i.e., for probability distributions).
{randomml-main-theorem

Theorem 28 Let µ be a computable measure onΩ. Then there exists a largest effectively null set
with respect toµ. In other words, the union of all effectivelyµ-null sets is an effectivelyµ-null set.

⊳ As we have seen, for each regular functionx we get a corresponding effectively null set.
Since there is countably many regular functions, we get a countably many effectively null sets and
their union contains every effectively null set. Therefore, the union of all effectively null sets is a
null set. (When speaking about null sets and effectively null sets we have in mind measureµ.)

However, we need more: we have to prove that this union is aneffectively null set. To achieve
this goal, we enumerate all regular functions and then use the effective version of the theorem that
says that the countable union of null sets is a null set.

For technical reasons it is convenient to change a bit the definition of a regular function.
Namely, we now say that a computable functionx(·, ·) is regular if all the finite partial sums of
the series

p(x(ε,0))+ p(x(ε,1))+ p(x(ε,2))+ . . .

are less thanε (note the strict inequality). Herep(x) stands forµ(Ωx). This makes our require-
ments for regular functions a bit stronger (if all partial sums are less thanε, the sum of the series
does not exceedε, but the reverse is not always true). However, the notion of the effectively null
set is not affected, since we always can replaceε by (say)ε/2.

In the sequel the regular functions are understood in this modified sense (in fact, regular func-
tions are used only locally, in the proof of Martin-Löf theorem).

The following Lemma allows us to enumerate all regular functions.
Lemma. There exists a computable (partial) function

〈q,ε, i〉 7→ X(q,ε, i)

56

(whereq and i are natural numbers,ε is a positive rational number) such that for any fixedq we
get a regular functionXq (of two remaining arguments) and all regular functions can be obtained
in this way.

Proof. Let us enumerate all programs for the functions of two arguments (whether these func-
tions are regular or not); we get a computable sequence of programs, andqth term of this sequence
is called “qth program” in the rest of the proof.

Then we defineX(q,ε, i) as the output of theqth program on inputε, i, assuming that some
conditions are met; otherwiseX(q,ε, i) is undefined. The conditions guarantee that allXq are
regular, and that regular functions are untouched.

To computeX(q,ε, i), we apply in parallel the program numberq to all pairs

(ε,0),(ε,1), . . .,

(starting with one step of the first computation, then makingtwo steps of the first two computations
etc.)

When some computation terminates with some output, we interrupt this process to verify that
strings obtained so far do not violate the regularity condition. This means that we start to compute
more and more precise approximations top(z) for all these strings until we could guarantee that
the sum of all thesep(z) is less thenε (this happens if the sum of approximations is less thanε
minus the sum of approximation errors). (Sinceµ is computable, we can compute approximations
to p(z) for anyz with any precision.)

It is possible that we do not return from this interrupt; thishappens if the sum of measures is
not less thanε.

Now X(q,ε, i) is defined as the output ofqth program on(ε, i) if this output appears and passes
the test during the process described.

If qth program computes a regular function, the verification will never fail andXq coincides
with this function. On the other hand, for everyq the functionXq is regular: if for someε theqth
program (applied toε and alli = 0,1,2, . . .) generates strings whose total measure is too large, only
finitely many of the strings will be let through, and their total measure is still less thanε. Lemma
is proved.

57 Explain why we need to change the definition of correctness. [Answer: if the sum consists
of final number of nonzero terms and their sum is exactlyε, we will newer know this.]

Now we finish the proof of Martin-Löf theorem. LetX be the function provided by the Lemma.
For all q = 0,1,2, . . . consider the effectively null setZq that corresponds to the regular function
Xq. Every effectively null set by definition is a subset ofZq for someq. It remains to show that the
unionZ0∪Z1∪ . . . is an effective null set.

We do the same trick that is used to prove that a countable union of null sets is a null set. To
find a covering of total measure less thatε for ∪qZq, we combine the(ε/2)-covering forZ0 with
(ε/4)-covering forZ1, etc.

More formally, we consider a functionx(ε, i), that is defined as follows:

x(ε, [q,k]) = X(q,ε/2q+1,k).

57

Here [q,k] stands for the number of pairq,k under some computable bijection betweenN2 and
N. ⊲

Now we are ready to give the definition of Martin-Löf random sequence. Assume that some
computable measureµ on the setΩ is fixed.

Definition. A sequenceω is calledMartin-Löf random(ML-random) with respect toµ if ω
does not belong to the largest effectively null set (with respect toµ) provided by Theorem 28.

Reformulation: a sequence is Martin-Löf random if it does not belong to any effectively null
set.

One more version: a sequenceω is Martin-Löf random if the singleton{ω} is not an effectively
null set.

A digression: terminology. The notion of Martin-Löf randomness is a refinement of the
intuitive idea of a “typical sequence”. One could say that a sequence is “typical” if it does not have
any regularities or special features which separates it from most sequences. (If somebody says that
“Mr. X is a typical math professor” she means that Mr. X has no special characteristics that make
him different from the most math professors.) A “special feature” is a feature that is posessed only
by a negligible fraction of the objects considered (sequences). For example, if a sequenceω starts
with 0, this is not a special feature, since half of the sequences have start with 0 On the other hand,
if each second term ofω is zero, this is indeed a special feature.

This informal idea is implemented in the Martin-Löf definition: a special feature is a feature
that corresponds to an effectively null set, and therefore typical sequences are sequences that do
not belong to any effectively null set, i.e., Martin-Löf random sequences.

It would be more logical to use the word “typical” for Martin-Löf’s definition and reserve the
word “random” for more general intuitive notion that can be formalized in different ways (and
the idea of a typical sequence is one of them). However, the attempts to introduce a new, more
logical, terminology often make the situation worse (authors have to confess that this can be said
about their own attempts!). And there is already a lot of misunderstanding: the words “random
sequence” are already used in different ways.

So we keep the term “Martin-Löf random sequence” for the definition given above (and some-
times use the name “Martin-Löf typical sequence”) keepingthe name “random sequence” for a
vague philosophical notion of randomness that needs additional clarification to become a mathe-
matical notion. (End of digression.)

The following statement is a trivial corollary of Martin-L¨of theorem; however, it deserves a
careful thinking since it looks counter-intuitive.

{randomml-null-criterion
Theorem 29 A set A⊂ Ω is an effectively null set if and only if all its element are not Martin-Löf
random(are non-typical).

In particular, the set of all non-typical sequences is the largest effectively null set, and the set
of all typical sequences has measure 1.

⊳ Indeed, any element of any effectively null set is non-typical by definition; on the other hand,
if all elements of some setA are non-typical, thenA is a subset of the largest effectively null set
and thereforeA is an effectively null set.⊲

58

What is strange here? A setA is a null set if it has “few elements”; the nature of these elements
does not matter much. Any singleton{ω} ⊂ Ω is a null set and this does not depend on the
properties of the sequenceω.

On the other hand, now we see that if we replace null sets by effectively null sets, the situation
changes drastically: we may put as many non-typical sequences in a set as we wish, and it would
remain an effectively null set, but any one typical (ML-random) sequence added destroys this
property.

For example, recall that any computable sequence forms an effectively null singleton (with
respect to uniform measure). We immediately get the following corollary:

{computable-not-random
Theorem 30 The set of all computable sequences of zeros and ones is an effectively null subset
of Ω (with respect to the uniform measure).

It is interesting to note that this observation was made before Martin-Löf gave the definition of
randomness, while developing the constructive version of calculus (“Zaslavsky construction” used
for many counterexamples; it deals with real numbers instead of bit sequences).

In the next section we explore the properties of ML-random sequences (with respect to the
uniform measure). We end this section with the following nice criterion for ML-randomness which
is attributed to R. Solovay in [?].

{solovay-criterion
Theorem 31 A sequenceω is no ML-random with respect to a computable measureµ if and
only if there exists s computable sequence of intervals withfinite sum of measures that coversω
infinitely many times, i.e., a computable sequences of binary strings x0,x1,x2, . . . such that

∑
i

µ(Ωxi) < ∞

andω ∈ Ωxi for infinitely many i.

⊳ Assume thatω is not ML-random. Then for eachε we can effectively find a computable
sequence of intervals that covers{ω} and has the sum of measures less thanε. Then we combine
these sequences forε = 1,1/2,1/4,1/8, . . . and get a computable sequence of intervals with sum
of measures not exceeding 2 that coversω infinitely many times (at least once for eachε).).

On the other hand, assume that there exists a computable sequence of stringsx0,x1,x2, . . .
such that the sum of measures of corresponding intervals does not exceed some constantc and
infinitely many of these intervals containω. We may assume without loss of generality thatc is
a rational number. To find a covering forω that has sum of measures less thanε, we consider
the setMN of all sequences inΩ that are covered at leastN times. HereN is a positive integer
such thatc/N < ε. It is easy to see thatMN can be represented as the union if a computable
sequence of disjoint intervals (while readingx0,x1, . . ., we see more and more elements ofMN and
add respective intervals when necessary). Therefore the set {ω} is an effectively null set and the
sequenceω is not ML-random.⊲

Remark. This result is a constructive version of Borel–Cantelli Lemma (if the sum of measures
of setsA0,A1, . . . is finite, then the set of all points that belong to infinitely manyAi is a null set),

59

and our argument is an effective version of a classical proofof Borel–Cantelli Lemma. However,
we should be careful since not any classical proof can be effectivized. The standard proof (since
the series is converging, its tails could be made as small is needed) does not work here, since there
is no way to find an appropriate tail givenε.

3.4 Properties of Martin-L öf randomness
{randomun}

The Strong Law of Large Numbers also provides an example of aneffective null sets (with respect
to the uniform measure).

{randomml-lln
Theorem 32 A set of all bit sequences that do no have limit frequency1/2 is an effectively null
set with respect to the uniform measure.

⊳ It is enough to prove that for every rationalε > 0 the set of all sequences such that frequency
of ones is greater than 1/2+ε infinitely many times (or less than 1/2−ε infinitely many times) is
an effective null set.

Indeed, the upper bound for the measure of this set achieved in the proof of the Strong Law of
Large Numbers in the previous section (Theorem 27, p. 51) is effective: the set of intervals was
the set of all sufficiently long strings with large frequencydeviation, and its total measure was
effectively bounded by a tail of the converging geometric series.⊲

The statement of this theorem can be reformulated as the property of individual ML-random
sequences:

{random-lln-effective
Theorem 33 Let ω = ω0ω1 . . . be a ML-random sequence with respect to the uniform measure.
Then

lim
n→∞

ω0 +ω1 + . . .+ωn−1

n
=

1
2
.

The similar statement is true for arbitrary Bernoulli measure. Let p and q be computable
positive reals such thatp+ q = 1. Consider the Bernoulli measure with parametersq and p (the
sequence of independent coin tossing with success probability p). It is easy to check that this us a
computable measure (sincep andq are computable).

Theorem 34 Any ML-random sequence with respect to Bernoulli measure with computable pa-
rameters q, p has limit frequency p.

⊳ Indeed, the upper bound for the probability of large deviations (obtained by comparing the
given Bernoulli measure with the other one, with shiftedp, see Problem 47, p. 53), gives an explicit
bound and an explicit set of intervals, so we get an effectively null set.⊲

There are several other properties of typicalness (ML-randomness) with respect to the uniform
measure:

Theorem 35 Let ω be a typical (=ML-random) sequnce with respect to the uniform measure.
Then any other sequence which is obtained fromω by a finite number of insertions / deletions /
changes, is also typical (ML-random).

60

⊳ It is enough to show that adding a zero/one in the beginning ofa typical sequence or deleting
the first term of a typical sequence gives a typical sequence.

Indeed, assume that sequenceω is not typical, i.e., forms an effectively null singletion: for
eachε one can effective construct a covering by intervals with total measure less thanε. Let us
add zero at the beginning of all these intervals (i.e., the corresponding strings). We get a covering
for 0ω whose measure is twice smaller. This argument shows that ifω is not typical, then 0ω is
not typical either. (Similar argument works for 1ω.)

On the other hand, if we delete the first bit of all strings thatform a covering forω, we get a
family of intervals of twice larger measure that coversω ′ (obtained fromω by first bit deletion).
Therefore,ω ′ is not typical.⊲

58 Prove that replacing all zeros by ones and vice versa in a typical sequence (with respect to
the uniform measure) we get a typical sequence.

The folllowing problem shows that a computable subsequenceof a typical sequence is typical.

59 Let n0,n1,n2, . . . be a computable sequence of different integers (ni 6= n j if i 6= j). Let
ω = ω0ω1ω2 . . . be a typical (=ML-random) sequence. Then its subsequence

ω|n = ωn0ωn1ωn2 . . .

is typical (ML-random). [Hint: any intervalΩx in a cover forω|n produces a finite family of
intervals whose union is the set of sequences whose(n0,n1, . . . ,ni−1)-subsequence coincides with
x (herei is the length of the stringx). The total measure of these intervals equals 2−i , the measure
of Ωx.]

More general selection rules are consider in Chapter?? (p. ??) where a frequency approach to
the notion of randomness (von Mises’ approach) is considered.

60 Let ω be a typical (=ML-random) sequnce with respect to the uniform measure. Let us
split ω into two-bit blocks and then replace blocks 00 by zeros and blocks 01, 10 and 11 by ones.
Prove that the resulting sequence is typical with respect toBernoulli measure with parameters
1/4,3/4. [Hint. We described a transformation ofΩ into itsef. The preimage of any open setU is
open, and the uniform measure of that preimage equals the(1/4,3/4)-measure of the setU .]

61 (Continued.) Prove that any typical (=ML-random) sequencewith respect to the
(1/4,3/4)-measure can be obtained in this way from a sequence that is typical (=ML-random)
with respect to the uniform measure. [Hint: For any open setB ⊂ Ω consider the setB′ of all
sequencesω such thatF−1({ω}) ⊂ B (the set of sequences that do not have a preimage outside
B, i.e., the complement to the image of the complement ofB). The image of a compact set is a
compact set, thereforeB′ is open. Show that ifB is a union of an enumerable family of intervals,
thenB′ is also a union of enumerable family of intervals, and Bernoulli measure ofB′ does not
exceed the uniform measure ofB. See also the proof of a more general statement (Theorem 99,
p. 142).]

What can be said about the “complexity” of a ML-random sequence (with respect to the uni-
form measure) from the viewpoint of the recursion theory? Weknow already that ML-random
sequence is not computable. It also cannot be a characteristic function of an enumerable (recur-
sively enumerable, computably enumerable) set.

61

Theorem 36 Let A be an enumerable set of natural number. Consider its characteristic sequences
a0a1a2 . . . (ai = 0 for i /∈ A and ai = 1 for i ∈ A). This sequence is not ML-random.

⊳ Let k be an arbitrary natural number. Let us enumerate the setA and see what happens with
k first bits of its characteristic sequences. As (current version of) A increases, we get more and
more ones in thisk-bit prefix. In this way we get at mostk+1 candidates; at some point we come
to a final (true) one, but we never know that this happened already. Anyway, the set of candidates
is enumrable and the number of candidates does not exceedk+1 (sincek-bit prefix can have 0. . .k
ones). The total measure of these intervals is(k+ 1)/2k and therefore can be made arbitrarily
small. (Note that the definition of the effectively null set allows us to enumerate the intervals that
form a covering, and this is exactly what we can do in our case.) ⊲

A natural question arises: in what sense one can provide explicitly a ML-random sequence?
As we have seen, neither computable nor characteristic sequences of enumerable sets are random.
If you are familiar with the basics of the recursion theory (see, e.g., [?]), you may appreciate
the following result: there exist a ML-random sequence thatbelongs to the classΣ2∩Π2 of the
arithmetic hierarchy (this class can be also described as the class of all0′-computable sequences).

Theorem 37 There exists a0′-computable sequence that is ML-random with respect to the uni-
form measure.

⊳ It is enough to show that for any enumerable set of strings{x0,x1, . . .} such that∑2−l(xi) <
1/2 there exists a0′-computable sequence that does not have any ofxi as a prefix. (Indeed, the
largest effective null set has such a covering with total measure less than 1/2, and any sequence
that is not covered is ML-random.)

The intervalsΩxi are divided into two groups: some of them belong to the left half of Ω (i.e.,xi

starts with 0) and some belong to the right half. Total measure of both groups at most 1/2. There-
fore, at least one of the group has total measure at most 1/4. However, looking at the sequence
xi , we cannot find out which half has this property (since at any moment new large interval can
arrive).

However,0′-oracle allows us to make this choice, since the event “measure exceeds 1/4” is
enumerable. Then we divide this half into two parts of size 1/4 each and choose one of them
where the total measure of corresponding intervals does notexceed 1/8, and so on.

In this way we get a0′-computable sequence with the following property: each itsprefix is
at most half-covered by our intervals. In particular, no prefix of this sequence can appear in the
sequencexi , and this is what we need.⊲

(See Section 5.7 (p. 135) for an alternative proof.)
In fact our argument uses a relativized version of the following result:

62 Assume thatx0,x1,x2, . . . is a computable sequence of binary strings and the sum {schnorr-nonuniversal

∑
i

2−l(xi)

is less than 1 and is a computable real number. Then there exists a computable sequence of zeros
and ones that has neither ofxi as its prefix.

62

[Hint: Let this sum be less than some rationalS< 1. By induction construct a computable
sequenceω0ω1ω2 . . . with the following property: the fraction of the setU = ∪Ωxi among the
sequences that have prefixω0 . . .ωk is less thanS.]

This problem is related to the definition of randomness suggested by C. Schnorr [?]. He gave a
more restrictive definition of an effectively null set. The additional requirement: for every (rational)
ε > 0 the total measure of corresponding intervals is not only less thanε but also is a computable
real (and the approximation algorithm computably depends on ε). This requirement is equivalent
to the following one: for everyε > 0 andδ > 0 one can effectively find out how many terms in the
series∑i p(x(ε, i)) are needed to make the tail less thanδ . (For a series with non-negative terms
the computability of sum is equivalent to computable convergence.)

By Schnorr effectively null setswe mean the effectively null sets according to this modified
definition. (Schnorr calls themtotal rekursive Nullmenge, see Definition 8.1 in [?]; effectively null
sets are calledrekursive Nullmenge, see Definition 4.1.)

63 Let us change the definition of an effectively null set in another way: now we require that
the total measure of all intervals in the covering isexactlyε. Show that this definition is equivalent
to the definition of Schnorr effectively null set. (One can also consider the measure of the union of
all intervals instead of the sum of measures.)

Problem 62 shows that for every Schorr effectively null set there exists a computable sequence
outside this set. (For simplicity let us consider the case ofuniform measure.) On the other hand,
every computable sequence (i.e., the singleton made of it) is a Schnorr effectively null set. There-
fore, none of the Schnorr effectively null sets is the largest one in the class (in other words, the
union of all Schnorr effectively null sets is not a Schnorr effectively null set). Nevertheless we
can call a sequence which does not belong to any Schnorr null set aSchnorr random sequenceor
Schnorr typical sequence.

Since now we have less effectively null set, we may get the broader class of random sequences,
and it is indeed the case. The following problem (together with the results of Chapter 5) guarantees
that there exist Schnorr random sequences that are not Martin-Löf random.

64 Prove that there exists a Schnorr random sequencesω = ω0ω1ω2 . . . whose prefixes have
logarithmic complexity, i.e.,KS(ω0 . . .ωn−1) = O(logn).

[Hint: The previous problem shows how one can construct a computable sequence that does not
belong to a given Schnorr effectively null set. At some pointof this construction we can take into
account another Schnorr effectively null set and get a computable sequence that does not belong to
both. (Indeed, we need to take a sufficiently small covering for the second set that does not go out
of the safety margin in the construction form the first set.) Moreover, we can consider infinitely
many Schnorr effectively null sets in this way (adding them one after another). This will not give
us a computable Schnorr random sequnce (it does not exist at all), because we need additional
information that says us which algorithms correspond to Schnorr effectively null set and which do
not. But if we postpone the introduction of a new algorithm tothe moment when the constructed
prefix of our sequence is rather long, this additional information is logarithmic compared to the
prefix length.]

We return to Schnorr definition of randomness in Section?? where it is reformulated in terms
of computable martingales.

63

65 Prove that a sequenceω is not Schnorr random if ans only if there exists a computable{schnorr-solovay
sequence of stringsx0,x1, . . . such that the series∑i p(xi) computably converges (has a computable
sum) and infinitely many ofxi are prefixes ofω (this is a version of Theorem 31 statement for
Schnorr randomness). [Hint: In this case even the standard proof of Borel–Cantelli lemma works.]

64

4 A priori probability and prefix complexity
{prefix}

4.1 Randomized algorithms and semi-measures onN
{prefix-pp}

In this section we consider algorithms (=programs, machines) equipped with a random number
generator. That is, algorithms may perform instructions ofthe following form:

b := random.

This instruction assigns to the variable (memory cell)b a random bit (0 or 1), both values are
assigned with equal probabilities. To perform this instruction we toss a fair coin and write its
outcome in the memory cellb. Algorithms including such instructions are calledrandomizedor
probabilistic.

The result (output) produced by a randomized algorithm depends not only on its input but also
on the result of the coin tossing. That is, for every fixed input, the output of a randomized algorithm
is a random variable.

Speaking formally, the probability that a randomized algorithm A prints a resultx is defined as
follows. Consider the uniform Bernoulli distribution on the spaceΩ of all infinite 0-1-sequences.
The measure of the setΩu of all infinite continuations of a finite stringu is equal to 2−l(u).

Let x be an input for a randomized algorithmA and letω ∈ Ω be an infinite sequence of zeros
and ones. We denote byA(x,ω) the output ofA on inputx, if random bits used by the algorithm
are taken from the sequenceω. More specifically, each call of a random generator returns the next
bit of ω. If the algorithmA does not halt (for givenx andω), then the valueA(x,ω) is undefined.

Let y be a possible output ofA. Consider the set{ω | A(x,ω) = y}. This set is the union of
intervalsΩz over all outcomesz of coin tossing that guarantee thatA prints y havingx as input.
The probability thatA on inputx outputsy is equal to the measure of this set.

In this section, we consider machines without input whose outputs are natural numbers. Here
is an example of such machine. It tosses a coin until a 1 appears and outputs the number of 0s
preceding the first 1. The probabilitypi of the event “the output isi” is equal to 2−(i+1). Indeed,
the algorithm outputsi if and only if the firsti random bits are zeros and the(i +1)st bit is 1. This
happens with probability 2−(i+1).

The sum of the series∑ pi is equal to 1 in this example. Indeed, the algorithm does not halt if
and only if all random bits are zeros and this happens with zero probability.

We assign to every probabilistic machine (having no input and producing natural numbers) a
sequencep0, p1, . . . of real numbers:pi is the probability that the machine prints the numberi. We
say that the probabilistic machinegeneratesthe sequencep0, p1, Which sequencesp0, p1, . . .
can be obtained in this way? There is an obvious necessary condition: ∑ pi 6 1 (since the machine
cannot produce two different outputs). However, this inequality is not sufficient, as there are
countably many randomized algorithms and uncountably manysequences satisfying this condition.

Let us answer first a simplified question. Consider the halting probability of a randomized
machine without input, i.e., the probability that the machine halts. Which real numbers can be
halting probabilities of probabilistic machines without input? To answer this question we need to
introduce the notion of a lower semicomputable real number.

65

A real numberα is lower semicomputable, if it is equal to the limit of a computable non-
decreasing sequence of rational numbers.

66 Prove that ifα is a computable real number (i.e., there is an algorithm thatfor any given
rationalε > 0 computes a rational approximation toα with precisionε) is lower semicomputable.
[Hint: We can construct an increasing sequence using approximations from below.]

67 Show that a real numberα is computable if and only if both numbersα and−α are lower
semicomputable.

A real numberα is lower-semicomputable if and only if the set of rational numbers that are
less thanα is enumerable. (It explains why lower semicomputable realsare also calledenumerable
from below.)

Indeed, letα be the limit of a non-decreasing computable sequencea0 6 a1 6 a2 6 . . . of
rationals. For eachi enumerate all rational numbers that are less thanai. All rational number less
thanα (and no other) will appear in the enumeration, and only such numbers.

Conversely, assume that we can enumerate all rational numbers that are less thanα. Omitting
in this enumeration all numbers that are less than previously met ones, we obtain a non-decreasing
sequence whose limit isα.

Using the notion of a lower semicomputable real, we obtain the following answer to the above
question:

{enumerable-machines
Theorem 38 (a) Let M be a probabilistic machine without input. The halting probability of M is
a lower semicomputable real number.

(b) Every lower semicomputable real is the halting probabilityof some probabilistic machine.

⊳ (a) Letpn stand for the probability thatM halts withinn steps. The numberpn is rational: the
algorithm can toss a coin at mostn times withinn steps, thus the halting probability is a multiple
of 1/2n.

We can findpn by simulating the run of the machine and probing all possibleoutcomes of
the coin tossing. The sequencep0, p1, . . . is non-decreasing and its limit is equal to the halting
probability ofM.

(b) Assume that a realq is lower semicomputable. That is, there is a computable sequence
q0,q1, . . . of rational numbers such thatq = lim qn and

q0 6 q1 6 q2 6

We have to construct a probabilistic machine whose halting probability is equal toq. Let the
machine toss a coin and letb0,b1,b2, . . . be the obtained random bits. Consider the real number
β = 0.b0b1b2 . . . ; it is uniformly distributed in[0,1]. Let the machine (in parallel to coin tossing)
compute the rational numbersq0,q1,q2, The machine halts when it finds out thatβ < q. That
is, the machine halts if for somei the rational numberβi = 0.b0b1 . . .bi111. . . (the currently known
upper bound ofβ) is less thanqi (the currently known lower bound ofq). See Fig. 9 for a symbolic
representation of this argument.

The constructed machine halts if and only ifβ < q. Indeed, assume thatβ is less thanq. The
numbersqi tend toq and the lower boundsβi of β tend toβ , asi → ∞. Therefore for somei the
numberqi is greater thanβi . On the other hand, if the machine halts thenβ < q by construction.

66

q0 q1q2 . . .

Figure 9: Comparingβ = 0.b0b1b2 . . . andq = lim qi . {prefixpp.1

Thus the halting probability of the machine is equal to the probability of the eventβ < q. The
latter probability equals the length of the segment[0,q), that is, toq. (Recall thatβ is uniformly
distributed in the segment[0,1].) ⊲

Let us return to probability distributions that can by generated by probabilistic machines. We
need a new notion. A sequencep0, p1, p2, . . . is lower semicomputableif there is a functionp(i,n),
wherei,n are integers andp(i,n) is either a rational number or−∞, with the following properties:
the function p(i,n) is non-decreasing in the second argument:

p(i,0) 6 p(i,1) 6 p(i,2) 6 . . . ,

and
pi = lim

n→∞
p(i,n)

for all i.
One could say that the sequencepi is lower semicomputable if the numbersp0, p1, p2 . . . are

“uniformly lower semicomputable”. The next theorem provides an alternative way to define lower
semicomputable sequences.

Theorem 39 A sequence p0, p1, p2 . . . is lower semicomputable if and only if the set of pairs〈r, i〉,
where i is a natural number and r is a rational number less thanpi , is enumerable.

⊳ Recall that a set is enumerable if there is an algorithm that prints all its elements in some
order and with arbitrary delays between consecutive elements (the algorithm may not halt even if
the set is finite).

Assume that a sequencep0, p1, p2, . . . is lower semicomputable. Letp(i,n) be the function
from the definition of the lower semicomputability ofp0, p1, p2, Arrange all the pairs〈r, i〉
in a sequence so that every pair appears in the sequence infinitely many times. The algorithm
enumerating all the pairs〈r, i〉 with r < pi works in steps. On stepn comparer andp(i,n) where
〈r, i〉 is thenth pair in the chosen sequence. Ifr < p(i,n) then print the pair〈r, i〉, otherwise proceed
to the next step. By definition,r < limn p(i,n) iff there existsn such thatr < p(i,n). Thus we will
print all the pairs we have to print, and no other pairs.

Conversely, assume that the propertyr < pi is enumerable and letA be an algorithm enumer-
ating all such pairs〈r, i〉. To computep(i,n) we maken steps of the run ofA. Consider all the

67

pairs that appeared withinn steps and havei as the second component. Letp(i,n) be equal to the
largest first component of such pairs. If there are no such pairs, let p(i,n) = −∞. As n increases,
new pairs may appear andp(i,n) may increase. The limit limn p(i,n) is equal topi , since all the
rational numbers less thanpi will appear in the enumeration.⊲

This theorem explains why lower semicomputable sequences are also calledenumerable from
below.

We are now able to characterize probability distributions generated by probabilistic machines.
{semimeasure-machine

Theorem 40 (a) Let M be a probabilistic machine without input that outputs natural numbers. Let
pi denote the probability that the machine outputs i. The sequence of pi is lower semicomputable
and∑i pi 6 1.

(b) Let p0, p1, . . . be a lower semicomputable sequence of non-negative real numbers such that
∑i pi 6 1. There is a probabilistic machine M that prints every i with probability exactly pi .

⊳ The proof of item (a) is similar to the proof of correspondingstatement in the previous
theorem. We letp(i,n) be the probability thatM outputsi within n steps.

The proof of item (b) is also similar to the proof of corresponding assertion in the previous
theorem. This time we assign to each naturali a subset of[0,1] and the machine printsi if the real
numberβ = 0.b0b1b2 . . . belongs to the set assigned toi. The sets assigned to differenti’s do not
overlap. They may not cover the entire segment[0,1]. The set assigned to everyi is a finite or
countable union of half-open intervals[a,b) of total lengthpi .

In parallel, we toss a coin and obtain digits of the random numberβ . When we are sure thatβ
gets into the set assigned to some natural number we print that number.

Here is a formal argument. Letp(i,n) be the function of two variables from the definition of
lower semicomputability ofp0, p1, Without loss of generality we may assume thatp(i,n) > 0
for all i,n. Indeed, we can replace all negative values by zeros. We may assume also that for
all n only finitely many valuesp(i,n) are positive (letp(i,n) = 0 for all i > n). The probabilistic
algorithm we construct runs in steps. On each step we allocate some space inside[0,1]. Our goal
is that after thenth step the total length of intervals allocated toi is equal top(i,n) (for all i).
This requirement is easy to keep: going from left to right, onstepn we allocate for eachi (such
that p(i,n) > p(i,n−1)) a new interval of lengthp(i,n)− p(i,n−1). We need to do this only for
finitely manyi, as fori > n we havep(i,n) = p(i,n−1) = 0.

The total length of intervals used does not exceed 1, asp(i,n) 6 pi and∑ pi 6 1. Thus we will
always be able to allocate the space we needed (at the left of the free space).

In parallel, the probabilistic machine tosses a coin, obtaining a random bitbn on stepn. It
halts on stepn and outputsi if it is known for sure thatβ = 0.b0b1b2 . . . belongs to the (interior)
of the space allocated toi, i.e., if the closed interval consisting of all real numberswhose binary
expansion starts withb0b1 . . .bn is included in the interior of the space allocated toi. (The interior
of the segment[u,v] is the interval(u,v).) By construction, for alli the measure of this set (interior
of the space allocated toi) equalspi . ⊲

Any sequencepi satisfying the conditions of the previous theorem is calleda lower semicom-
putable semimeasure(or enumerable from below semimeasure) on N. Sometimes we will use

68

also the notationp(i) for pi . We thus have two alternative definitions of a lower semicomputable
semimeasure: (1) a probability distribution generated by arandomized algorithm; (2) a lower
semicomputable sequence of non-negative reals whose sum does not exceed 1. The above theorem
states that these definitions are equivalent.

The word “semimeasure” may look strange, but unfortunatelythere is no other appropriate
term in the literature. Dropping semicomputability requirement, one can call any functioni 7→ pi

with ∑i pi 6 1 a semimeasureon N. Every semimeasure onN defines a probability distribution
on the setN∪ {⊥} where⊥ is a special symbol meaning “undefined”. The probability of the
numberi is pi and the probability of⊥ is 1−∑i pi . In the sequel we consider lower semicomputable
semimeasures only (unless stated otherwise explicitly).

We have considered so far (lower semicomputable) semimeasures on the natural numbers. The
definition of a lower semicomputable semimeasure can be naturally generalized to the case of
binary strings or any other constructive objects in place ofnatural numbers. For example, to define
a notion of a lower semicomputable semimeasure on the set of binary strings we have to consider
probabilistic machines whose output is a binary string.

Important remark: we will consider in Section 5 a notion of a semimeasure on the space con-
sisting of all finite and infinite 0-1-sequences. Such a semimeasure is generated by a probabilistic
machine that prints its output bit by bit and never indicatesthat the output string is finished. In
particular the machine never halts. It leads to a different notion: all the machines considered in
this section are required to halt after printing the output;for such machines, there is no essential
difference between printing a binary string and a natural number.

4.2 Maximal semimeasures
{prefix-m}

Comparing two semimeasures onN we will ignore multiplicative constants. A lower semicom-
putable semimeasurem is calledmaximalif for any other lower semicomputable semimeasurem′

the inequalitym′(i) 6 cm(i) holds for somec and for alli. (The namegreatest(instead of “maxi-
mal”) would be more accurate since we look for the greatest element of some partially ordered set,
not the maximal one.)

{max-semi-N
Theorem 41 There exists a maximal lower semicomputable semimeasure onN.

⊳ We have to construct a probabilistic machineM with the following property. The machineM
should print every numberi with a probability that is at most constant times less than the probability
that any other machineM′ prints i (the constant may depend onM′ but not oni).

Let the machineM pick at random a probabilistic machineM′ and then simulatesM′. The
probability to pick each machineM′ should be positive. If a machineM′ is chosen with proba-
bility p thenM will print a numberi with probability at leastp · (the probability thatM′ prints i).
Thus one can letc = 1/p.

It remains to explain how to implement the random choice of a probabilistic machine. Enumer-
ate all the probabilistic machines in a natural way; letM0,M1,M2, . . . be the resulting sequence.
We toss a coin until the first 1 appears. Then we simulate the machineMi wherei is the number of
zeros preceding the first 1.⊲

69

It is instructive to prove this theorem once more using the language of lower semicomputable
sequences instead of probabilistic algorithms. Basically, we need to show that there exists a con-
vergent lower semicomputable series having the lowest rateof convergence. That series should be
greater than any other lower semicomputable convergent series (up to a multiplicative constant).
More formally, we should consider only series with the sum atmost 1, but this is not essential as
anyway we allow to multiply the terms of a series by a constant.

To find such a series, we sum up with certain weights all the lower semicomputable series with
sum at most 1. The weights should form a converging series too. This will imply that the resulting
series converge. By construction it will be maximal (up to a multiplicative constant). There is only
one problem left: how to guarantee that the resulting seriesis lower semicomputable.

The lower semicomputable of a semimeasure is witnessed by a computable functionp : 〈i,n〉 7→
p(i,n). There are only countably many such functions, since there are only countably many algo-
rithms. Enumerate all such functions,p(0), p(1), p(2), . . . , and consider the function

p(i,n) =
n

∑
k=0

λkp(k)(i,n)

whereλk is a computable sequence of rational numbers with∑k λk 6 1, say,λk = 2−k−1. The
resulting functionp is non-decreasing inn for everyi. Indeed, asn increases, the number of terms
in the sum definingp increases and the value of every term increases, too. And forall i we have

lim
n→∞

p(i,n) = ∑
k

λk lim
n→∞

p(k)(i,n).

That is, the constructed semimeasure is indeed equal to the sum of all lower semicomputable
semimeasures with weightsλk.

There is a bug in this argument. The functionp(i,n) should be computable, and thus we cannot
use arbitrary enumeration of lower semicomputable functions in our construction. We need to
arrange them so that the functionp : 〈k, i,n〉 7→ p(k)(i,n) is computable as a function of all its
three arguments. Note that we cannot just letp(k) be the function computed bykth program: it
may happen that thekth program does not define any lower semicomputable semimeasure. (It
may compute a function which is not total, or a function that sometimes decreases in the second
argument or a function whose sum is greater than 1.)

The bug can be fixed using the following

Lemma. Every programP computing a function of two natural arguments and taking rational
values (and possibly the value−∞) can be algorithmically transformed into a programP′ having
the following properties. The programP′ defines a lower semicomputable semimeasure. If the
programP itself defines a lower semicomputable semimeasure, thenP′ defines the same semimea-
sure.

Proof of the Lemma. Let P any program satisfying the condition of the Lemma. (We do
not assume thatP is total.) First we letP′(i,n) be equal to the maximal number output within
the firstn steps in the computation ofP(i,0), . . . ,P(i,n). If none of this computations terminates
within n steps or all the results are negative, we letP′(i,n) = 0. This definition guarantees that

70

P′(i,n) is non-negative and is non-decreasing inn. For everyi, if P(i,n) is defined for alln and is
non-negative and non-decreasing inn, then limnP′(i,n) = limnP(i,n).

It remains to ensure that∑ p′i 6 1 wherep′i = limnP′(i,n). To this end first letP′(i,n) = 0 for
all n < i. This transformation does not change the limit and preserves monotonicity inn. The
advantage is that now the sum ofP′(i,n) over all i is finite and can be computed for everyn. We
need that this sum does not exceed 1. To enforce this we do not increaseP′ if we see that this
would violate our restriction. We trim first the valueP′(i,n) for n = 0, then forn = 1 etc. The
Lemma is proved.

Using the transformation described in the Lemma, we arrangeall the lower semicomputable
semimeasures into a computable sequence. The weighted sum of all its terms is a maximal lower
semicomputable semimeasure. Thus we obtain another proof of Theorem 41.

Fix any maximal lower semicomputable semimeasurep0, p1, p2, . . . on the natural numbers.
We will use the notationm(i) for pi and the notationm for the semimeasure itself. The valuem(i)
is called thea priori probability of i. (Another name form is theuniversal semimeasureon N.)
Here is an explanation of this term. Assume that we are given adevice (a black box) that after being
turned on produces a natural number. For eachi we want to get an upper bound for the probability
that the black box outputsi. If the device is a probabilistic machine thena priori (without any
other knowledge about the box) we can estimate the probability of i asm(i). This estimate can be
much more than the unknown true probability, but onlyO(1) times less than it.

The a priori probability of a numberi is closely related to its complexity. Roughly speaking,
the less the complexity is, the larger the a priori probability is. More specifically, we will show
that a slightly modified version of complexity (the so-called prefix complexity) ofi is equal to the
minus logarithm ofm(i).

4.3 Prefix machines
{prefix-ma}

The difference between prefix complexity and plain complexity can be explained as follows. Defin-
ing prefix complexity, we consider only “self-delimiting descriptions”. This means that the decod-
ing machine does not know where the description ends and has to find this information itself. One
can clarify this idea in several non-equivalent ways. We will discuss all them further in detail.

Let us start with a following definition. Letf be a function whose arguments and values are
binary strings. We say thatf is prefix-stable, if the following holds for all stringsx, y:

f (x) is defined andx is a prefix ofy ⇒ f (y) is defined and is equal tof (x).
{prefix-corr-opt

Theorem 42 There exists an optimal prefix-stable decompressor (for thefamily of all prefix-stable
decompressors).

⊳ Recall that a decompressor (description mode) is a computable function mapping strings
to strings. (All strings are binary.) The plain complexity is defined using an optimal function in
the class of all such functions. Now we restrict the class of decompressors to computableprefix-
stablefunctions. We assign to each prefix-stable functionD the complexity functionKPD, which
is defined just as earlier:KPD(x) is the length of a shortest description ofx with respect toD

71

(i.e., minimall(y) among ally such thatD(y) = x). So the definition ofKPD(x) coincides with
that ofKSD(x); we writeKP instead ofKS just to stress that we consider now only prefix-stable
decompressors.

We have to show that there exists an optimal prefix-stable decompressorD (for the class of all
prefix-stable decompressors). The latter means that for anyotherprefix-stabledecompressor the
inequalityKPD(x) 6 KPD′(x)+c holds for somec and allx.

Recall that for the plain complexity we have constructed an optimal decompressorD by letting

D(p̂y) = p(y).

Here p̂ is a self-delimiting description ofp, say,p̂ = p01 wherep stands for the stringp with all
bits doubled. The notationp(y) refers to the result printed by the programp given inputy (more
precisely, the stringp is interpreted as a program in a universal programming language).

Is this decompressor a prefix-stable one? Certainly not. Indeed, there is a programp computing
a function that is not prefix-stable, say,p(0) = a andp(00) = b wherea 6= b. ThenD(p̂0) = a and
D(p̂00) = b.

To construct an optimal prefix-stable decompressor, we modify the definition ofD as follows.
We enforce prefix-stability of programs by converting everyprogramp to the program[p] working
as follows:

(1) Apply p to all inputs in parallel. If the computation ofp on an inputy halts with a resultz
we write down the pair〈y,z〉. Let 〈yi ,zi〉 denote the resulting sequence of pairs (enumerating the
graph ofp: zi = p(yi)).

(2) We delete some terms of the sequence〈yi ,zi〉 so that the resulting sequence is a graph of a
prefix-stable function. More specifically, let us call stringsy andy′ compatibleif one of them is a
prefix of the other one (an equivalent definition: both strings are prefixes of a third string). We say
that a pair〈yi ,zi〉 contradicts to a pair〈y j ,zj〉 if yi is compatible withy j , but zi 6= zj . We delete a
pair 〈yi ,zi〉 if it contradicts to a pair〈y j ,zj〉 with j < i. (The argument would work as well if we
deleted a pair only when it contradicts to anon-deletedprevious pair.)

(3) Computing the sequence〈yi ,zi〉 and filtering out some its terms is a process that does not
depend on the input for the program[p]. The input stringy is taken into account as follows. We
wait until a (non-deleted) pair〈yi ,zi〉 appears such thatyi is a prefix ofy. Once we encounter such
a pair, we print the resultzi and halt.

For every programp the functiony 7→ [p](y) is prefix-stable. Indeed, assume that[p](y) = z.
By construction there is a non-deleted pair〈yi ,z〉 such thatyi is a prefix ofy. Assume furthermore
that y is a prefix ofy′. We need to show that[p](y′) = z. The stringyi is a prefix ofy′ as well,
therefore[p](y′) = z or [p](y′) = zj where〈y j ,zj〉 is a non-deleted pair such thatj < i andy j is a
prefix ofy′. In the latter casey j is compatible withyi and, since the pair〈yi,z〉 does not contradict
to the pair〈y j ,zj〉, we havezj = z.

If p is prefix-stable then no pair is deleted in the run of its transformed version[p]. Therefore
[p](y) is defined asp’s output ony or a prefix ofy. As we assume thatp is prefix-stable, this is the
same.

Now we are able to finish the proof. Let

D(p̂y) = [p](y).

72

We have to verify thatD is prefix-stable and optimal (in the class of all prefix-stable decompres-
sors).

To prove the first statement, assume thatp̂1y1 is a prefix ofp̂2y2. We need to show thatD(p̂1y1)
andD(p̂2y2) coincide. As both the stringŝp1, p̂2 are prefixes of the strinĝp2y2, they are compat-
ible. Thusp1 = p2 (as the encodingp 7→ p̂ is self-delimiting) andy1 is a prefix ofy2. Since the
program[p1] (=[p2]) is prefix-stable, we conclude thatD(p̂1y1) = [p1](y) = [p2](y) = D(p̂2y2).

So we have shown thatD is prefix-stable. To prove the optimality ofD assume that a prefix-
stable decompressorD′ is given. Letp be its program. ThenD(p̂y) = [p](y) = p(y). Therefore the
complexity of all strings with respect toD′ is at mostl(p̂) greater than the complexity with respect
to D. ⊲

Let us fix some optimal prefix-stable decompressor and omit the subscriptD in KPD(x), speak-
ing about theprefix complexity KP(x) of x. As well as the plain complexity, the prefix complexity
is defined up to anO(1) additive term.

There is another way to define prefix complexity. Instead of prefix-stable functions we consider
prefix-free functions. A function is calledprefix-freeif every two different strings in its domain
are incompatible. If a prefix-free function is defined on a string, it is undefined on all its proper
prefixes and continuations.

This time we restrict the class of decompressors to prefix-free ones, that is, computable prefix-
free functions. We have the following theorem that is similar to Theorem 42:

{prefix-opt
Theorem 43 The class of all prefix-free decompressors contains an optimal element.

⊳ The proof is very similar to the proof of Theorem 42. This timewe construct, for every
programp, a prefix-free program{p} that works as follows:

(1) Just as before, run the programp on all inputs to obtain a sequence〈yi ,zi〉 of all pairs such
thatz= p(y).

(2) Delete all pairs〈yi ,zi〉 such thatyi coincides withy j for somej < i.
(3) Let y denote the input to the program{p}. We find the first non-deleted pair〈yi,zi〉 with

yi = y and outputzi = {p}(y).
It is easy to verify that the mappingy 7→ {p}(y) is prefix-free for anyp and coincides with the

mappingy 7→ p(y) if the latter one is prefix-free. The rest of the proof repeatsthe corresponding
part from the proof of Theorem 42.⊲

Let us fix some optimal prefix-free decompressor and letKP ′(x) denote the corresponding
complexity.

Which of the complexity measuresKP andKP ′ is “the right one”? This is a matter of taste.
We will prove in Section 4.5 that these measures differ by an additive constant (and that both
complexities coincide with the negative logarithm of the a priory probability). Thus the question is
which of the two definitions is more natural. Again this is a matter of taste. Authors believe that the
definition based on prefix-stable functions is more natural than the other one (which explains why
we started with it). However, sometimes the second definition is more convenient. For instance,
its use makes easier the proof of the theorem on the complexity of a pair (Section 4.6).

The properties ofKP andKP ′ are similar to those of the plain complexity but differ in some
important aspects:

73

• We start with a comparison ofKS andKP :

KS(x) 6 KP(x)+O(1) and KS(x) 6 KP ′(x)+O(1).

These properties are straightforward, as both prefix-stable and prefix-free decompressors
form a subclass in the class of all decompressors.

• Recall thatKS(x) 6 l(x) + O(1), as the optimal decompressor is better than the identity
function. This argument is not valid for prefix complexity, as the identity function is neither
prefix-stable nor prefix-free. We will show in Section 4.5 that this inequality is false for the
prefix complexity. {prefix-complexity-length

• Nevertheless there is an upper bound for the prefix complexity in terms of the length. We
will provide such bounds forKP ′, the same bounds hold forKP , the proofs being entirely
similar. Let us show thatKP ′(x) 6 2l(x)+O(1). Indeed, consider a decompressor

D(x01) = x

wherex stands for the string obtained by doubling all bits inx. This decompressor is prefix-
free andKPD(x) = 2l(x)+2. By replacingx01 by a more efficient self-delimiting encoding
x̂ we can obtain better upper bounds. For example, letting ˆx = bin(l(x))01x we obtain the
bound

KP ′(x) 6 l(x)+2logl(x)+O(1).

By iterating the construction, we obtain the bound

KP ′(x) 6 l(x)+ logl(x)+2loglogl(x)+O(1)

and so on.

• as well as the plain complexity, the prefix complexity does not increase when algorithmic
transformation is applied:

KP ′(A(x)) 6 KP ′(x)+O(1).

The constantO(1) depends onA but does not depend onx. Indeed, ifD is a prefix-stable
decompressor then so is the compositionx 7→ A(D(x)). This is true for prefix-free decom-
pressor as well, so we obtain a similar statement forKP ′ in place ofKP . Using this property
we can define prefix complexity of other constructive objectslike pairs of strings, natural
numbers, finite sets of strings etc., without specifying howto encode them by binary strings.

• For the prefix complexity, the inequality comparing the complexity of a pair of strings with
their separate complexities is true up to a constant additive error term rather than logarithmic
one:

KP(x,y) 6 KP(x)+KP(y)+O(1)

(see below Theorem 54 in Section 4.6, p. 86).

74

• Let D be an optimal decompressor (from the definition of the plain complexity). Since the
the transformationp 7→ D(p) does not increase complexity, we have

KP(D(p)) 6 KP(p)+O(1) 6 l(p)+2logl(p)+O(1).

Let p be a shortest description ofx with respect toD, that is,D(p) = x and l(p) = KS(x).
Then we have

KP(x) = KP(D(p)) 6 l(p)+2logl(p)+O(1) = KS(x)+2logKS(x)+O(1).

Using stronger bounds in place of the boundKP(p) 6 l(p)+2logl(p)+O(1) we obtain the
inequality

KP(x) 6 KS(x)+ logKS(x)+2loglogKS(x)+O(1)

and other similar inequalities.

4.4 A digression: machines with self-delimiting input
{prefix-sd}

This section is not used in the sequel. We analyze here different computational models with a
“self-delimiting” input. Such models provide a motivationfor the notions of prefix-stable and
prefix-free functions.

Usually the input is given to a machine in such a way that the machine knows where the input
string starts and ends. For example, defining a Turing machine computation we usually assume
that initially the head is located at the first symbol of the input string and that its last symbol is
followed be a special marker, say, a blank.

At the other hand, a machine with a self-delimiting input receives the input bits one by one and
has no indication which of them is the last one. At certain time it should print a result and halt.

4.4.1 Prefix stable functions

Here is a refinement of this idea. Consider Turing machine that has an extra infinite one-way
read-onlyinput tape. The leftmost cell of the tape contains a special marker#. All the other cells
contain either 0 or 1 (Fig. 10).

0 1 0 0 0 1 · · ·

Figure 10: A head on a one-way input tape. {read-only-tape

Initially the input tape head is located in the leftmost celland thus scans the marker. The in-
struction performed by the machine is determined by the symbol it scans (and also by the symbol
scanned on the work tape and machine’s internal state, as usual). The possible actions are: chang-
ing the internal state, writing a symbol on the work tape, moving the heads (in any direction on the

75

work tape and to the right on the input tape). The result of thecomputation should be written on
the work tape in the usual way. The work tape is initially empty.

Let M be a Turing machine as described above. For all possible contents of the input tape run
the machine. If the computation halts, write down two stings: the stringx consisting of all bits
scanned by the input head, and the resulty of the computation. LetΓM denote the resulting set of
pairs〈x,y〉. If the pairs〈x1,y1〉 and〈x2,y2〉 are inΓM, then the stringsx1 andx2 are incompatible.
Indeed, assume thatx1 is a prefix ofx2. Since the computation onx1 does not go outsidex1, it will
be valid forx2 too, and the last bits ofx2 remain unused, thus the pair〈x2,y2〉 does not belong to
ΓM.

In particular, the first components of different pairs inΓM are different. This means thatΓM is a
graph of a function. We denote this function byγM. Its arguments and values are binary strings. We
say thatM computesγM in a prefix-free mode. It is easy to see that the functionγM is computable
in the usual sense. Indeed, to computeγM(x) we writex on the input tape and any symbols (say,
zeros) to the right ofx and then runM. If M halts and prints a resulty, we verify whether it has
scanned all symbols ofx and no symbols beyondx. If the verification fails, we output no result,
otherwise we printy and halt.

It is easy to see that the functionγM is prefix-free (any two different strings in its domain are
incompatible). The converse statement is true as well:

{prefix-free-mode-computin
Theorem 44 Every computable prefix-free function is computed by some machine in a prefix-free
mode.

⊳ This statement is not that evident. Indeed, the (standard) machine computing a prefix-free
function f knows where the input ends and can use this information. We need to construct another
machineM such thatγM = f .

The machineM works as follows. Fix a machine computingf in the usual sense. We simulate
in parallel its computations on all possible inputs. Sometimes we will interrupt the simulation and
scan a new symbol from the input tape. More specifically, whena new pair〈x,y〉 with f (x) = y
appears, we comparex with the already scanned partr of the input tape. Ifr is not a prefix ofx
then we do nothing and wait until the next pair〈x,y〉 appears. Ifr coincides withx, we outputy and
halt. Otherwiser is a proper prefix ofx. In this case we read the input tape until we find the first
bit wherex differs from the contents of the input tape or we find out that the input tape begins with
x. In the latter case we outputy and halt. In the former case we return to the simulation process
and continue it until the next pair〈x,y〉 appears.

How doesM start its work? Initially the scanned part of the input tape is empty. Once the first
pair〈x,y〉 appears, we look whetherx is empty or not. Ifx is empty, we printy and halt. Otherwise
we scan the input tape until we readx or find the first bit wherex differs from the contents of the
input tape (finding out thatx is not a prefix of the input). In the first case we printy and halt. In the
second case we wait for the next pair〈x,y〉.

Formally speaking, we maintain the following invariant relation: after processing each pair, if
r is the scanned part of the input tape, then either

(1) f (r) is defined and the machine halts with the outputf (r), or
(2) r is not a prefix ofx for all pairs〈x,y〉 appeared so far, but every proper prefixr ′ of r is a

proper prefix of one of suchx’s.

76

(A proper prefix of a string is any its prefix that is different from the string itself.)
It is easy to verify that this invariant relation implies that f = γM. We skip this verification and

explain informally the main idea of the construction: if thescanned partr of the input is a proper
prefix of a string in the domain off then f (r) is undefined and we can safely read the next bit of
the input.⊲

An equivalent model can be defined in more “practical” terms.Consider computer programs
that have instructions of the form

b := NextBit.

Executing this instruction, the program prints on the screen a prompt like “Enter the next bit” and
waits until the user hits one of the keys “0” and “1”. After he does this, the input bit is recorded in
b and the computation resumes.

One can assign computable functionf to every program of this type. Namely,f (x) equals
to y if the program printsy provided the user enters the bits ofx successively in response to the
program’s prompts. If the program prints the result before the user enters all the bits ofx or it asks
for a new bit after all the bits ofx are entered, thenf (x) is undefined.

It is easy to modify the arguments above to prove that programs of this type compute all the
prefix-free functions and no other. (Moving the input head tothe right is just reading the next input
bit.)

4.4.2 Prefix stable functions
{prefix-nonblocking

There is another way to enter a bit string into a program without specifying where the string ends:
by pressing the “0” and “1” keys (and no other keys, so the end of the input is not specified). The
input are stored in a queue that is accessible to the program.

To read a new input bit the program invokes the instruction

b := NextBit

This instruction removes the first (the oldest) bit from the queue and assigns it to the variableb.
The program may use also the instruction

b := NextExists

to find out whether the queue is non-empty. We need to specify what happens if the program
invokes the instructionNextBitwhen the queue is empty. We may agree that this causes a crash,
or that the computation is delayed until the next bit arrives. It is not essential which of these two
options is chosen, since we may guard the input statement by awaiting loop:

while not NextExistsdo {nothing};
b := NextBit

Programmers would this kind of access a “non-blocking read operation”, while the input mode
described in the previous section is “blocking read operation”. The advantage of a non-blocking
read operation is that we can do some useful work while waiting for the next input bit.

77

It is not clear how to define a function computed by a program that uses non-blocking read
operation, since the output of of the program may depend not only on the input string, but also on
timing.

We call a programrobust if this is not the case (i.e., if the output is determined by the input
string and does not depend on timing). If the program is robust, for any input stringx there are
two possibilities: (1) the program does not halt for any delays between the consecutive bits ofx; or
(2) for somey, the program outputsy for any delays between the consecutive bits ofx.

In this way every robust programcomputesa function f such thatf (x) is undefined in the first
case and equalsy in the second case.

{prefix-correct-programs
Theorem 45 (a) The function computed by a robust program is both computableand prefix-stable.
(b) For every computable prefix-stable function there exists a robust program that computes it.

⊳ (a) The computability off is straightforward: to computef (x) we start our robust program
and enter all the bits ofx (with arbitrary delays). Then we wait until the program prints a result,
which by assumption is equal tof (x) if f is defined onx and does not exist otherwise.

Let us prove thatf is prefix-stable. We have to show (recall the definition from Section 4.3) that
if a robust program printsy on some inputx then it printsy on every inputx′ that is a continuation
of x. Start the program and enter all the bits ofx (with arbitrary delays). By assumption the program
printsy and then halts. After that, input all the remaining bits ofx′ (the difference betweenx′ and
x) with arbitrary delays. Obviously, these extra bits do not affect the output of the program. Thus
the program produces outputy for inputx′ at least for some timing. (Being robust, it does the same
for any timing.)

(b) Let f be a computable prefix-stable functionf . The robust programr that computesf
works as follows:

Using a (non-robust) algorithm that computesf , programr computes in parallelf (x) for all
inputsx. At the same timer reads all available input bits. Doing this,r looks for stringsx andy
such thatf (x) = y andx is a prefix of the input sequence. Once such pair〈x,y〉 is found, program
r printsy and halts.

Assume thatf (x) = y and all the bits ofx are entered (with some delays). We have to prove that
r printsy and halts whatever the delays are. Indeed, at certain timer knows thatf (x) = y and all
the bits ofx have been entered. At that time the program printsy and halts unless it has been halted
earlier. The latter indeed can happen: the program can halt earlier with the resultf (x′) wherex′ is
some string compatible withx. However, sincef is assumed to be prefix-stable, we havef (x′) = y
and the output is the same.

If f (x) is undefined andf is prefix-stable thenf (x′) is undefined for all prefixesx′ of x, hence
the program does not terminate.⊲

This theorem provides a motivation for the notion of a prefix-stable function.

68 Construct an algorithm that transforms any given programp usingNextBitandNextExists
calls into a robust programp′ that computes the same function asp does, ifp is robust (and some
prefix-stable function ifp is not).

[Hint: Use the construction from the proof of Theorem 45 backand forth.]

78

69 (Continued.) Prove that there exist no algorithm that for any given programp decides
whetherp is robust or not.

[Hint: This can be done in a standard way, by reducing the halting problem. See, e.g., [?]]

4.4.3 Continuous computable mappings
{prefix-sd-continuous

There is another, more abstract, motivation for the notion of a prefix-stable function. It goes back
to a general theory of computable functionals of higher type, but we restrict our attention to our
particular case.

Let Σ denote the set of all finite and infinite binary sequences:Σ = Ξ∪Ω. For a finite stringx
let Σx denote the set of all finite and infinite continuations ofx. We will considerΣ as a partially
ordered set:x 6 y if x is a prefix ofy.

Consider a topology onΣ whose base consists of all sets of the formΣx. This means that a set
is open if it is a union of some sets of this form. It is easy to verify that we indeed get a topology.
(Note that the resulting topological space does not satisfythe separation axiom.)

The following statement is almost straightforward:

Theorem 46 A set A⊂ Σ is open if and only if it satisfies the following conditions:
(1) if a finite string x is in A, then all finite and infinite continuations of x are in A;
(2) if an infinite sequence is in A, then some its finite prefix is in A.

⊳ Every union of base sets satisfies the conditions (1) and (2).Conversely, if a setA satisfies
both conditions then it is equal to the union ofΣx over all finite stringsx in A. ⊲

Add to the natural numbers a new element⊥ (“undefined”) and letN⊥ denote the resulting set.
Consider the following partial order on this set: the element ⊥ is less than all natural numbers, and
all the natural numbers are pairwise incomparable (Fig. 11).

⊥

0 1 2 3 4 . . .

Figure 11: The topological spaceN⊥ {n-bottom}

Consider the following topology on the setN∪{⊥}. A set is open if it either does not include
the element⊥ or coincides withN∪{⊥}. It is easy to verify that we get a topological space (that
does not satisfy the separation axiom).

Let us identify partial mappings fromΣ into N with total mappings fromΣ into N⊥; the value
⊥ replaces all undefined values. The next theorem characterizes continuous mappings (recall that
a mapping is continuous if the preimage of every open set is open).

Theorem 47 A (total) mapping F: Σ → N⊥ is continuous if and only if the following are true:

79

(1) F is increasing, i.e., x6 y implies F(x) 6 F(y) (the signs6 refer to the pre-ordering
relations onN⊥ andΣ introduced above);

(2) if x is an infinite binary sequence and F(x) 6= ⊥, then x has a finite prefix x′ such that
F(x′) 6= ⊥.

⊳ Let F be a continuous mapping. To verify the condition (1), assumethatx 6 y but F(x) 66
F(y). ThenF(x) is a natural number (and not⊥) andF(x) 6= F(y). The preimage of the open set
{F(x)} containsx and does not containy hence it is not open.

Let us verify the condition (2). Assume thatx is an infinite sequence andF(x) 6= ⊥. The
preimage of the set{F(x)} is open and containsx. Thus it contains some finite prefix ofx.

It remains to verify that any functionF satisfying conditions (1) and (2) is continuous. We
need to verify only that the preimage of every natural numberis open (indeed, the preimage of the
entire space is open and other open sets are unions of singletons formed by natural numbers). It
is enough to verify that the preimage of every natural numbersatisfies the conditions (1) and (2)
from the previous theorem. This is a straightforward corollary of our assumptions. (Note that ifx′

is a prefix ofx andF(x′) 6= ⊥ thenF(x′) = F(x), asF is increasing.)⊲
For any given continuous mappingF : Σ → N⊥ consider the setΓF of all pairs〈x,n〉 ∈ Ξ×N

such thatF(x) = n. Note that the setΓF is only a part of the graph of the mappingF (we consider
only finite stringsx and require thatn 6= ⊥).

Theorem 48 The mapping F7→ ΓF is a bijection between continuous mappingsΣ → N⊥ and sets
A⊂ Ξ×N satisfying the following conditions:

(1) 〈x,n〉 ∈ A, x 6 y ⇒ 〈y,n〉 ∈ A;
(2) 〈x,n〉 ∈ A, 〈x,m〉 ∈ A ⇒ m= n.

⊳ Assume that the mappingF is continuous. IfF(x) = n ∈ N then the condition (1) of the
previous theorem guarantees thatF(y) = n for everyy> x. This proves that the setΓF satisfies the
condition (1). AsF(x) cannot be equal to two different numbers, the condition (2) is also satisfied.
Thus, for every continuous mappingF the setΓF has properties (1) and (2).

It is easy to see that the setΓF uniquely determinesF : if x is a finite string thenF(x) is the
second component of the (unique) pair〈x,n〉 ∈ ΓF . If there is no such pair thenF(x) = ⊥. If x is
an infinite sequence thenF(x) is determined uniquely asF(x′) wherex′ is a sufficiently long prefix
of x.

It remains to show that every setA having properties (1) and (2) is equal toΓF for certainF.
For every finitex defineF(x) as the natural numbern such that〈x,n〉 ∈ A, which is unique by
property (2). If there is no suchn then letF(x) = ⊥. By condition (1) we get an increasing
function. For every infinitex ∈ Σ let F(x) be equal toF(x′) wherex′ is any prefix ofx such
that F(x′) 6= ⊥. If there is no suchx′ then letF(x) = ⊥. By property (1) the value ofF(x) is
well defined. The constructed functionF satisfies both conditions (1) and (2) from the previous
theorem and is continuous. By construction we haveΓF = A. ⊲

The conditions (1) and (2) mean that the setA is a graph of a prefix-stable function. We
thus have a one-to-one correspondence between continuous mappingsΣ → N⊥ and prefix-stable
functions.

80

Call a continuous mappingF : Σ → N⊥ computableif the setΓF is enumerable. It is easy
to verify thatF is computable if and only if the restriction ofF to those stringsx ∈ Ξ for which
f (x) 6= ⊥ is computable in the standard sense. (A partial function from Ξ to N is computable if
and only if its graph is enumerable.) Thus computable continuous functionsΣ → N⊥ are basically
the same as prefix-stable functions. This gives an extra motivation for the notion of a computable
prefix-stable function.

4.5 The main theorem on prefix complexity
{prefix-eq}

In this section, we prove that all the three complexity measures,KP (prefix-stable decompressors),
KP ′ (prefix-free decompressors) and the negative logarithm of the a priori probability coincide up
to an additive constant. To this end we prove that three inequalities

− logm(x) 6 KP(x) 6 KP ′(x) 6 − logm(x)

are true up to a constant error term. We start with two easy inequalities.
{kp-kpprime

Theorem 49
KP(x) 6 KP′(x)+O(1)

⊳ This inequality would be evident if every prefix-free function were prefix-stable. This is not
the case: a prefix-free functionD is undefined on all the continuations of any stringu in the domain
of D. In contrast, a prefix-stable functionD is defined on all the continuationsv of any stringu in
the domain ofD, andD(v) = D(u).

Therefore we need a (simple) construction. LetD be a prefix-free decompressor. Define an-
other decompressorD′ as follows:D′(y) = x if and only if D(y′) = x for some prefixy′ of y. As
D is prefix-free, suchy′ is unique, thusD′ is well defined. To computeD′(y) we just applyD in
parallel to all the prefixesy′ of y until we find a prefixy′ such thatD(y′) is defined.

By construction the functionD′ is prefix-stable and extendsD. Therefore the complexity of
any string with respect toD′ does not exceed that with respect toD. (In fact, the complexities
with respect toD andD′ coincide, as the described transformationD 7→ D′ does not affect shortest
descriptions.)⊲

We could try to prove the converse inequality in a similar way: consider the restriction of the
given prefix-stable decompressorD to minimal descriptions. That is, letD′(y) = z if D(y) = z and
D(y′) is undefined for all proper prefixesy′ of y.

Note that this transformation is an inverse of the transformation used in the proof of the last
theorem. The resulting functionD′ is indeed prefix-free. However it might be non-computable.

70 Find a computable prefix-stable functionD for which the prefix-free functionD′ con-
structed in this way is not computable. [Hint: LetA be an enumerable undecidable set, whose
complement is thus not enumerable. Letf (0n11x) = 0 for all natural numbersn and all binary
stringsx. Let also f (0n1x) = 0 for all n∈ A and allx.]

This problem shows that, in a sense, the non-blocking read operation is more powerful than the
blocking one (see Section 4.4).

81

{m-kp}
Theorem 50

− logm(x) 6 KP(x)+O(1).

⊳ We have to prove that 2−KP(x) 6 cm(x) for some constantc and for allx. Recall thatm is
the maximal lower semicomputable semimeasure. Thus it suffices to find an upper bound for the
functionx 7→ 2−KP(x) that is a lower semicomputable semimeasure. (In this section we consider
semimeasures on the set of all binary strings treated as isolated objects, as defined in Section 4.1.)

Let us construct a probabilistic machine generating this semimeasure. Toss a coin to obtain
a sequenceb0,b1,b2, . . . of random bits. Simultaneously, apply the optimal prefix-stable decom-
pressorD (from the definition ofKP) to all prefixes of the sequenceb0,b1,b2, If one of the
computations

D(Λ),D(b0),D(b0b1),D(b0b1b2), . . .

terminates with a certain result, print that result and halt. Note that it does not matter which of
the terminated computations we choose: prefix-stability ofD guarantees that this choice does not
affect the result.

Let x be a binary string and letp be a shortest description ofx with respect toD. Then the
machine printsx with probability at least 2−l(p). Indeed, if the random sequence starts withp then
the result of the machine isx. Thus the constructed machine generates a measure that is anupper
bound for 2−KP(x). ⊲

There is a slightly different proof of the same theorem, which does not involve probabilistic
machines. The functionx 7→ 2−KP (x) is lower semicomputable. Thus it is enough to show that it is
a semimeasure.

{prefix-coding-bound
Theorem 51

∑
x

2−KP(x)
6 1.

⊳ For every stringx let px be any shortest description ofx (with respect to the optimal prefix-
stable function from the definition ofKP). For every different stringsx andy the stringspx andpy

are incompatible. Thus the statement is a direct corollary of the following
Lemma. Let p0, p1, p2, . . . be pairwise incompatible strings (that is, neither of the strings is a

prefix of another one). Then∑i 2
−l(pi) 6 1.

Indeed, for everyi consider the setΩpi of all infinite continuations ofpi . Its uniform Bernoulli
measure is equal to 2−l(pi). As the stringspi are pairwise incompatible, the sum of the measures
of all setsΩpi is at most 1. The Lemma and Theorem 51 are proved.⊲

Theorem 51 implies that the inequalityKP(x) 6 l(x)+O(1) is false (and shows the difference
between plain complexityKS and prefix complexityKP) Indeed, if it were true, the series

∑
x

2−l(x)

would converge. However for everyn the terms of this series corresponding to stringsx of lengthn
sum up to 1 (there are 2n such terms and each of them is equal to 2−n).

82

71 Prove that even a weaker inequalityKP(x) 6 l(x)+ logl(x)+O(1) is false (in other words,
the differenceKP(x)− l(x)− logl(x) is not bounded by a constant). [Hint: Use the divergence of
the harmonic series.]

It remains to prove the last (and most difficult) inequality:
{kpprime-m}

Theorem 52
KP ′(x) 6 − logm(x)+O(1).

⊳ We present first a sketch of the proof. The semimeasurem(x) is lower semicomputable, so we
can generate lower bounds form(x) that converge tom(x) but no estimates for the approximation
error are given. The largerm(x) is, the smallerKP ′(x) should be, that is, the shorter description
p we have to provide forx. The descriptions reserved for different strings must be incompatible.
(The descriptionsp1 andp2 are incompatible if the intervalsIp1 andIp2 do not overlap. Recall that
the intervalIp consists of all real numbers whose binary expansion begins with p.) The inequality
l(p) 6 − log2m(x) means that the length of the intervalIp is at leastm(x): 2−l(p) > m(x).

Thus we have to assign to every stringx an interval of length at leastm(x) so that the intervals
assigned to different strings do not overlap.

Let us specify more carefully what we need. First, for eachx it suffices to reserve an interval of
the lengthεm(x) rather thanm(x), for some fixed positiveε. This relaxation causes the complexity
increase at most by a constant.

Second, we are allowed to use only properly aligned intervals, i.e., intervalsIp for some binary
string p. However, given the above relaxation, this restriction is not essential. Indeed, every
intervalI ⊂ [0,1] contains a properly aligned interval that is at most four times shorter.

So we arrive to a problem that is quite similar to the problem considered in Section 4.1. There
is a sequence of clients. Each client asks for some space inside[0,1]; client may increase its request
from time to time. The important difference is that now the client are interested not in the total
space allocated, but in the contiguous interval, which makes our “space management” job more
difficult. To compensate this difficulty, we are allowed to reduce all the requests and multiply them
by some constantε.

Imagine that clients are processes running on a computer, and the memory manager has to
allocate contiguous properly allocated memory according to their requests that increase in time.
Once allocated memory cannot be freed (and reused for other process).

The simplest strategy is to allocate a new interval (in the free memory) each time the request
increases. This does not work, however: if two clients’ requests increase in alternating order and
in small steps, the overhead cannot be compensated by any fixed ε, and we will run out of space.

The remedy is well known: one should look forward and increase the allocated interval signifi-
cantly even if the current increase in the request is small. For example, one may allow only powers
of 2 as the interval lengths (then the sum of the lengths is at most twice more than the maximal
summand).

It is not hard to present a detailed proof based on this strategy, but we will not do that. Instead,
we present a slightly different proof that uses the following statement(often called Kraft–Chaitin
lemma, see??).

83

This lemma can be considered as a computable version of the Kraft theorem from the informa-
tion theory (see p. 170).

Lemma. Let l0, l1, l2, . . . be a computable sequence of non-negative integers such that

∑
i

2−l i 6 1.

There exists a computable sequence of pairwise incompatible binary stringsx0,x1,x2, . . . such that
l(xi) = l i .

Note that the inequality of the lemma is a necessary condition for the existence of such a
sequence: the intervalsIxi do not overlap and their lengths are equal to 2−l i . The lemma states that
this necessary condition is also sufficient.

So we again have an infinite sequence of clients, theith client demands to allocate properly
aligned interval of length 2−l i for her. The intervals reserved for different clients should not overlap.
We need to design a computable strategy to fulfill all the client’s requests.

There are several ways to describe such a strategy. Here is probably the simplest one: let us
maintain the representation of the free space (part of[0,1] that is not allocated) as the union of
properly aligned intervals of different lengths.

Initially this list contains one interval[0,1]. We serve the requestsl0, l1, l2, . . . sequentially.
Assume that current request isl i , so the required length isw = 2−l i . First note that one of the

free intervals has length at leastw. Indeed, if all the free intervals had smaller lengths, their sum
(the total amount of free space) would be less thanw since they have different lengths and the sum
of powers of 2 less thatw = 2−l is less thanw.

If there is a free interval in the list that has size exactlyw, our task is simple. We just allocate
this interval and delete it from the free list (maintaining the invariant relation).

Assume that this is not the case. Then we have some intervals in the list that are bigger
than requested. Using the best fit strategy, we take the smallest among these intervals. Let
w′ > w be its length. Then we split free interval of sizew′ into properly aligned intervals of
sizew,w,2w,4w,8w, . . . ,w′/2 (note thatw+w+2w+4w+8w+ . . . +w′/2= w′. The first interval
(of sizew) is allocated, all the other intervals are added to the free list. We have to check out
invariant relation: all new intervals in the list have different sizes starting withw and up tow′/2;
old free intervals cannot have this size sincew′ was the best fit in the list.

Lemma is proved.

72 Prove that the described algorithm can be rephrased as follows: for eachi use the the
leftmost properly aligned interval of length 2−l i that does not overlap with previously allocated
interval. [Hint: the construction used in the proof maintains also the following property: the
lengths of the free intervals increase from left to right.]

Corollary . Let l i be a computable sequence of natural numbers such that∑i 2
−l i 6 1. Then

KP ′(i) 6 l i +O(1).
Indeed, the Lemma provides a computable sequence of pairwise incompatible stringsxi of

lengthsl i . Define a computable functionD by lettingD(xi) = i. As xi are pairwise incompatible,
this function is prefix-free. AndD is computable: given an inputx we compare it withxi for all
i = 0,1,2, . . . successively. Once we find thatx = xi we outputi and halt.

84

(Note that, in this proof, we go back and forth between natural numbers and binary strings
when we speak about the a priori probability and complexity.)

Let us return to the proof of the theorem. Consider the maximal lower semicomputable
semimeasurem. By definition there exists a computable functionm(x, i) taking rational values
that is non-decreasing ini such that

m(x) = lim
i→∞

m(x, i).

Let m′(x, i) stand for the smallest power of two (1,1/2,1/4,1/8, . . .) that is an upper bound for
m(x, i). The functionm′(x, i) is computable and non-decreasing ini. Its value is betweenm(x, i)
and 2m(x, i).

Say that a pair〈x, i〉 is aboundarypair if m′(x, i) > m′(x, i −1) (or if i = 0 andm′(x,0) > 0).
Let us show that the sum ofm′(x, i) over all boundary pairs〈x, i〉 does not exceed 4. It is enough

to show that for every fixedx the sum ofm′(x, i) over all boundary pairs〈x, i〉 is at most 4m(x).
This is true since for every fixedx each term in this sum is at least twice bigger than the preceding
term. Thus the sum is at most twice bigger than its last term,m′(x, i) for somei, which is less than
2m(x, i). Now recall thatm(x, i) 6 m(x). We see that the sum in question is at most 4m(x).

The set of all boundary pairs〈x, i〉 is decidable: to find whether a pair〈x, i〉 is a boundary pair
we have to comparem′(x, i) andm′(x, i −1).

Enumerate all the pairs〈x, i〉 and exclude all non-boundary ones. Let〈x0, i0〉,〈x1, i1〉, . . . be for
the resulting sequence. Each boundary pair appears in this sequence exactly once. Defineln by the
equality

2−ln = m′(xn, in)/4.

The sequence ofln is computable and

∑
n

2−ln =
1
4∑

n
m′(xn, in) 6 1.

The corollary mentioned above implies thatKP ′(n) 6 ln+O(1). As xn can be computed givenn,
we have

KP ′(xn) 6 KP ′(n)+O(1) 6 ln+O(1) = − logm′(xn, in)+O(1).

So for everyx the complexityKP ′(x) does not exceed− logm′(x, i) if 〈x, i〉 is a boundary pair.
Taking the maximali with this property we get− logm(x)+O(1), therefore

KP ′(x) 6 − logm(x)+O(1).

Theorem is proved.⊲
So all the valuesKP , KP ′ and− logm differ by at most a constant. Given this, we do not

distinguish in the sequel betweenKP andKP ′ (unless the difference in their definitions becomes
essential for some special reason).

Let us note that actually we have proved the following statement, needed in Section 5.6:
{prefix-explicit

Theorem 53 Given a lower semicomputable sequence of reals p0, p1, . . . such that∑i pi 6 1, we
can find a prefix-free decompressor D such that KP′

D(i) 6 − log2 pi +2.

This means that given any algorithm enumerating the set of pairs 〈r, i〉 with r < pi , we can find
an algorithm for a decompressorD satisfying the latter inequality.

85

4.6 Properties of prefix complexity
{prefix-pr}

In this section we continue the study of the of prefix complexity. We first revisit some already
established properties and present their alternative proofs based on the a priori probability.

It is well known that the series∑1/n2 converges. Multiplying its terms by a constant, we
obtain a lower semicomputable semimeasure. Thus the a priori probability of a natural numbern
is at leastc/n2 for some constantc. This implies that

KP(n) 6 2logn+O(1).

Let xn be thenth string in the sequenceΛ,0,1,00,01,10,11,000, . . . of all binary strings. Then

KP(xn) 6 KP(n)+O(1) 6 2logn+O(1) = 2l(xn)+O(1)

(the last equality is true, sincexn is n+1 in binary notation without the leading 1, so the length of
xn is logn+O(1)).

(There is a special casen = 0, as both 1/02 and log0 are undefined; the changes needed to
handle it are trivial.)

So we get the inequalityKP(x) 6 2l(x)+O(1).
To prove a better upper bound for prefix complexity we may consider a convergent series

∑ 1

nlog2n
.

(To prove its convergence compare it with the correspondingintegral.) Using this series, we obtain
the inequalityKP(n) 6 logn+2loglogn+O(1) or (for strings)

KP(x) 6 l(x)+2logl(x)+O(1)

(for the alternative proof of this inequality see p. 74).
By using the series∑1/(nlogn(loglogn)2), ∑1/(nlognloglogn(logloglogn)2) etc. we can

improve the bound further.
Now we prove the inequality relating the prefix complexity ofa pair to prefix complexities of

its components.
{prefix-pair

Theorem 54
KP(x,y) 6 KP(x)+KP(y)+O(1).

Just as in the case of plain complexity, we defineKP(x,y) as the complexity of the string[x,y]
where〈x,y〉 7→ [x,y] is a computable injective encoding of pairs of binary strings. (The complexity
of a pair does depend on the choice of the encoding; switchingto another computable injective
encoding changes complexity at most by an additive constant. Indeed, the translation between any
two computable injective encodings is an algorithmic transformation.)

⊳ Consider the functionm′ defined as

m′([x,y]) = m(x)m(y)

86

(herex andy are binary strings,[x,y] is the encoding of the pair and the values ofm′ is a real
number). Herem stands for the a priori probability. Ifz is not an encoding of any pair, we let
m′(z) = 0.

The functionm′ is lower semicomputable (the product of lower bounds form(x) andm(y) is a
lower bound form(x)m(y)). Furthermore, we have

∑
z

m′(z) = ∑
x,y

m′([x,y]) = ∑
x,y

m(x)m(y) = ∑
x

m(x)∑
y

m(y) 6 1 ·1 = 1.

Thusm′ is a lower semicomputable semimeasure. Comparingm′ with the a priori probability, we
obtain the inequalitym′([x,y]) 6 cm([x,y]) for some constantc. Hence

KP([x,y]) 6 KP(x)+KP(y)+O(1).

Theorem is proved.⊲

73 Prove that the sum∑ym([x,y]) differs from m(x) by at most a constant factor (in both{m-projection
directions).

74 Let f : N → N be a strictly increasing computable function. Prove that the value
∑{m(k)| f (n) 6 k < f (n+ 1)} differs from m(n) at most by a constant factor. (So if we split
the series∑nm(n) into groups, the sums of the groups form essentially the sameseries!)

Let us prove now Theorem 54 using decompressors. It turns outthat we need to use prefix-free
(and not prefix-stable) decompressors.

Let us prove thatKP ′([x,y]) 6 KP ′(x)+KP ′(y)+O(1). Let D be an optimal prefix-free de-
compressor used in the definition ofKP ′. Define a new prefix-free decompressorD′. Informally,
the algorithmD′ reads the input until it finds a description ofx. Then it reads the rest of the input
until it finds a description ofy. Formally, we defineD′ as

D′(pq) = [D(p),D(q)].

Here pq stands for the concatenation of stringsp andq. In other words, we try to split the input
into two partsp andq in such a way that bothD(p) andD(q) are defined.

We need to verify thatD′ is well defined. Indeed, assume thatx is represented aspq in two
different ways,x = pq = p′q′, and all the valuesD(p), D(q), D(p′), D(q′) are defined. Thenp
andp′ are compatible (being prefixes of the same stringx) and thus coincide (asD is prefix-free),
henceq = q′.

In a similar way we can prove that the functionD′ is prefix-free. Letpq be a prefix ofp′q′ and
both belong to the domain ofD. The stringsp andp′ are compatible and bothD(p) andD(p′) are
defined, thereforep = p′. This implies thatq is a prefix ofq′. As bothD(q) andD(q′) are defined,
we haveq = q′.

The functionD′ is computable: to findD′(x) we compute in parallelD(p) andD(q) for each
possible way to splitx into p andq. We have shown that there is at most one representation ofx as
pqsuch thatD(p) andD(q) are defined. If we find suchp andq, we output the string[D(p),D(q)].

It remains to note that
KPD′([x,y]) 6 KPD(x)+KPD(y).

87

Indeed, letp and q be shortest descriptions ofx and y with respect toD. The stringpq is a
description of[x,y] with respect toD′ and has lengthKPD(x)+KPD(y).

75 Prove Theorem 54 using the definition of prefix-free decompressors in terms of machines
with blocking read operation (see Theorem 44 on p. 76).

76 A set of binary strings is calledprefix-freeif any two elements of it are of incompatible.
Show that if both setsA andB are prefix-free then so is the set

AB= {ab | a∈ A,b∈ B}.

Which proof of Theorem 54 (using a priori probability or using prefix-free decompressors) is
easier and more natural? It is a matter of taste — the authors believe that the first one is more
natural. The next theorem provides an opposite example: encoding arguments here seem to be
simpler than the arguments using the a priori probability.

{prefix-addco
Theorem 55

KP(x,KP(x)) = KP(x)+O(1).

(Problem 19 asks to prove the same equality for the plain complexity.)
The valueKP(x,n) (wherex is a string andn is a natural number) is defined in the usual way,

as the complexityKP([x,n]) of some (injective computable) encoding of the pair〈x,n〉.
⊳ The inequalityKP(x) 6 KP(x,KP(x)) + O(1) is straightforward, as the stringx can by

computed given the string[x,KP(x)].
To prove the converse inequality letD be an optimal prefix-free decompressor used in the

definition of prefix complexityKP ′. Define a new decompressorD′ as

D′(p) = [D(p), l(p)].

The domain ofD coincides with that ofD, henceD′ is prefix-free. Letp be a shortest description
of x with respect toD. Thenl(p) = KP ′(x) and thereforep is a description of the string[x,KP ′(x)]
with respect toD′. ThusKPD′([x,KP ′(x)]) 6 l(p) = KP ′(x).

Is the theorem proved? There is one subtle point in the argument. We have proved the theorem
for the complexityKP ′, defined via prefix-free decompressors. If we substituteKP for KP ′ in the
equalityKP ′(x,KP ′(x)) = KP ′(x)+O(1), its right hand side will change by an additive constant.
The similar statement for the left hand side is not straightforward, asKP ′ has two occurrences
there, and the second one is inside the argument. But at leastwe haveKP(x,KP ′(x)) = KP(x)+
O(1).

To finish the proof it remains to show that the functionKP(x,n) changes at most by a constant,
asn changes by 1. This easily follows from the computability of mappings[x,n] 7→ [x,n+1] and
[x,n] 7→ [x,n−1]. ⊲

It is instructive to prove Theorem 55 using the a priori probability. Let m(x) be the a priori
probability ofx. Define the functionm′ as

m′([x,k]) =

{
2−k if 2−k < m(x);

0 otherwise.

88

This function is lower semicomputable: givenx andk, we generate lower bounds form(x) and
output 0 until we find that 2−k < m(x), and then we we output 2−k.

For every fixedx the sum ofm′([x,k]) over allk is a geometric series formed by powers of 2.
Therefore this sum is less than 2m(x) (the largest term of the series is less thanm(x)). Therefore,
the sum ofm′([x,k]) over allx andk is finite. Comparingm′([x,k]) and the a priori probability of
[x,k] we conclude that

m(x,k) > 2−k+O(1)

if 2−k < m(x). Taking the logarithms, we see that

KP(x,k) 6 k+O(1)

whenever 2−k < m(x). The latter inequality holds fork = −⌊logm(x)⌋+1 and thus we have

KP(x,−⌊logm(x)⌋+1) 6 KP(x)+O(1).

It remains to recall that the functionKP(x,n) changes at most by a constant, asn changes by 1.
The second proof of Theorem 55 (in the nontrivial direction)is finished.

77 This argument proves a bit more:KP(x,m) 6 m+ O(1) wheneverKP(x) 6 m. How to
derive this inequality from Theorem 55 (from its statement and not from its proof)?

We proceed now to the algorithmic properties of the functionKP(x). Like the plain com-
plexity the prefix complexity is upper semicomputable but not computable. Moreover, there is
no computable non-trivial (i.e. unbounded) lower bound forKP(x). Indeed, sinceKP(x) 6

2KS(x) + O(1), every non-trivial lower bound ofKP would yield a non-trivial lower bound of
KS.

Recall that the plain Kolmogorov complexityKS(x) can be defined as the smallest upper semi-
computable functionK such that the cardinality of the set{x | K(x) < n} is O(2n) for all n (Theo-
rem 8, p. 21). Here is a similar statement for the prefix complexity:

{kp-minimal-convergent
Theorem 56 The function KP is the smallest(up to an additive constant term) upper semicom-
putable function K (mapping binary strings to natural numbers and +∞) such that the series
∑x2−K(x) converges.

⊳ The functionKP is upper semicomputable and the series∑x2−KP(x) converges. LetK
be any other function having these properties. Then the function M(x) = c2−K(x) wherec is a
small enough constant is a lower semicomputable semimeasure. As m(x) is the maximal lower
semicomputable semimeasure, we haveM(x) = O(m(x)), that is, logM(x) 6 logm(x)+ O(1). It
follows thatKP(x) 6 K(x)+O(1). ⊲

This theorem can be reformulated as follows. For every uppersemicomputable functionf
mapping binary strings to natural numbers and+∞ the assertions “KP(x) 6 f (x) + O(1)” and
“∑x2− f (x) < ∞” are equivalent.

Note that the requirement “the series∑x2−K(x) converges” is stronger than the requirement
“the number ofx such thatK(x) 6 n is O(2n)” used in Theorem 8. Indeed, if∑x2−K(x) 6 C, then

89

the number ofx such thatK(x) 6 n is at mostC2n. This observation gives another proof of the
inequalityKS(x) 6 KP(x)+O(1).

It is instructive to compare plain and prefix complexity in two aspects: the average complexity
of strings of given length and the number of strings that havecomplexity not exceeing given bound.
Let us start with the first question.

We have seen that the plain Kolmogorov complexity of most strings of lengthn is close ton
(p. 11 and Problem 2). One could expect the prefix complexity to be slightly bigger.

{average-kp
Theorem 57 (a) KP(x) 6 l(x)+KP(l(x))+O(1)).

(b) For some constant c and for all n,d the fraction of strings x such that KP(x) < n+KP (n)−
d among all strings of length n is at most c2−d.

⊳ (a) Letm(x) be the a priory probability of a binary stringx andm(n) be the a priory probabil-
ity of a natural numbern. Consider the functionm′(x) = 2−nm(n) wheren is the length ofx. The
sum ofm′(x) over strings of lengthn is equal tom(n) hence∑xm′(x) 6 1. Since the functionm′ is
lower semicomputable, we conclude thatm′(x) 6 cm(x) for some constantc and allx. Taking the
logartihms we obtain the inequality

KP(x) 6 n+KP(n)+O(1)

(the constantO(1) does not depend onn).
(b) Consider the function

m′(n) = ∑
l(x)=n

m(x),

the total a priori probability of all strings of lengthn. Sincem′(n) is lower semicomputable and
∑nm′(n) 6 1, we havem′(n) = O(m(n)). On the other hand, the a priori probability of the string
consisting ofn zeros is at leastcm(n) for some positive contantc. Thus we have

c1m(n) 6 ∑
l(x)=n

m(x) 6 c2m(n).

So the sum ofm(x) over all binary strings of lengthn coincides withm(n) (up to a constant factor).
Thus the average ofm(x) over all stringsx of lengthn is m(n)/2n (up to a constant factor). The
fraction of stringsx such thatm(x) is 2d times bigger than the average, is at most 2−d (Chebyshev’s
inequality).⊲

78 Prove that the average prefix complexity of strings of lengthn is equal ton+KP(n)+O(1).

(Similar question for plain complexity is studied in Problem 3.)
Now we estimate the number of strings with complexity at mostn.

{bounded-kp-cardinality
Theorem 58 The number of strings x with KP(x) < n is 2n−KP(n)+O(1).

90

⊳ Let cn be the number of stringsx such thatKP(x) < n. Let us rewrite the basic property
of prefix complexity (the convergence of the series∑2−KP(x)) in terms ofcn. There are exactly
cn+1−cn strings of complexityn. Therefore the series

∑
n

2−n(cn+1−cn)

converges. Regrouping the terms of this series we conclude that

∑
n

(2−(n−1)−2−n)cn = ∑
n

2−ncn < ∞.

Since the functioncn is lower semicomputable, this implies that 2−ncn does not exceed the a priori
probabilitym(n) of n. Hencecn 6 m(n)2n (up to a constant factor).

On the other hand, it is easy to construct an upper semicomputable functionK whose values
are natural numbers and+∞ that takes the valuen on (approximately)m(n)2n arguments. This can
be done in many ways. For example, let us agree that for a string x of lengthn the valueK(x) can
be either+∞ or n; it is equal ton if the ordinal number ofx in the list of alln-bit strings is less
thanm(n)2n.

For this functionK, the series∑2−K(x) converges. Therefore,KP(x) 6 K(x) + O(1) hence
cn+O(1) > m(n)2n. Bothm(n) and 2n change at most by a constant factor asn increases by 1. Thus
m(n)2n = O(cn). ⊲

The last two theorems show that the difference betweenKP(x) andKS(x) can be bounded in
terms of the complexity of the length ofx (not just logarithm of the length as we have seen before).

There are several other inequalities of this type. Iterating the inequalityKP(x) 6 l(x) +
KP(l(x)), we obtain the following series of inequalities:

KP(x) 6 l(x)+ l(l(x))+KP(l(l(x))+O(1),

KP(x) 6 l(x)+ l(l(x))+ l(l(l(x)))+KP(l(l(l(x)))+O(1)

etc. A similar series of inequalities can be obtained as follows. LetD be the optimal decompressor
from the definition of the plain (not prefix) Kolmogorov complexity. Combining the inequali-
tiesKP(D(y)) 6 KP(y)+O(1) andKP(x) 6 l(x)+KP(x)+O(1) we get the following series of
inequalities:

{kp-ks-bound
Theorem 59

KP(x) 6 KS(x)+KP(KS(x)))+O(1),

KP(x) 6 KS(x)+KS(KS(x)))+KP(KS(KS(x))+O(1),

KP(x) 6 KS(x)+KS(KS(x)))+KS(KS(KS(x)))+KP(KS(KS(KS(x)))+O(1)

etc.

All the inequalities in this sequence can by obtained from the first one.
There are many other interesting relations between plain and prefix complexity, see??.

91

4.7 Conditional prefix complexity and complexity of a pair ofstrings
{prefix-co}

4.7.1 Conditional prefix complexity
{prefix-co-def

What it conditional prefix complexity? Each of the definitions of prefix complexity can be modified
by adding a condition.

We start with the definition using prefix-stable functions. Afunction D(y,z) is prefix-stable
with respect to yif for everyz the functiony 7→ D(y,z) is prefix-stable:

D(y,z) is defined andy 6 y′ ⇒ D(y′,z) = D(y,z).

We assume here that the first argument ofD is a binary string; the notationy 6 y′ means thaty is a
prefix ofy′.

Recall the definition of the (plain) conditional complexityfrom Section 2.2. Aconditional
decompressor(=description mode) is a computable function that maps pairs of binary strings to
binary strings. IfD(y,z) = x theny is called adescription of x when z is known. The complexity
of x with conditionz is the length of the shortest description. Then we fix an optimal conditional
decompressor that gives minimal complexity (up to a constant).

Now we consider only decompressors that are prefix-stable with respect to the first argument.
This smaller class of decompressors contains an optimal decompressor (for this class). The proof
of this statement is similar to the proof of Theorem 42 (page 71) where an optimal unconditional
prefix-stable decompressor is constructed. We modify this proof by adding the parameterz in all
formulas. More specifically, let

D′(p̂y,z) = [p](y,z).

Here[p] stands for the program obtained fromp via ”prefix stabilization for a giveny”. This mean
that for all p,z the functiony 7→ [p](y,z) is prefix-stable, and if the functiony 7→ p(y,z) itself is
prefix-stable then it coincides with the functiony 7→ [p](y,z). It is easy to verify that this is indeed
possible and thatD′ is an optimal prefix-stable (with respect to the first argument) decompressor.

Fix an optimal conditional prefix-stable decompressor and denote the resulting complexity by
KP(x|z), theprefix complexity of x with condition z.

If we considerprefix-free decompressors (instead of prefix-stable ones) we obtain an alter-
native definition of conditional prefix complexity. The existence of an optimal function in this
class of decompressors is proved in a similar way. The resulting complexity could be denoted by
KP ′(x|z). Like their unconditional versions, functionsKP(x|z) andKP ′(x|z) differ by at most an
additive constant, which does not depend onx andz:

KP ′(x|z) = KP(x|z)+O(1).

As in the case of unconditional complexities, this is provedusing the conditional a priori prob-
ability m(x|z). It can be defined in two ways (using probabilistic machines and lower semicom-
putable semimeasures).

Let M be a probabilistic machine with an input. LetpM(x|z) denote the probability thatM
outputs the stringx for input z. The function〈x,z〉 7→ pM(x|z) is lower semicomputable and for
all z the sum∑x pM(x|z) does not exceed 1. Conversely, for every lower semicomputable function

92

〈x,z〉 7→ p(x|z) that takes non-negative real values such that∑x p(x|z) 6 1 for all z, there exists a
probabilistic machineM with pM = p.

The class of all functionspM has an optimal function, that is, the greatest one up to a constant
factor. Fixing an optimal function in this class, we obtain the conditional a priori probability
m(x|z) of the string x with condition z.

The inequalityKP(x|z) 6 KP ′(x|z)+O(1) is easy (as in the unconditional case). To show that
all three complexitiesKP(x|z), KP ′(x|z) and− logm(x|z) coincide up to an additive constant, one
has to prove the inequalities− logm(x|z) 6 KP(x|z)+O(1) andKP ′(x|z) 6 − logm(x|z)+O(1).
We omit those proofs since they repeat their unconditional versions.

One could say that these inequalities and their proofs are “relativizations” of the respective
unconditional inequalities and proofs. The relativization is understood here in a non-standard
way. In the Theory of Computation, relativization means that the class of computable functions
is replaced by the class ofA-computablefunctions, i.e., the class of functions computable with
a given oracleA. (HereA is an arbitrary set of binary strings. A function is computable with
oracleA if it is computed by an algorithm that is allowed to make queries of the form “x ∈ A?”.
That is, the algorithm calls an external procedure that on inputx returnstrue or false depending
on whetherx is in A or not.) Almost all known theorems in the Theory of Computation generalize
to A-computable functions.

By the way, the notion of Kolmogorov complexity can be relativized in a standard way, too.
That is, for every setA we can define the plain Kolmogorov complexityKSA(x) and the prefix
Kolmogorov complexityKPA(x) (see Section 6.4). However, we do not consider relativized Kol-
mogorov complexity now. Instead of algorithms having an oracle access to a set of strings we
consider algorithms having an access to a finite stringz. In this way we obtain conditional com-
plexity KS(x|z) or KP(x|z) instead ofKS(x) (resp.KP(x)). Sincez is finite, the access to it does
not increase the power of algorithms (anyz-computable function is computable withoutz). How-
ever, the access toz changes Kolmogorov complexity, ifz contains non-negligible information.
Here is another example of this kind of relativization: the quantity I(x : y|z) can be considered as
common information inx andy relative toz.

Important remark. Up to now the structure (prefix relation) used in the definition of prefix-
stable and prefix-free functions is applied to descriptionsonly. The described objects, as well as
conditions, can have no structure at all.

The other approach is also possible: we could take into consideration the binary relation “to be
a prefix of” on described objects as well. This will lead us to monotone complexity (see Chapter 5)
and decision complexity (Chapter 6). On the other hand, we could consider he relation “to be a
prefix of” on conditions as well (see Section 6.3). The resulting complexities make sense, however,
they are not well studied yet.

Note that all the requirements in the definitions of prefix-free and prefix-stable decompressors
treat different conditions separately. For example, requiring that a machine can tell when the
input ends, we allow this decision depend on the condition. This explains why the statement of
Problem 23 (p. 34) is not true for prefix complexity:

79 Show thatKP(y|x) does not exceed the minimal prefix complexity of a program mappingx {prefix-conditional-as-pro
to y (up to an additive constant error term). The converse statement is false. (Both statements hold

93

for every programming language, the additive constant depends on the chosen [Hint. It is easy
to see thatKP(y|l(y)) 6 l(y)+O(1). Indeed, every stringy is its own self-delimiting description
whenl(y) is known. If the converse inequality were true, there would be 2n different programs of
prefix complexity at mostn.]

4.7.2 Properties of conditional prefix complexity

Let us mention several simple results about conditional prefix complexity.

• KP(x|z) 6 KP(x)+O(1).

Indeed, any prefix-stable (or prefix-free) unconditional decompressory 7→ D(y) can be con-
sidered as prefix-stable (resp. prefix-free) conditional decompressor〈y,z〉 7→ D(y) that just
ignores the second argumentz.

Using semimeasures: any probabistic machine without inputcan be considered as a machine
that has input but ignores it. And any lower semicomputable semimeasureq(x) can be treated
as a familyq′(x|z) = q(x) indexed byz.

• KP(x|x) = O(1).

Indeed, the decompressorD(y,z) = z is prefix-stable (recall that prefix-stability requirements
deals withy, not z) andKPD(x|x) = 0. We can also change it to get a prefix-free decom-
pressor: letD(Λ,z) = z whereΛ is an empty string and letD(y.z) be undefined ify 6= Λ.
Finally, the family of semimeasures can be constucted as follows: q(x|x) = 1 andq(x|z) = 0
for z 6= x.

• KP(f (x,z)|z) 6 KP(x|z)+O(1) for any computable functionf and for any stringsx,zsuch
that f (x,z) is defined. (The constant inO(1) may depend onf but not onx andz.)

Indeed. letD be the optimal prefix-stable [prefix-free] conditional decompressor. The map-
ping D′ : 〈y,z〉 7→ f (D(y,z),z) is also a prefix-stable [resp. prefix-free] decompressor and
KPD′(f (x,z)|z) 6 KPD(x|z).
In terms of semimeasures the same argument goes as follows: let m(x|z) be the a priori
probability ofx with conditionz; consider the semimeasure

q(x|z) = ∑{m(x′|z) | f (x′,z) = x}

(for eachz this is an image of the semimeasurex 7→ m(x,z) under the mappingx 7→ f (x,z));
it is easy to check thatq is lower semicomputable, that∑xq(x|z) 6 1 andq(f (x,z)|z) >

m(x|z). Sincem is optimal, we get the desired inequality for a priori probabilities and their
logarithms).

• KP(x|z) 6 KP(x| f (z)) + O(1) for any computable functionf and for anyx,z if f (z) is
defined (the constant inO(1) may depend onf but not onx andz).

(Indeed, consider the decompressor〈y,z〉 7→ D(y, f (z)) or the conditional semimeasure
q(x|z) = m(x| f (z)).)

94

• KP(f (x)|x) = O(1) for any computablef and for allx such thatf (x) is defined.

(A simple corollary.)

• KS(x|z) 6 KP(x|z)+O(1)

Indeed, prefix-stable and prefix-free decompressors for a subclass in the class of all decom-
pressors used in the definition ofKS(x|z).

• KP(x|z) 6 KS(x|z)+2logKS(x|z)+O(1)

This is a corollary of previous statements. Indeed, letD be the optimal conditional decom-
ressor (not necessarily prefix-stable or prefix-free). Then

KP(D(y,z)|z) 6 KP(y|z)+O(1) 6 KP(y)+O(1) 6 l(y)+2logl(y)+O(1).

If y is the shortest description ofx with conditionz, thenl(y) = KS(x|z).
In the same way one can prove a stronger inequality

KP(x|z) 6 KS(x|z)+ logKS(x|z)+2loglogKS(x|z)+O(1)

etc.

4.7.3 Prefix complexity of a pair

As we have seen (Theorem 54, p. 86),KP(x,y) does not exceedKP(x)+ KP(y)+ O(1). Let us
prove a stronger inequality:

{prefix-pair2
Theorem 60

KP(x,y) 6 KP(x)+KP(y|x)+O(1).

⊳ We can use either prefix-free decompressors or semimeasures. Both versions are instructive.
Using prefix-free decompressors: Let D be the optimal unconditional prefix-free decompres-

sor. LetDc be the optimal conditional prefix-free decompressor. Consider the functionD′ defined
as follows:

D′(uv) = [D(u),Dc(v,D(u))]

(for u andv such that the right hand side is defined). Following the proofof Theorem 54, we note
thatD′ is well defined and is an prefix-free (unconditional) decompressor. The concatenation of the
shortestD-description forx and the shortestDc-description fory (with conditionx) is a description
for [x,y].

(Note that the order ofu andv is crucial for this argument: replacinguv by vu we get into a
trouble: to find wherev ends, we have to use the prefix-free property ofDc, but it is valid only for
a fixed condition andD(u) is not determined yet.)

Using semimeasures: Let m(x) be the unconditional a priori probability ofx and letm(y|x)
be the conditional a priori probability ofy whenx is known. Consider the functionm′ defined as
follows:

m′([x,y]) = m(x)m(y|x)

95

(we assume thatm′(z) = 0 for stringsz that are not encodings of any pairs). Thenm′ is lower
semicomputable (being a product of two non-negative lower semicomputable functions), and

∑
z

m′(z) = ∑
x,y

m(x)m(y|x) = ∑
x

[
m(x)∑

y
m(y|x)

]
6 ∑

x
m(x) 6 1.

Therefore,m([x,y]) > εm′([x,y]) = εm(x)m(y|x). ⊲

80 Prove thatKS(x,y) 6 KP(x)+KS(y|x)+O(1).
[Hint: One may use prefix-free decompressor and append the (plain) description ofy to the

prefix-free description ofx. The other argument: count the number of pairs such thatKP(x) +
KS(y|x) 6 n. We have at most 2k ·m(k) ·2n−k = 2nm(k) pairs such thatKP(x) = k, and the sum
overk gives 2n ·O(1).]

Further improvements are possible. First note that we can use pairs of strings as conditions by
using some computable injective encoding (changing the encoding we change the complexity at
most by a constant). For similar reasons we can speak about complexity of a triple of strings. Now
we can write the following chain of inequalities (theO(1) terms are omitted):

KP(x,y) 6 KP(x,KP(x),y) 6 KP(x,KP(x))+KP(y|x,KP(x)) = KP(x)+KP(y|x,KP(x)).

Here the equalityKP(x,KP(x)) = KP(x) (Theorem 55) is used as well as the inequality for the
entropy of pairs (Theorem 60). We get an inequality that can be considered as a strong form
of Theorem 60, sinceKP(y|x,KP(x)) 6 KP(y|x) (becausex can be produced from[x, f (x)] by
an algorithm). As L.A. Levin (see [?]) and also G. Chaitin (see [?]) have noticed, this refined
inequality is (remarkably) an equality:

{prefix-pair3
Theorem 61

KP(x,y) = KP(x)+KP(y|x,KS))+O(1).

⊳ In one direction the inequality is already known (see the discussion above). One can give
also a direct argument: to get a prefix-free description of a pair 〈x,y〉, it is enough to start with
prefix-free description ofx and then append the prefix-free description ofy with conditionsx and
KP(x) (note thatKP(x) is just the length of the prefix-free description ofx). After the machine
reads the first part and stops, we know bothx (its output) andKP(x) (the length of the input), so
we have all needed information to restorey (in a self-delimiting way).

Using semimeasures, we can prove the same inequality as follows. Consider a functionm′ such
that

m′([x,y]) = ∑
{k|2−k<2m(x)}

2−km(y|x,k)

This function is below semicomputable and its sum over allx, y is finite (for eachx andk the
sum over ally does not exceed 1, then the sum over allk such that 2−k < 2m(x) does not exceed
4m(x), and the sum overx does not exceed 4). So we comparem′ with the a priori probability and
conclude that fork = −⌊log2m(x)⌋ we get the term that we want to estimate.

Now let us consider the reversed inequality:

KP(x)+KP(y|x,KP(x)) 6 KP(x,y)+O(1).

96

Let us start with a simple (but incorrect!) proof of a stronger (but incorrect!) statemenet

KP(x)+KP(y|x) 6 KP(x,y)+O(1).

In terms of semimeasures this equality can be rewritten as follows:

m(x)m(y|x) > εm([x,y])

(for someε and for allx,y). Herem stands for a priori probabilities (both conditional and uncon-
ditional ones). Let us rewrite this inequality as

m(y|x) > ε
m([x,y])

m(x)
.

It is enough to show that the function

m′(y|x) = ε
m([x,y])

m(x)

for any fixedx is a semimeasure (for someε); after that we can compare it with the maximal
semimeasurem(y|x) and get the desired result. We need to show that the sum ofm′(y|x) over y
does not exceed 1:

∑
y

m′(y|x) = ε
∑ym([x,y])

m(x)
< 1.

Indeed, the functionx 7→ ∑ym([x,y]) is a semimeasure (its sum over allx equals∑x,ym([x,y]) 6 1)
and therefore this function is bounded bym(x)/ε for someε.

What is wrong with this argument? We have not checked that thesemimeasure we constructed
is lower semicomputable. There are two cases where we need tocheck this. In one of them it it
is easy: the function∑ym([x,y]) is lower semicomputable sincem is lower semicomputable. But
in the other case, for functionm([x,y])/m(x), the lower semicomputable functionm(x) is in the
denominator, and whenm(x) increases, the fraction decreases.

The correct proof of the weaker ineqality follows the same scheme but uses some additional
tricks. We have to prove that forz= KP(x) the inequality

m(y|x,z) > ε
m([x,y])

m(x)

holds. The problem is that the right hand side is not lower semicomputable. But forz= KP(x) we
can replacem(x) ≈ 2−KP(x) by 2−z and consider the function

m′(y|x,z) = m([x,y])2z.

This function in lower semicomputable. But now it is not a semimeasure: the sum∑ym′(y|x,z) is
bounded by 1 only if

∑
y

m([x,y]) 6 2−z

97

which is not true ifz is large. However, we know that∑ym([x,y]) = O(m(x)) = O(2−KP(x)), so
there exists a constantc such that

z6 KP(x)−c⇒ ∑
y

m′(y|x,z) 6 1.

But this is not enough: we need a family of semimeasures that satisfy this inequality for allx andz.
So we “trim” the functionm′ and get another functionm′′ such that:

• function〈y,x,z〉 7→ m′′(y|x,z) is lower semicomputable;

• the inequality

∑
y

m′′(y|x,z) 6 1

is true for allx andz;

• the exists a constantc such that

z6 KP(x)−c⇒ m′′(y|x,z) = m′(y|x,z).

How to perform “trimming”? This trick was explained in Section 4.2: we look at the increasing
approximations from below and let them through only if the donot violate the required bound for
the sum. , .

Now, comparingm′′ with the a priori probability and taking the logarithms, we conclude that

z6 KP(x)−c⇒ KP(y|x,z) 6 KP(x,y)−z+c′

for somec,c′ and for allx,y,z.
Now we letz be equal toz = KP(x)− c. Note also that changingz by 1 changes the value

KP(y|x,z) by at mostO(1) (increasing/decreasing the second component of a pair is a computable
function). Therefore,KP(y|x,KP(x)−c) = KP(y|x,KP(x))+O(1). ⊲

Note that we get Theorem 22 (p. 37), which says thatKS(x,y) = KS(x)+KS(y|x)+O(logn)
for strings of complexity at mostn, as a corollary.

Indeed, the replacement ofKP by KS changes all three terms by at mostO(logn). It remains to
note that the difference betweenKS(y|x,KP(x)) andKS(y|x) is bounded byO(logn). In this way
we get a new proof of Theorem 21 that replaces counting by manipulations with semimeasures.

Recalling thatm(x) ≈ ∑ym([x,y]) (up toO(1) factor, Problem 73, p. 87), we may rewrite the
statement of Theorem 61 as follows:

m(y|x,KP(x)) ≈ m([x,y])

∑ym([x,y])

The right hand side of the equation can be interpreted as the conditional probability of the event
“the second component of the pair equalsy” where condition is “the first component of the pair
equalsx”.

98

81 Prove that
KP(x|z) 6 KP(x|y)+KP(y|z)+O(1)

for any stringsx,y,z. (This result can be improved if we replaceKP(x|y) by a smaller term
KP(x|y,z).)

82 Prove the “relativized” version of Theorem 61:

KP(x,y|z) = KP(x|z)+KP(y|x,KP(x|z),z)+O(1).

Using Theorem 61 twice, we a get a formula for the prefix complrxity of a triple. Indeed, the
triple 〈x,y,z〉 can be considered as a pair whose first component is〈x,y〉 and the second component
is z. Therefore,

KP(x,y,z) = KP(z|x,y,KP(x,y))+KP(x,y)+O(1).

Using Theorem 61 once again, we get the following result:
{prefix-triple

Theorem 62

KP(x,y,z) = KP(z|x,y,KP(x,y))+KP(y|x,KP(x))+KP(x)+O(1).

We can change the order of transformations (using thez-relativized version of Theorem 61) at
the second step:

KP(x,y,z) = KP(y,z|x,KP(x))+KP(x) =

= KP(z|y,KP(y|x,KP(x)),x,KP(x))+KP(y|x,KP(x))+KP(x)

(we omit theO(1)-terms for brevity).
It is interesting that this leads to a slightly different version of Theorem 62: the two last terms

are the same but the first term is different. We still have the conditional complexity ofz but now
we have two conditionsKP(x) andKP(y|x,KP(x)) instead ofKP(x,y). Note that the sum of the
complexities in the condition is exactlyKP(x,y) according to Theorem 61. Therefore, the pair of
complexities has no less information thanKP(x,y). In fact the reverse is also true (whenx andy
are conditions). Indeed, letz be the pair〈KP(x),KP(y|x,KP(x))〉; in the second formula the first
term is zero (i.e.,O(1)). So we get the following corollary:

{prefix-pair-paradox
Theorem 63

KP(KP(x)|x,y,KP(x,y)) = O(1),

KP(KP(y|x,KP(x))|x,y,KP(x,y)) = O(1).

(Of course the same is true forKP(y) andKP(x|y,KP(y)).)

83 Give a direct proof of Theorem 63. [Hint: Knowingx, y KP(x,y), we may look for an
upper boundd for KP(x) such thatKP(y|x,d)+ d becomes equal toKP(x,y). The coincidence

99

(up O(1)) implies thatd = KP(x)+O(1): indeed, ifd = KP(x)+m for somem, the complexity
KP(y|x,d) can decrease (because of thism) at most byO(logm), and the sum becomes bigger.]

Using Theorem 61 we can easily show that the basic inequalityof Theore 24 (p. 42) is true
with O(1)-precision for prefix complexity (recall that we have logarithmic error term for plain
complexity):

{prefix-baseineq
Theorem 64

KP(x,y,z)+KP(x) 6 KP(x,y)+KP(x,z)+O(1)

for every three strings x,y,z.

⊳ Indeed, the right hand side can be rewritten as

KP(x)+KP(y|x,KP(x))+KP(x)+KP(z|x,KP(x)),

and the levt hand side equals

KP(x)+KP(y,z|x,KP(x))+KP(x).

It remains to prove that

KP(y,z|x,KP(x)) 6 KP(y|x,KP(x))+KP(z|x,KP(x)),

and this inequality is a relativized version of Theorem 54 (p. 86).⊲
Let us provide also a direct proof of Theorem 64 using semimeasures. We have to show that

(up toO(1)-factors)
m(x,y,z)m(x) > m(x,y)m(x,z),

wherem is the maximal lower semicomputable semimeasure. Dividingby m(x), we get an in-
equality

m(x,y)m(x,z)
m(x)

6 m(x,y,z).

Let us check that the left hand side of this inequality has a finite sum (over all triplesx,y,z. Indeed,

∑
y,z

m(x,y)m(x,z)
m(x)

6 m(x)

(since∑ym(x,y) 6 m(x) and∑zm(x,z) 6 m(x)). (We omitO(1) factors for brevity.)
This is not enough: since we havem(x) in the denominator, the fraction

m(x,y)m(x,z)
m(x)

is not (necessarily) lower semicomputable and we cannot usethe maximality property. So we need
to use the following trick (similar to the trick used in the proof of Theorem 61) to construct a lower
semicomputable upper bound for this fraction.

100

For eachn consider the functionmn(x,y) which is obtained fromm(x,y) by 2−n-trimming: the
sum∑ym(x,y) is forced to be at most 2−n. Note that∑ym(x,y) = m(x) (up toO(1)-factors) and
thereforemn(x,y) = m(x,y) for n = KP(x). Then we consider the function

〈x,y,z〉 7→ ∑
n>KP(x)

mn(x,y)mn(x,z)
2−n

It is an upper bound since it contains the term withn = KP(x). On the other hand,

∑
x,y,z

∑
n>KP (x)

mn(x,y)mn(x,z)
2−n 6 ∑

x
∑

n>KP(x)

∑ymn(x,y)∑zmn(x,z)

2−n

6 ∑
x

∑
n>KP(x)

2−n
6 ∑

x
2m(x) 6 2.

(As before, we omitO(1)-factors which lead only toO(1)-factor in the final inequality.)

84 Show that the inequality of Theorem 26 (p. 44) is true for prefix complexity withO(1)- {condit-triple-prefix
precision:

2KP(x,y,z) 6 KP(x,y)+KP(x,z)+KP(y,z)+O(1)

for all stringsx,y,z. [Hint: add the basic inequalityKP(x,y,z)+KP(z) 6 KP(x,z)+KP(y,z) to
the inequalityKP(x,y,z) 6 KP(x,y)+KP(z).]

85 Prove that there existsc such that for every stringx and for every positive integern there {increasing-pair-complexit
exists a stringy of lengthn such that

KP(x,y) > KP(x)+n−c

[Hint: for everyz andn there exists a stringy of lengthn such thatKP(y|z) > n.]

A similar statement can be formulated forn-bit extensions of a given stringx (its version for
plain complexity makes Problem 34 on p. 38)

{increasing-prefix-complex
Theorem 65

max{KP(xy)|l(y) = n} > KP(x|n)+n−O(1).

In other terms, for somec and allx andn we can appendn bits to x in such a way that its
complexity is at leastn bits more thatKP(x|n) (this is not exactly the increase in the complexity
since we compareKP(xy) with KP(x|n) and notKP(x)).

⊳ In terms of a priori probabilities this inequality says that

2nmin{m(xy)|l(y) = n} 6 m(x|n) ·O(1)

The left hand side does not exceed∑{m(xy)|l(y) = n} (the sum may only decrease is we replace all
summands by the least one). But the latter sum is (as a function of x andn) a lower semicomputable
semimeasure, so it remains to compare it with the maximal semimeasurem(x|n). ⊲

86 Show that a bit weaker statement withKP(x)−KP(n) instead ofKP(x|n) (in the right
hand side) can be derived from the statement of Problem 85.

101

5 Monotone complexity
{monot}

5.1 Probabilistic machines and semimeasures on the tree
{monotsm}

Chapter 4 defines a priori probability by using probabilistic algorithms (machines) that may print
some number as their output and then terminate. In this chapter we consider another type of
probabilistic (=randomized) algorithms. These algorithms output a binary sequence bit by bit and
do not necessarily terminate. The output, therefore, is a random variable whose values are finite
and infinite sequences of bits (i.e., elements of the setΣ of all finite and infinite sequences of bits).

Consider the following simple algorithm of this type. It just sends random bits directly to the
output:

while true do
b:=random;
OutputBit(b);

od

Its output therefore is a random variable that is uniformly distributed overΩ, the set of all infinite
binary sequences.

But it is quite possible (for another algorithm) that some finite sequence is printed with positive
probability. This happens when algorithm with positive probability stops after sending some bits
to the output (or runs forever without sending any bits to theoutput).

For each algorithmA of the described type we consider a functiona that is defined on binary
strings and whose values are non-negative reals:

a(x) = Pr[the output ofA starts withx]

More formally this function is defined in the following way. Each probabilistic algorithm
defines a mappinḡA of the setΩ (infinite sequences of zeros and ones) into the setΣ. Namely,
Ā(ω) is a sequence of output bits that appears if we use the terms ofthe sequenceω as random bits
(this means that each statementb := randomassigns tob the first unused bit ofω). For example, if
A is the program mentioned above, thenĀ(ω) = ω for all ω.

Thena(x) is defined as the measure of the preimage of the setΣx under the mappinḡA (where
Σx is the set of all finite and infinite sequences having prefixx). We say thatA generatesthe
distributiona.

87 What areĀ anda, if the algorithmA prints an infinite sequence of zeros (not using random
bits at all)?

A natural question arises: what is the class of all functionsa that correspond to randomized
algorithmsA of the described type? Here is the answer.

{monotsm-crit1
Theorem 66 Let A be a randomized algorithm of the described type and let abe the corresponding
function. Then:

(a) a(x) > 0 for all x;
(b) a(Λ) = 1 (hereΛ is the empty string);
(c) a(x) > a(x0)+a(x1) for every string x;
(d) the function a is lower semicomputable.

102

The notion of the lower semicomputable (enumerable from below) sequence of reals was de-
fined in Section 4.1 (p. 65). For the functions on strings the definition is quite similar: we require
thata(x) = lim i a(x, i) wherea is a computable function,a(x, i) is defined for all stringsx and for
all non-negative integersi, has rational values (special symbol−∞ is allowed) and non-decreases
asi increases.

⊳ The first three claims are obvious:
(a) Probability is always non-negative.
(b) a(Λ) = 1 since the empty string is a prefix of any output.
(c) a(x) > a(x0) + a(x1), since the events “the output starts withx0” and “the output starts

with x1” are inconsistent and both are subsets of the event “the output starts withx”.
Note that the inequality (c) can be strict; the difference

a(x)−a(x0)−a(x1)

is the probability of the event “the output is exactly the string x” (no bits appear after it).
(d) To prove thata is lower semicomputable, we need to construct approximations from below

for a(x) for any given stringx. Let us simulate the behavior ofA for all possible values of random
bits. During this simulation we discover values of random bits that guarantee that output starts
with x, i.e., we find some intervalsI in Ω such thatĀ(ω) starts withx for all ω ∈ I . The probability
a(x) is the measure of the union of all these intervals, and the approximationa(x, i) is the measure
of the union of all the intervals discovered up to the stepi of the simulation.⊲

The functiona that is defined on all binary strings, takes real values and satisfies the conditions
(a)–(d) of Theorem 66 is called anlower semicomputable semimeasure on the binary tree. It is
important not to mix semimeasures on the binary tree and semimeasures defined in Chapter 4 that
were functions on natural numbers (or on binary strings thatcorrespond to natural numbers) and
correspond to probabilistic algorithms that print some number (or string) and terminate.

All functions that satisfy conditions (a)–(c) are calledsemimeasures on the binary tree, or tree
semimeasures; the condition (d) additionally requires that a tree semimeasure is lower semicom-
putable.

88 Show that tree semimeasures are in a one to one correspondence with measures on the set
Σ of all finite and infinite binary sequences. Given a semimeasure a, find the measure of the set
that consists of all infinite sequences that have prefixx. [Answer: the measure of this set equals
the limit of the (decreasing) sequence

αn = ∑{a(y)|y is a string of lengthn that has prefixx}

Hereαn is defined forn > l(x) and equalsa(x) if n = l(x).]

89 Show that for a semicomputable tree semimeasure the sum∑xa(x) can be infinite. [Hint:
Consider the algorithm that copies random bits to output.]

The converse of Theorem 66 is also true:
{monotsm-crit2

Theorem 67 Every lower semicomputable tree semimeasure corresponds to some probabilistic
algorithm.

103

⊳ The idea of the proof can be easily explained in terms of spaceallocation, as it was done for
Theorem 40 (p. 68). The difference is that now the requests are hierarchical. Two big organizations
(called 0 and 1) need space inΩ (which we identify with[0,1]); the subsets allocated for 0 and 1
should be disjoint, and their space requests increase over time (but never become greater than 1 in
total).

Each of the organizations has two divisions (called 00,01 inside 0 and 10,11 inside 1 that
request some space inside the regions allocated to their organization as a whole. Their requests
also increase over time, but never become greater (in total)than the organization’s request (at
the same time). Then we consider subdivisions (say, 01 has subdivision 010 and 011) that have
increasing requests that do not go out of the request of theirparent division, and so on.

For each subdivisionx (at any level) we have increasing requests. All the allocations are final,
i.e., the space allocated to somex remains allocated tox.

This scheme is used in the proof as follows: having a lower semicomputable semimeasurea,
we construct a family of requests such that the limit of the requests for subdivisionx is equal to
a(x). Then we choose a way to satisfy all the requests and then say that if a sequence of random
bits gets into the region allocated tox, then the output of randomized algorithms starts withx.

It is more or less obvious that the requests can indeed be fulfilled. However, we provide a more
formal argument (and explain the intuitive meaning of its steps).

Lemma 1. Let a be a lower semicomputable semimeasure on the binary tree. Then there exists
a total computable monotone (in the second argument) function 〈x, i〉 7→ a(x, i) whose values are
non-negative rational numbers with denominators being powers of two and:

(1) limi a(x, i) = a(x) for every stringx;
(2) for eachi the functionx 7→ a(x, i) is a semimeasure that has only finitely many non-zero

values.
In other terms, the memory manager can impose the following additional restrictions:

• all the requests should be rational numbers whose denominators are powers of two;

• at each step only finitely many subdivisions can have nonzerorequests;

• at each step requests are coherent (the request of any subdivision should be greater than or
equal to the sum of requests of its children).

Proof of the Lemma. Or goal is to change the functiona from the definition of lower semicom-
putable semimeasure (not changing the semimeasure itself)so that it satisfies the requirements of
the Lemma. First, we make all values rational numbers whose denominators are powers of two. To
achieve this, we replacea(x, i) by the closest rational number with denominator 2i not exceeding
a(x, i) (negative numbers are replaced by zeros).

Then we fulfill the second requirement and leta(x, i) be zeros for all stringsx whose length
exceedsi.

To fulfill the third requirement, we perform the replacement

a(x, i) := max(a(x, i), a(x0, i)+a(x1, i))

104

iteratively starting from long strings and then decreasingthe length ofx. Sincea(x) is by definition
a semimeasure, these replacements do not violate the inequality a(x, i) 6 a(x).

It is easy to check that our corrections do not change the limit values limi a(x, i) (for all x), so
this limit is still equal toa(x).

Lemma 1 is proved.
To formulate the next lemma we need several auxiliary definitions. A “simple semimeasure”

(on the binary tree) is a semimeasure that has only finitely many nonzero values and all these values
are rational numbers whose denominators are powers of two.

A “simple set” is the union of a finite number of intervals inΩ. (Recall that an interval inΩ is
a set of the formΩz that consists of all infinite sequences having prefixz. Therefore, a set is simple
if we need to know only a finite prefix ofω to decide whetherω belongs to this set.)

A “simple family” is a family of simple setsAx (for some binary stringsx) such that only
finitely many sets amongAx are non-empty and for each stringx the setsAx0 andAx1 are disjoint
subsets ofAx.

For such a family the functionx 7→ µ(Ax), whereµ stands for the uniform measure onΩ is a
simple semimeasure. We say that the familyAx “implements” this semimeasure.

Lemma 2. Each simple semimeasure can be implemented by a simple family.
Proof. We construct this family starting from the empty string x and then gradually increasing

the length of the index stringx. At each step our goal is to find two disjoint simple setsAx0 and
Ax1 inside the setAx that is already constructed. This is possible since the required measures do
not exceed (in total) the measure ofAx. Lemma 2 is proved.

Lemma 3. Let b(x) be a simple semimeasure and letBx be a simple family of intervals that
implementsb. Let c be another simple semimeasure such thatc(x) > b(x) for all x. Then we can
construct a simple familyCx implementingc such thatCx ⊃ Bx for all x.

Proof. Let us repeat the argument used to prove Lemma 2. Now wehave two disjoint simple
subsets of a simple set and need to increase their measures (keeping them disjoint). It is easy to
see that this is indeed possible if the space restrictions are not violated. Lemma 3 is proved.

The proofs of Lemma 2 and Lemma 3 are effective in the natural sense: given the tables of
values for simple semimeasures, we can algorithmically construct the simple family required.

Now we apply Lemma 3 iteratively to the simple semimeasures that are obtained by Lemma 1.
In this way we get a two-parametric family of simple setsU(x, i) such that

• the description ofU(x, i) (i.e., the list of intervals) is a computable function ofx andi;

• the uniform measure of the setU(x, i) is equal toa(x, i) (and therefore tends toa(x) asi →∞);

• for eachx andi the setsU(x0, i) andU(x1, i) are disjoint subsets of the setU(x, i);

• U(x, i)⊂U(x, i +1) for eachx andi.

Now the probabilistic algorithm that generates the semimeasurea can be constructed as fol-
lows: we construct the setsU(x, i) for all x andi and in parallel generate random bits obtaining a
sequenceω. If at some step we discover thatω ∈U(x, i) for somex andi, we output those bits of
the stringx that have not yet been printed.

105

Note that ifω ∈U(x, i) thenω ∈U(y, i) for every prefixy of x. Note also thatω cannot be an
element of bothU(x, i) andU(x′, i) if stringsx andx′ are inconsistent (neither of them is the prefix
of the other one). Therefore the bits sent to the output neverneed to be “recalled”.

An output of this algorithm starts with some stringx if and only if the sequenceω of random
bits belongs to the union of the increasing sequences of setsU(x, i) (for i = 0,1,2, . . .). The proba-
bility of this event is the limit of measures of the setsU(x, i), and this limit is by construction equal
to a(x), so we have achieved our goal.⊲

Theorems 66 and 67 show that lower semicomputable semimeasures can be equivalently de-
fined as probability distributions generated by randomizedalgorithms (of the described class).

There is an important special case when a randomized algorithm almost surely generates an
infinite sequence (i.e., the probability to get a finite sequence is zero). Such algorithms generate
computable measures, as the following theorem shows.

{monotsm-semi-measure
Theorem 68 (a) Let µ be a computable measure onΩ. Then function p defined as p(x) = µ(Ωx)
is a lower semicomputable semimeasure and p(x) = p(x0)+ p(x1) for all x.

(b) If a lower semicomputable semimeasure p satisfies the equality p(x) = p(x0)+ p(x1) for
all x, then it determines some computable measure onΩ.

⊳ (a) If a real numberα is computable andan is a rational approximation toα with accuracy
1/n, thenbn = an−1/n is a lower bound forα that is at most 2/n apart fromα. The sequence
bn constructed in this way can violate the monotonicity requirement but we may replace it by the
sequence

cn = max(b0,b1, . . . ,bn)

that is a non-decreasing sequence of rational numbers tending to α. Therefore, every computable
real number is lower semicomputable. Doing this in parallelfor all x, we obtain computable
rational lower bounds forp(x) tending top(x) and prove that every computable measure is an
lower semicomputable semimeasure. SinceΩx is the union of two disjoint subsetsΩx0 andΩx1,
we also havep(x) = p(x0)+ p(x1).

(b) Let p be a lower semicomputable semimeasure such thatp(x) = p(x0)+ p(x1) for all x.
We show inductively howp(x) can be found up to any precision for everyx. For emptyx we have
p(Λ) = 1 by definition. Imagine that we already know how to findp(x) with arbitrary precision
for some stringx. How can we do the same forp(x0) andp(x1)? We have to wait until the sum
of (increasing) lower bounds forp(x0) andp(x1) become close enough to the (decreasing) upper
bound forp(x). In other terms, an upper bound forp(x1) can be obtained if we take an upper
bound forp(x) (constructed recursively) and subtract a lower bound forp(x0). ⊲

This theorem can be interpreted in the following way. Assumethat we need a generator of
random reals (=sequences of zeros and ones) whose output hasa prescribed distributionp (this
means that the probability to get an output that starts withx is equal top(x)). Then Theorems 67
and 68 guarantee that ifp is a computable distribution, then such a generator can be implemented as
a randomized algorithm that uses the internal source of random bits that has uniform distribution.

Note that the construction used in the proof of Theorem 67 canbe simplified in the special case
when we deal with computable measures (and not arbitrary semicomputable semimeasures). This
simplified construction goes as follows. Let us divide the interval [0,1] into two parts of lengths

106

p(0) andp(1). The first part is then divided again into parts of lengthp(00) andp(01), the second
one is divided into two parts of lengthp(10) andp(11), and so on. In this way for each stringzwe
get an intervalπz inside[0,1], and the segmentsπz for all stringsz of any given length cover[0,1]
without overlaps.

Now construct the probabilistic algorithm as follows. Thisalgorithm uses independent tosses
of a fair coin to get a sequenceα of random bits that has uniform distribution. This sequence
is considered as a binary representation of some real in[0,1]; this real is also denoted byα. In
parallel the probabilistic algorithms looks for binary strings z such that the real numberα lies
strictly inside the intervalπz (and this is guaranteed by the available information aboutα and the
current approximations to the endpoints ofπz; these approximations are computed with increasing
precision).

The stringsz discovered in this way are are compatible (one being a prefix of another). The
more bits ofα we know, the longerz can be. These strings are prefixes of some bit sequence that
is the output of our randomized algorithm.

The algorithm described can output a finite sequence. This happens ifα coincides with an
endpoint of someπz. However, there are countably many endpoints, so this eventhas probability 0.
Note also that the output of the algorithm starts withz if and only if α belongs to the (open) interval
πz, so the probabilities are correct.

More formally, we have described a transformationT of the input bit sequenceα into the
output bit sequenceβ = T(α) such that the image of uniform measure underT is the measurep.

(This trick is well known. For example, imagine that you havea fair coin and you need to
simulate the coin that has probabilities 2/3 and 1/3. Then you generate a random real uniformly
distributed in[0,1] (by fair coin tossing) and compare this real number with threshold 2/3. To sim-
ulate the second coin tossing, you divide both intervals[0,2/3] and[2/3,1] in the same proportion
2 : 1. The algorithm described earlier does exactly this.)

To understand the relations between the classes of random sequences with respect to different
distributions, we need to look more closely onT. Consider the familyIz of intervals that corre-
sponds to the uniform measure, i.e.,Iz is the interval inside[0,1] that is formed by reals whose
binary representation starts withz (including the endpoints, soIz is a closed interval).

Using this notation, we describe the transformationT : Ω → Σ as follows: a stringy is a prefix
of T(α) if there exists a prefixx of α such thatIx is strictly insideπy (i.e., is a subset of the interior
of πy).

In the similar way we can define another transformationU : Ω → Σ that goes in another direc-
tion: stringx is a prefix ofU(β) if β has some prefixy such thatπy is strictly insideIx.

We would like to say that transformationsT andU are inverse to each other, sinceT converts
a sequenceα into a real number that has binary representationα, and then converts its back into
a bit sequence using “p-representation” instead of binary representation, whileU does exactly the
same in the other direction. But this is not literally true for several reasons.

As we have mentioned, the rational numbers whose denominators are powers of two, have
two binary representations. The similar problems appears with the endpoints of intervalsπz and
p-representation. Also it may happen that someπz has zero length, and then all the sequences that
start withzcorrespond to the same point. On the other hand, is some infinite sequence has positive

107

p-measure, the entire interval on the real line corresponds to this sequence.
But if we forget these problems for a while, we can indeed think of T andU as transformations

that are mutually inverse of each other and relate uniform distribution andp-distribution. This
informal idea can be verbalized in many ways. As we have already seen, ifα is a random element
of Ω with the uniform distribution, thenT(α) has distributionp. On the other hand, we get move
in another direction:

90 Prove that if no singleton has positivep-distribution, andβ is a random variable that has
distribution p, thenU(β) is infinite with probability 1 and is uniformly distributed in Ω. [Hint:
Each sequenceβ determines the sequence of decreasing closed intervals that have only one com-
mont point; the probability that this common point is rational equals zero. The probability for
U(β) to get insideπz is correct by definition, and any other interval is a countable union ofπz if
we ignore its endpoints.]

This problems shows how to generate an uniform distributionfrom a non-uniform one. A toy
example of this type: assume that we have a biased coin with probability 2/3 of getting a head,
and we need to simulate a fair coin tossing. In this special case the task is easy without any special
theory: let both players toss a coin once; if both have the same, we have a draw and everything is
repeated; if the results are different, the player who has a head wins. (This construction, unlike the
one used in the proof, is valid for any probability, not only 2/3.)

The assumption (no sequences of positive measure) is important: not any distribution can be
used to simulate the uniform one. For example, ifp(000. . .000) = 1 for any number of zeros and
p equals zero for any otherz, this “random bits generator” does not provide any randomness, it just
generates zeros and is completely useless. A similar situation arises if some infinite sequence has
positive measure, i.e., if there exists an infinite sequenceω and a numberδ > 0 such thatp(x) > δ
for anyx that is a prefix ofω. In this case the random number generator generatesω with positive
probability, so we cannot simulate the uniform distribution.

However, we are more interested about relation between ML-random sequences with respect
to different measures.

Theorem 69 (a) If a sequenceα is ML-random with respect to the uniform measure, then the
sequenceβ = T(α) is infinite and random with respect to measure p.

(b) If the sequenceβ is ML-random with respect to p and is not computable, then thesequence
α = U(β) is infinite, ML-random with respect to uniform measure and T(α) = β .

(Note than some of the statements of this Theorem are corollaries of Theorem 99, p. 142.)
⊳ (a) A random sequence with respect to the uniform measure is not computable, therefore

it cannot represent a rational number or a computable number. Since the endpoints of allπz are
computable, the sequenceβ = T(α) is infinite.

Assume that an algorithm is given that for anyε > 0 covers the sequenceβ by a family of
intervalsΩu. Consider the closed intervalsπu (for correspondingu’s) and replace them by slightly
larger open intervals. Then we get an algorithm that covers the real number with binary representa-
tion α by a family of intervals with small sum of lengths. It can be easily converted to an algorithm
that coversα ∈ Ω by intervalsΩv that have small sum of uniform measures (an interval on the real

108

line is replaced by the union of disjoint intervalsΩv). And this is not possible sinceα is random
with respect to the uniform distribution.

(b) Here we need some additional precautions. Let us note first that if {β} has positivep-
measure, thenβ is computable. (We assume thatp is a computable measure.) Indeed, in this case
p(z) > ε for someε. There are finitely many (say,k) sequences whose measure is greater thanε.
Let us increaseε a bit so that all thesek sequences still have measure greater thanε. Then for
sufficiently largen (say, starting fromN) there arek stringsz of lengthn such thatp(z) is greater
than (increased)ε. KnowingN and (increased)ε, we can find these strings, so allk sequences are
computable.

Therefore, ifβ is not computable, the lengths of intervalsπz for stringsz being prefixes ofβ ,
tend to 0. Therefore, these (closed) intervals have unique intersection pointx. It is an interior point
for all those intervalsπz sinceβ contains infinitely many zeros and one (being non-computable).
Then we note thatx is not a rational number (it would makeβ computable) and therefore the
sequenceα = U(β) is infinite andT(α) = β .

It remains to show thatα is random (with respect to the uniform distribution). Assume that
there exists a family of intervalsΩu that coversβ and has small total uniform measure (inΩ). We
can transform them to open intervals on the real line that cover x and have small sum of lengths.
Then we consider closed intervalsπz that get inside these open intervals. For one of them the string
z is a prefix ofβ , sincex is an interior point and the lengths ofπz tend to zero.⊲

This theorem implies the following statement: if a sequenceω is random with respect to some
computable measure, thenω is either computable or is Turing-equivalent to some sequence that is
random with respect to the uniform measure.

A Turing equivalenceof two sequencesα andβ means thatα is Turing-reducible toβ and
vice versa. Andα is Turing-reducible toβ if there exists an algorithm that computesα usingβ as
an oracle, i.e., as an external procedure that can be called and returnsnth bit of β givenn. In our
case these reductions are provided by transformationsT andU .

Sequence that are random with respect to some computable measure were called “proper” in??
(English translation).

A natural question related to this problem: is there a sequence that is not ML-random with
respect to any computable measure? or even a sequence that isnot Turing-equivalent to any ML-
random (with respect to the uniform measure) sequence? (Note that we can replace ‘the uniform
measure’ by ‘any computable measure’.) Here are some observations:

1. The first question has a positive answer: there exists a sequence that is not random with re-
spect to any computable measure. It can be constructed usingthe notion of randomness deficiency
(see Section 5.9, p. 141):

91 Prove that for every binary stringx and for every computable measureP on can effec-
tively find a stringy with prefix x that has arbitrary large randomness deficiency with respectto P
(randomness deficiency is defined below in Section 5.9 as the difference between− logP(x) and
a priori complexityKA(x)). [Hint: Let us extendx in such a way that each next bit decreases the
P-measure of the corresponding interval at least by factor 3/2. This can be done effectively, so
the complexity increases slowly while the measure decreases fast.] Considering all the computable
measures (each should be treated infinitely many times), show that there exists a sequence that is

109

not random with respect to any computable measure.
Essentially the same argument can be explained using “generic” sequences. Recall that a subset

A of Ω is everywhere denseif it has non-empty intersection with every interval. A famousBaire
theoremsays that the intersections of a countable family of open sets Ai (an open set is a union of
intervals) that are everywhere dense is nonempty and, moreover, everywhere dense.

92 Prove Baire theorem starting with any string and adding suffixes to get inside dense open
sets (one by one).

Now we consider effectively open sets (unions of enumarablefamilies of intervals) that are
everywhere dense. We get a countable family of open sets thatare dense everywhere. Their
intersection is an everywhere dense sets whose elements arecalledgenericsequences.

Informally speaking, generic sequence violates any law that prohibits a enumerable dense set
of prefixes.

93 Prove that every generic sequence viiolates the Strong Law of Large Numbers. [Hint:
The set of binary strings of length greater thatN that have more than 99% of ones forms a dense
effectively open set; the same is true for the set of strings with more than 99% zeros.]

94 Prove that no generic sequence is computable. [Hint: the setof all sequences that differ
from a given computable sequence is open and everywhere dense.]

Note that the definition of a generic sequence (unlike randomness) does not refer to any mea-
sure.

95 Prove that a generic sequence is not ML-random with respect to any computable measure.
[Hint: It is enough to construct an effectively open dense set that has small measure. This can be
done by iteratively chosing a smaller half of an interval, oralmost smaller if the halves have almost
equal size.]

Zvonkin and Levin ([?], remark after Definition 4.4) claim that it is easy to show that the
characteristic sequence of the universal enumerable set isnot ML-random with respect to any
computable measure. They don’t say what kind of universality is needed etc., but most probably
the statement they had in mind follows from the following result:

96 Show that there exists an enumerable set whose characteristic sequence is not random with
respect to any computable measure. [Hint: The complexity ofthe prefixes of every characteristic
sequence of an enumerable set is logarithmic; it remains to guarantee that any computable measure
of the prefixes decreases fast. It can be done as follows: we split N into arithmetic sequences
and devoteith of them toith computable measure; since we don’t know whether it is indeed a
computable measure, we get an enumerable set, not a decidable one.]

2. It is more difficult (though still possible) to construct a sequence that is not Turing-equivalent
to any sequence that is ML-random with respect to the uniformmeasure. Moreover, we know
which direction is difficult: we can construct a sequenceα such that no ML-random sequence is
reducible toα. Moreover, one can construct a probabilistic machine that generates such sequences
with positive probability. This is done in [?].

3. As we shall see, the converse statement is false: every sequence is Turing-reducible to some
ML-random sequence (with respect to the uniform measure, see Theorem 101, p. 147). {gacs-reducibility-remark

4. One can also construct a sequence that is Turing-equivalent to a ML-random one (with

110

respect to the uniform measure) but is not random with respect to any computable measure. For
example, we may interleave (using even and odd places) a generic sequenceτ with a random
sequenceω such thatτ is Turing-reducible toω.

(Here we use the results mentions in the preceding paragraph. Note also that if a sequence is
ML-random with respect to some computable measureP that its subsequence formed by the terms
with even indices in random with respect to the projection ofthe measureP.)

The sequences that are not ML-random with respect to any computable measure are somehow
similar to nonstochastic (in Kolmogorov sense) objects (see Section??). Moreover, it is easy to
see that if a sequence is ML-random with respect to some computable measure, then its prefixes
are stochastic (Problem??, page??).

In the end of this section we present the following easy corollary of the results proved above:
{monotsm-anybits

Theorem 70 If, in place of the uniform distribution, the random bits used by a probabilistic ma-
chine have another computable probability distribution, then the distribution generated by the
machine is still lower-semicomputable.

⊳ Indeed, every computable distribution is an output distribution for some probabilistic ma-
chine, and therefore combining two machines we get a machinehaving the same output distribution
and the uniform source distribution.

One may also repeat the proof of Theorem 66 and notice that theintervals discovered have
computable measures and thus we get lower bounds for probabilities. ⊲

5.2 Maximal semimeasure on the binary tree
{monotmax}

Theorem 71 The class of all lower semicomputable semimeasures on the binary tree has the great-
est element(up to a constant factor): there exists a semimeasure a in this class such that for every
other a′ in the same class the inequality a′(x) 6 ca(x) holds for some constant c and for all x.

This element is traditionally called themaximal lower semicomputable semimeasure on the
binary tree(though it is not only the maximal, but also the greatest element in the partial order), or
theuniversal semimeasureon the binary tree.

⊳ We can use the same idea as for semimeasures onN (Theorem 41, p. 69). Consider a
probabilistic machineA that first chooses at random some probabilistic machine and then simulates
it. If a semimeasurea′ corresponds to a probabilistic machineA′, thena′(x) 6 (1/ε)a(x) whereε
is the probability that machineA′ is chosen.⊲

Another proof deals with functions, not machines: first we construct a sequencea0,a1, . . . of
semimeasures and then consider the functiona = ∑i λiai whereλi are computable coefficients that
have sum 1 (e.g.,λi = 2−i−1).

A delicate point: we need a sequence that includes all (tree)semimeasures that are computable
from below, and the sequence itself should be computable from below. This means that we need
a lower semicomputable function〈i,x〉 7→ u(i,x) such that (1) for any fixedi the functionui :
x 7→ u(i,x) is a tree semimeasure; (2) the sequenceui contains all lower semicomputable tree
semimeasures.

111

This can be done either by enumerating all probabilistic machines (and that corresponds to the
first proof) or by enumerating all lower semicomputable functions and then “trimming” them to
make them semimeasures and leaving them unchanged if they already are semimeasures. See the
similar argument for semimeasures onN (Section 4.2, p. 69). Note that if the conditionp(x) >

p(x0)+ p(x1) is violated, we should increasep(x) unless this makesp(Λ) greater than 1.

97 Provide the missing details in this argument.

(Remark: The proof gives a bit more than we have claimed. Indeed, we get a lower bound not
only for the probability of the event “outputstarts withx”, which is p(x), but also a lower bound
for the probability of the event “the output isexactly x”, which is p(x)− p(x0)− p(x1). So not
only a(x), but alsoa(x)−a(x0)−a(x1) is maximal for the universal machine we constructed.)

98 Prove that all these arguments can be applied to the case of algorithms that send natural
numbers (not bits) to the output one at a time. These algorithms correspond to lower semicom-
putable semimeasures on the set of all (finite and infinite) sequences of natural numbers.

99 (Continued.) Letm be the maximal lower semicomputable semimeasure on the set of
all finite and infinite sequences of natural numbers. Show that its restriction on the sequences
of length 1 coincides (up toO(1) factor) with the a priori probability on natural numbers (Chap-
ter 4), and its restriction to binary sequences coincides (up to O(1) factor) with the universal tree
semimeasure we have defined in this section.

Let us fix some maximal lower semicomputable semimeasure on the binary tree and denote it
by a(x). One can calla(x) ana priori probability of a tree vertex x, however, one should distinguish
it from the a priori probability defined in Chapter 4. However, we can consider the expression

KA(x) = − loga(x)

and call ita priori complexityof a stringx. (This does not create any confusion, since in Chapter 4
the logarithm of the maximal semimeasure coincides with theprefix complexity and does not
require a special name.) Since different maximal semimeasures differ at most byO(1) factor, the
a priori complexity is defined up to an additiveO(1) term.

In the next section we study the properties of a priori complexity. Let us note that by definition
the a priori complexity need not be an integer (or even rational) number. But this does not matter
much, since most of the statements about complexity are true“up to O(1) term”, and we may
replace− loga(x) by a minimal integern such thata(x) > 2−n. An important detail: we use the
strict inequality since we want the resulting function to belower semicomputable. In the sequel
we indicate the rare cases where this rounding (or its absence) can be important.

5.3 A priory complexity and its properties
{monotapr}{ka-properties

Theorem 72 (a) KA(x) 6 l(x)+O(1) for each x.
(b) KA(x) 6 KP(x)+O(1) for each x.
(c) Let x0,x1, . . . be a computable sequences of incomparable strings (i.e., none of them is a

prefix of another one). Then KA(xi) = KP(xi)+O(1) = KP(i)+O(1).
(d) KP(x) 6 KA(x)+2logl(x)+O(1).

112

(e) Moreover, KP(x) 6 KA(x)+KP(l(x))+O(1),
(f) and even more, KP(x|l(x)) 6 KA(x)+O(1);
(g) A sequence of zeros and ones is computable if and only if a priori complexity of its prefixes

is bounded.
(h) If f : Σ → N⊥ is a computable continuous mapping, then KP(f (x)) 6 KA(x)+ O(1) for

each string x such that f(x) is defined (is not equal to⊥).

⊳ (a) The functionp(x) = 2−l(x) is a lower semicomputable semimeasure. Thereforep(x) 6

ca(x) for somec and allx.
(b) The machines that print a binary string (as a whole) and then halt, form a subclass of the

machines that generate output bits one by one. Therefore,m(x) 6 ca(x) wherem is the a priori
probability as defined in Chapter 4.

It is instructive to rephrase this argument using semimeasures. Letm′(x) be the sum ofm(y)
taken over all stringsy that are prefixes ofx (includingx itself). Herem is the maximal semimeasure
onN as defined in Chapter 4. Modifym′ and letm′(Λ) be equal to 1. Thenm′ is a semimeasure on
the binary tree and thereforem(x) 6 m′(x) = O(a(x)).

(c) Let xi be a computable sequences of incomparable binary strings. The functioni 7→ a(xi)
(wherea is the a priori probability on the tree) is a lower semicomputable semimeasure onN.
Indeed, it is lower semicomputable and the events “output starts withxi” are disjoint and therefore
the sum of their probabilities does not exceed 1. ThereforeKP(i) 6 KA(xi)+O(1).

On the other hand,KP(xi) = KP(i)+O(1), sincei can be algorithmically transformed intoxi

and vice versa; finally,KA(xi) 6 KP(xi)+O(1) according to (b).
(d) Let a be the universal semimeasure (a priori probability) on the binary tree. Consider the

functionu defined asu(x) = a(x)/l(x)2. It is lower semicomputable. Moreover, since the sum of
a(x) over all stringsx of lengthn does not exceed 1 (these strings are not prefixes of each other),
we get

∑
x

u(x) = ∑
n

∑
l(x)=n

a(x)
n2 6 ∑

n

1
n2 = O(1),

so we get the desired inequality.
(e) can be proved in a similar way, this time we letu(x) = a(x)m(l(x)) wherem is a priori

probability onN (as defined in Chapter 4).
(f) Consider the function

u(x,n) =

{
a(x), if l(x) = n,

0, if l(x) 6= n.

Then for eachn the functionx 7→ u(x,n) is a semimeasure in the sense of Chapter 4 (the sum of
values does not exceed 1), and we get the desired inequality.

(g) For a give computable (infinite) sequenceω of zeros and ones consider a “probabilistic”
algorithm that ignores random bits and just computes and sends to the output the sequenceω
(bit by bit). The corresponding semimeasure equals 1 on any prefix of ω, therefore the universal
semimeasure (whose logarithm is a priori complexity) of allprefixes ofω is greater that some
positive constant.

113

The converse implication is a bit more complicated. Assume that a priori probabilities (the
values of the universal semimeasurea on the binary tree) of all prefixes ofω are greater than some
rationalε > 0. Consider the setB of all binary stringsx such thata(x) > ε. The setB contains
all prefixes ofω and is a subtree (if some string is inB, then all its prefixes are inB). Moreover,
any prefix-free subset ofB (that does not contain a sequence and its prefix at the same time) has
at most 1/ε elements (since the corresponding events are disjoint, their total probability does not
exceed 1). Finally, the setB is enumerable (having more and more precise approximationsto a(x)
from below, we eventually discover all elements inB).

These properties ofB are sufficient to conclude that the sequenceω is computable. Indeed,
consider the maximal (having the maximal cardinality) prefix-free subsetx1, . . . ,xN of B. For each
of xi consider all its continuations that belong toB. All of them (for a giveni) are prefixes of
one sequence; otherwise we can find two inconsistent stringsand replacexi by them (which is not
possible, since the subset is maximal).

So for eachi we have a (finite or infinite) branch inB going through it, and it is computable
sinceB is enumerable. The sequenceω is one of these branches (otherwise we could add a suffi-
ciently long prefix ofω to the set which is maximal).

(h) Consider the probabilistic machine that corresponds tothe maximal semicomputable
semimeasure on the binary tree, and apply functionf to its output. This composition is a proba-
bilistic machine as defined in Chapter 4, and it remains to compare it to the universal machine that
generates the maximal lower semicomputable semimeasure onN (logarithm of this semimeasure
is KP +O(1)). ⊲

Note that the a priori complexity is quite different from thecomplexities already known (plain
and prefix complexities). Its definition uses a tree structure that exists on the set of finite binary
strings, and algorithmic transformation that ignore this structure can increase a priori complexity
more than byO(1).

100 Show that one can find a stringx that hasO(1) a priori complexity butxR (reversedx)
has arbitatrily large complexity. (Formally: there existsc such that for everyn there is a string
x satistying the inequalitiesKA(x) < c andKA(xR) > n.) [Hint: the stringx can be of the form
1000. . .]

So (unlike before) we cannot speak about a priori complexityof some constructive object (a
pair, a graph, a finite set etc.) since it depends on the encoding.

The difference between a priori complexity of a stringx of lengthn and other complexities ofx
(plain, prefix) is stillO(logn). However, it is important thatn stands for the length ofx, not for the
complexity ofx. (For example, ifx is a string ofn zeros, its a priori complexity is bounded while
plain and prefix complexities are not.)

101 Prove that the differencesKS(x)−KA(x) andKA(x)−KS(x) could be of order logn
for some strings of lengthn (and for arbitrarily largen). [Hint: KS(x) can be much greater than
KA(x) if x consists of zeros only. On the other hand,KS(x) is greater thanKA(x) if x is a prefix
of a ML-random sequence; in this caseKA(x) = l(x)+O(1), butKS(x) can be smaller thanl(x)
by logl(x), see Problem 38.]

114

102 Prove that
KA(xy) 6 KP(x)+KA(y)+O(1),

wherexy is the concatenation of stringsx andy. It is important thatx is on the left ofy: for KA(yx)
the the statement is false. [Hint: LetU be a probabilistic algorithm in the sense of Chapter 4
that generates the maximal lower semicomputable semimeasure (a priori probability) on strings as
isolated objects, considered in Chapter 4. LetV be the probabilistic algorithm in the framework
of this chapter that generates maximal semimeasure on the binary tree. Then combineU andV as
follows: first, runU until it prints something and terminates. Then runV using the rest of the input
and add its outbut bits to the string generated byU . To show thatKA(xy) cannot be replaced by
KA(yx), let y = 0n andx = 1.]

103 Prove that for each stringx at least one of the numbersKA(x0) andKA(x1) is at least {increasing-apriory-comple
KA(x)+1. (Here it is important thatKA(x) is defined as− loga(x) without rounding). Using this
observation, prove that for any stringx and for any integern∈ N there exists a stringy of lengthn
such thatKA(xy) > KA(x)+n.

(Cf. Theorem 65 on p. 102 and Problem 34 on p. 38; note that now we do not haven as
condition and even do not have termO(1) in the inequality.)

Another property of the a priory complexity is an immediate consequence of its definition. Let
µ be a computable measure onΩ. Then for somec and everyx we have

KA(x) 6 − logµ(Ωx)+c

Indeed, the a priori probability on the binary tree is greater thanµ (or any other computable mea-
sure, or even lower semicomputable semimeasure) up to aO(1) factor, and it remains to take
logarithms.

This (very simple) property is important since it is the basis for a criterion of Martin-Löf ran-
domness in terms of a priori complexity: a sequenceω is ML-random with respect to a computable
measureµ if and only if this inequality turns into an equality for prefixes ofω, i.e., if the difference
− logµ(Ωx)−KA(x) has a constant upper bound for allx that are prefixes ofω (it always has a
constant lower bound as we just mentioned).

This criterion follows from Levin–Schnorr theorem that provides randomness criterion in terms
of monotone complexity and we postpone its proof to Section 5.6 where Levin–Schnorr criterion
is considered. But first we have to define monotone complexity(Section 5.5) and this definition
uses the notion of a computable mapping of the spaceΣ into itself (Section 5.4).

One can characterize a priori complexity as the smallest upper semicomputable (=enumerable
from above) function that satisfies some condition (similarcharacterization for plain complexity
was provided by Theorem 8 (p. 21) and by Theorem 56 (p. 89) for prefix complexity). Here is the
corresponding statement:

{ka-criterion
Theorem 73 The function KA is a minimal (up to an additive constant) upper semicomputable
function K such that

∑
x∈M

2−K(x)
6 1

for any prefix-free set M of binary strings.

115

⊳ Since the stringsx ∈ M are inconsistent (none of them is a prefix of another one), thecor-
responding setsΣx (of all finite and infinite sequences with prefixx) are disjoint and the sum of
probabilities does not exceed 1.

On the other hand, letK be an upper semicomputable function that satisfies this condition. We
have to construct a lower semicomputable semimeasure that is greater that 2−K. The latter function
is lower semicomputable but is not necessarily a semimeasure; its values onx, x0 andx1 can be
unrelated. So we need first to increaseK when it is unavoidable. Leta(x) be the least upper bound
of all the sums of the form

∑
x∈M

2−K(x)

over all prefix-free sets of strings that start withx. It is easy to check thata(x) is indeed a lower
semicomputable semimeasure and 2−K(x) does not exceeda(x). Theorem is proved.⊲

5.4 Computable mappings of typeΣ → Σ
{tree-mappings

The algorithms (machines) used in the definition of the universal semimeasure on the binary tree
consist of two parts: the random bit generator and the algorithm that transforms the sequence of
random bits into the output. In this section we look more closely at this second part and introduce
the notion of a computable mapping of the setΣ (of all finite and infinite sequences of zeros and
ones) into itself. Let us stress that we consider mappings that are defined on the entireΣ; however,
some of their values can be equal to the empty stringΛ (that represents an “undefined value” in a
sense).

5.4.1 Continuous mappings of typeΣ → Σ
{tree-continuous

Let f : Σ → Σ be a mapping defined on the entireΣ. We say thatf is continuousif it has the
following two properties:

(1) f is monotone: ifx ∈ Σ is a prefix of somey ∈ Σ, then f (x) is a prefix of f (y). (Each
sequence is a prefix of itself.)

(2) The valuef (ω) for an infinite sequenceω is the least upper bound of the valuesf (x) on all
finite prefixesx of the sequenceω.

We use the notationx 4 y for the relation “x is a prefix ofy”; here x,y ∈ Σ may be finite or
infinite. We havex 4 x for anyx; if x 4 y for an infinite sequencex, thenx = y. The requirement
(1) says thatf is monotone with respect to the partial order4 on Σ. This requirement guarantees
that the valuesf (x) for all finite prefixesx of some sequenceω are consistent (continue each other);
their “union” (=least upper bound under4-ordering) coincides withf (ω) due to (2).

104 Show that the notion of continuity defined above is the standard continuity notion with
respect to the topology onΣ defined in Section 4.4.3 (p. 79). [Hint: a very similar notionof
continuous mappingsΣ → N⊥ was studied in the same section.]

Let f : Σ → Σ be a continuous mapping. Consider the setΓ f that consists of all pairs〈x,y〉
of binary stringsx andy such thaty 4 f (x). (The setΓ f may be called thelower graphof the
mappingf .)

116

For any continuousf : Σ → Σ the setΓ f has the following three properties:
(1) 〈x,Λ〉 ∈ Γ f for every stringx;
(2) If 〈x,y〉 ∈ Γ f , then〈x′,y′〉 ∈ Γ f for everyx′ < x andy′ 4 y.
(3) If 〈x,y1〉 and〈x,y2〉 belong toΓ f , then the stringsy1 andy2 are consistent (one of them is a

prefix of another one).
The first two properties are obvious. The third one is true since any two prefixes of a (finite or

infinite) sequence are consistent.
The following theorem shows that a continuous mapping is defined uniquely by its lower graph.

{continuous-graphs
Theorem 74 The mapping f7→ Γ f is one to one correspondence between continuous functions of
typeΣ → Σ and sets of pairs of strings that satisfy conditions(1)–(3).

⊳ Let f be a set of pairs satisfying the conditions (1)–(3). These conditions guarantee that
for any stringx the setFx of all y such that〈x,y〉 ∈ F is non-empty and everyy1,y2 ∈ Fx are
consistent. Letf (x) be the least upper bound ofFx. The property (2) guarantees thatx4 x′ implies
f (x) 4 f (x′) (sinceFx increases asx increases). Therefore we may definef (ω) as the union (least
upper bound) off (x) for all stringsx 4 ω. Then the mappingf is continuous. It is easy to check
that we get a mapping which is an inverse mapping to the correspondencef 7→ Γ f . ⊲

5.4.2 Monotone machines with non-blocking read operation

A continuous mappingf : Σ → Σ is calledcomputableif the corresponding setΓ f is enumerable.
(By definition all computable mappings are continuous.)

This definition is complete and does not require any interpretation in terms of machines. All
we say below about the interpretation of this notion is termsof machines of special type is not
necessary (and is not used in the sequel). However, to get a motivation for this definition it is in-
structive to understand which type of machines (programs) corresponds to computable continuous
mappings of typeΣ → Σ.

Let us consider programs that use a non-blocking read operation (we can get the next bit from
the input queue and also check whether this queue is nonempty). We have discussed this type of
input paradigm in Section 4.4.2, p. 77. However, now we assume that the output is created bit by
bit, using the procedure callOutputBit(b) with a Boolean argument.

The output sequence generated by a program of this type can befinite or infinite. In general,
it depends not only on the input sequence but also its timing (on the moments when keys “0” and
“1” were pressed). We say that a machine (program) isrobust if timing does not matter, i.e., if
the output sequence depends only the input sequence but not on the timing. (Of course, the output
timing may still depend on the input timing.) A robust program determines (computes) some
mapping of the setΣ into itself.

Theorem 75 Robust program compute computable mappings (in the abstract sense, as described
above); every computable mapping is computed by some robustprogram.

⊳ Assume thatM is a robust program. Letx andx′ be two (finite or infinite) sequences such
thatx 4 x′. Let us show thatM(x) 4 M(x′) whereM(z) stands for the output of programM on the

117

input z (sinceM is robust, the output depends only onz, not on the timing). Ifx is infinite, this is
trivial (x = x′). Assume thatx is finite. There are two possibilities:M(x) is either finite or infinite.

If M(x) is finite, let us submit inputx and wait untilM(x) appears at the output. This should
happen at some point; after that we submit the remaining bitsof x′ (that are not inx) to the input.
Then we get outputM(x′) which by construction is the extension ofM(x).

If M(x) is infinite, then every bit ofM(x) should appear at some time after we submitx to the
input. Since the remaining bits ofx′ can be sent after this moment, this bit should appear also in
M(x′). Therefore,M(x) = M(x′) in this case.

It is also clear that for an infinite sequenceω the valueM(ω) is the union ofM(x) for finite
x 4 ω; indeed, at each moment only finite number of input bits are read.

The set of all pairs of stringsx,y such thaty 4 M(x) is enumerable since we can enumerate
it by simulating the behavior ofM on all inputs. So each robust machine computes a computable
mapping.

On the other hand, letf be an arbitrary computable mapping. We show how to constructa
robust machineM that computes it. The machineM enumerates the lower graphΓ f of the mapping
f . At the same timeM reads input bits and stores them. If it turns out thatΓ f includes a pair〈x,y〉
such thatx is a prefix of the input sequence, we output the remaining bitsof y (the requirements
(2) and (3) guarantee that all the stringsy found in this way are consistent so there is no need to
recall the bits already sent to the output).⊲

5.4.3 The set of continuous mappings is enumerable

The definition of computability based on robust machines seems to be more natural than the ab-
stract one. However, it has the same drawback as in the case ofprefix-stable programs: there is no
(algorithmic) way to find out whether a given program is robust. So the class of robust program is
not a syntactically defined class.

Nevertheless, there exists an algorithmic transformationof programs that transforms every
program into a robust one (and does not change the mapping computed by it if it was robust). This
transformation goes back and forth between mappings and corresponding enumerable sets: we
transform a program into an enumerable set of pairs (i.e., into an algorithm enumerating this set),
then we “trim” this set of pairs and transform it back into a program.

We do not describe this process in detail, since robust programs are more a motivation for
the definition of a computable mapping than a technical tool.Instead, we prove that the set of
computable mapping is enumerable in the following sense:

{monot-enumerable
Theorem 76 There exists an enumerable set U of triples〈n,x,y〉 (here n is a natural number while
x and y are binary strings) such that:

(1) for every n the set Un = {〈x,y〉 | 〈n,x,y〉 ∈U} is a lower graph of some computable mapping
un : Σ → Σ (i.e., satisfies the requirements(1)–(3)of Theorem 74).

(2) every computable mapping of the setΣ into itself is equal to un for some n.

⊳ Consider the universal enumerable setW of triples: every enumerable set of pairs appears
amongWn. Then we “trim”W to enforce the requirements (1)–(3) for allWn and leave unchanged

118

the setsWn that already satisfy these requirements. After that allWn are lower graphs for some
computable mappingswn and any computable mapping appears amongwn.

The trimming is made in two steps: first we “delete contradictions” and then we “fill the gaps”.
The contradiction is formed by two pairs〈x1,y1〉 and〈x2,y2〉 wherex1 is consistent withx2 but
y1 is not consistent withy2. (It is easy to see that two pairs with this property cannot appear
simultaneously in the lower graph of a continuous mapping.)The contradictions are eliminated in
the most simple way: if a pair contradicts with another pair that is generated earlier and was not
deleted, we delete this pair from the enumeration. In this way we get an enumerable set without
contradictions. The we fill the gaps by adding all pairs〈x,Λ〉 and adding for each pair〈x,y〉 all the
pairs〈x′,y′〉 with x′ < x andy′ 4 y. It is easy to see that the set remains enumerable and is the one
we need.⊲

This theorem is used in the next section to prove that (optimal) monotone complexity function
exists.

5.5 Monotone complexity
{monotone-complexity

To define monotone complexity we use computable mappings of type Σ → Σ as decompressors
(description modes). For a fixed decompressorD : Σ → Σ themonotone complexityof a stringx
(with respect toD) is defined as the minimal length of a stringy such thatx 4 D(y). Monotone
complexity is denoted byKM D(x).

(This definition can be applied to infinite sequencesx without any changes but we follow the
tradition and considerKM D(x) only for finitex unless the opposite is said explicitly.)

105 Prove that the monotone complexity of an infinite sequence (defined in a natural way) is
the limit of the increasing sequence of monotone complexities of its prefixes.

Theorem 77 There exists an optimal decompressor, i.e., a computable mapping D: Σ → Σ such
that KMD is minimal up to additive constant: for any computable D′ : Σ→Σ there exists a constant
c such that

KM D(x) 6 KM D′(x)+c

for every string x.

⊳ Let U be the set of triples whose sections are all lower graphs of all computable mappings
(constructed in Theorem 76, p. 119). LetDn be a computable mapping that has lower graphUn.
Then let us define a mappingD as follows:

D(n̂z) = Dn(z),

wheren̂ is the prefix-free encoding of the numbern (say, its binary representation with doubled
digits followed by 01) andz is an arbitrary element ofΣ. In terms of the lower graph: consider the
set of all pairs〈n̂u,v〉 such that〈n,u,v〉 ∈U . It is easy to check that we indeed get a computable
mapping. If some (monotone) decompressorD′ has numbern (i.e., its lower graph coincides with
Un), thenKM D(x) 6 KM D′(x)+ l(n̂) for everyx. ⊲

119

As usual, we fix some optimal monotone decompressor (description mode), i.e., some com-
putable mappingD that satisfies the statement of this theorem and definemonotone complexityof
a stringx asKM D(x). Notation:KM (x) (the subscriptD is omitted).

Theorem 78 (a) Monotone complexity is a monotonic function: KM(x) 6 KM (y) if x 4 y;
(b) the function KM is upper semicomputable;
(c) KM (x) 6 l(x)+O(1);
(d) KM (x) 6 KP(x)+O(1);
(e) KA(x) 6 KM (x)+O(1);
(f) an infinite sequence of zeros and ones is computable if and only if the monotone complexity

of its prefixes is bounded;
(g) if f : Σ → Σ is a computable mapping, then KM(f (x)) 6 KM(x) + O(1) (the constant

hidden in O(1) may depend on f but not on x);
(h) if f : Σ → N⊥ is a computable mapping, then KP(f (x)) 6 KM(x) + O(1) (the constant

hidden in O(1) may depend on f but not on x).

It is instructive to compare these statements with the properties of a priori complexity given
in Theorem 72 (p. 113). Since monotone complexity is not smaller than a priori complexity
(statement (e)), some properties of the a priori complexityare valid also for monotone com-
plexity. In particular, we conclude immediately thatKP(x|l(x)) 6 KM (x)+ O(1) andKP(x) 6

KM (x)+KP(l(x))+O(1). Note also that for computable sequences of inconsistent strings (none
is a prefix of another one) the prefix and a priori complexitiescoincide up to an additive constant
and monotone complexity is between them. Therefore it coincides with them: ifx0,x1, . . . is a
computable sequence andxi 64 x j for i 6= j, thenKM (xi) = KA(xi)+O(1) = KP(xi)+O(1).

⊳ The statement (a) is a direct consequence of the definition: if D(u) < y thenD(u) < x for
everyx that is a prefix ofy. One could say that in the definition of monotone complexity one need
to describe not the string exactly, but any of its continuations, and the longer the string is, the more
difficult this task becomes (the set of continuations becomes smaller).

The statement (b) is true since the lower graph of a computable mapping is enumerable.
To prove (c) it is enough to remark that the identity mappingΣ → Σ such thatD(x) = x for all

x∈ Σ is computable.
To compareKM andKP (statement (d)) it is enough to note that any computable mapping

Σ → N⊥ becomes a computable mapping of typeΣ → Σ if N⊥ is embedded intoΣ (and⊥ becomes
an empty string). More formally, letD be a prefix-stable decompressor used in the definition
of KP . In can be extended to a computable mapping of typeΣ → Σ (the strings whereD was
undefined are mapped intoΛ and the values on infinite strings are determined by the continuity
requirement).

To compareKM andKA (statement (e)) we have to recall the remark we started with:a prob-
abilistic algorithm is a random bits generator whose outputis fed into a computable mapping ofΣ
into itself. LetD be the optimal decompressor used in the definition of the monotone complexity.
Consider a probabilistic algorithm that feeds random sequence intoD. What is a probability of
getting some stringx (or some string that starts withx) as the output? Obviously, this probability is

120

at least 2−l(y) for any stringy such thatD(y) < x, since the random string starts withy with proba-
bility 2−l(y) and this guarantees that the output ofD will start with x. (We return to the comparison
of KM andKA in Theorem 80.)

The statement (f): one implication is a straightforward corollary of the corresponding statement
of Theorem 72; the other implication is obvious, all the prefixes of a computable sequenceω have
bounded complexity since there exists a computable mappingΣ→ Σ that is equal toω everywhere.

For (g), let us consider the monotone decompressor that is the composition of an optimal mono-
tone decompressor and the mappingf . In this statement the sequencef (x) can be infinite; if we
don’t want to deal with the complexities of infinite sequence, the statement should be reformulated
as follows: for eachf there exists a constantc such that for allx,y such thaty4 f (x) the inequality
KM (y) 6 KM (x)+c holds.

The similar argument works for (h), but this time the composition of the optimal monotone
decompressor andf is a prefix-stable decompressor. (One can also derive this statement from a
similar statement about a priori complexity.)⊲

106 Prove thatKM (xy) 6 KP(x)+ KM (y)+ O(1) (herexy stands for the concatenation of{prefix-monotone
stringsx andy). In particular,KM (xy) 6 KP(x)+ l(y)+O(1). [Hint: Consider the optimal prefix-
free decompressorDp and optimal monotone decompressorDm. Now let D′(uv) = Dp(u)Dm(v)
(whenDp stops reading the input, the remaining part of the input is read byDm.]

107 Show that in the preceding problem one can replaceKM (y) by the “conditional” mono- {kp-km}
tone complexityKM (y|x) defined in a natural way (we do not require “monotonicity” with respect
to the conditionx, see Chapter 6 for details).

108 Prove that the statement (g) remains true if we replaceKM by KA (in the both sides of
the inequality). [Hint: the mappingf can be applied to the output of a probabilistic machine; the
new machine is not better than the optimal one.]

We can give an equivalent definition of the monotone complexity that does not use computable
mappings of typeΣ → Σ; in this way we get a simpler (but less natural, in our opinion) definition.

Let Ξ be the set of all binary strings. Consider the binary relation “to be compatible” (or
“consistent”) on this set:x is compatible withy if x 4 y or y 4 x (equivalent property:x andy are
prefixes of the same string). An enumerable set (binary relation) D ⊂ Ξ×Ξ is calledregular, if it
has the following property:

〈x1,y1〉 ∈ D, 〈x2,y2〉 ∈ D and (x1 is compatible withx2) ⇒ (y1 is compatible withy2)

for all x1,x2,y1,y2. Then the monotone complexity of a stringy with respect toD is defined as the
minimal length of a stringx such that〈x,y〉 ∈ D. There is an optimal regular enumerable binary
relation onΞ.

109 Prove that this definition leads to a notion of monotone complexity that is differs from
the previous one by at mostO(1). [Hint: The lower graph of any computable mappingΣ → Σ
is a regular binary relation. On the other hand, ifD is a regular binary relation, the “gap filling”
described in the proof of Theorem 76 makes it a lower graph of some computable mapping.]

It is instructive to compare this definition with the definition of plain complexity (where we use
graphs of computable functions, i.e., uniform enumerable sets, instead of regular relationsD). In

121

the definition of monotone complexity we do not requireD to be uniform: several pairs〈x,y〉 with
the samex and differenty are allowed; we require only that ally’s in these pairs are compatible.
This makesKM smaller; for example, all prefixes of some computable sequence (say, 0000. . .)
have bounded complexity (note thatKS(0n) = KS(n) is about logn for mostn).

On the other hand we put additional restrictions: if a stringx is a description of some stringy,
then the strings that are compatible withx can be descriptions only of strings that are compatible
with y. This makes complexity larger. This is especially clear when we consider complexities of
the elements of a computable sequence of pairwise incompatible strings: monotone complexity
in this case coincides with prefix complexity and the difference can be about logn for strings of
lengthn.

Summing up (and recalling that both a priori complexity and plain complexity differ from the
prefix one at most byO(logn) for strings of lengthn), we come to the following conclusion:

{km-ks-difference
Theorem 79 The difference between KS(x) and KM(x) is bounded by O(logn) for strings of
length n and may be both positive and negative with absolute value logn−O(1) for n bit strings
for infinitely many n.

We return to the comparison of different versions of complexity in Chapter 6. Now we mention
(without proof) only one statement of this type: {gacs-difference
Theorem 80 The difference KM(x)−KA(x) is not bounded(from above).

Let us explain the informal meaning of this theorem. Recall that in both definitions (ofKM (x)
andKA(x)) we use computable continuous mappingf : Σ → Σ and consider the preimage of the
set Σx of all sequences starting withx. Defining KA , we are interested in the measure of this
preimage, while forKM we are looking for the largest interval of typeΣy which is a subset of
this preimage. This shows thatKA f 6 KM f , and the difference can be large, if the preimage is
“sparse” (consists of large number of small intervals). Thequestion is how large this difference
could be for an optimal computable mapping.

Recall out metaphor of space allocation (we allocate subsets of [0,1] for a countable number of
clients) used in the proofs of Theorem 40 (p. 68) and Theorem 52 (p. 83). The difference between
prefix complexity and the logarithm of the a priori probability onN has the same nature (difference
between the total measure and the maximal contiguous interval). However, in that case we were
able to perform some kind of “consolidation” by modifying the description mode and the price was
just a constant factor.

Now we have a more delicate task since our clients form a hierarchy. This makes reorganization
more difficult and consolidation leads to more the constant factor overhead.

However, the technical details of this argument (given in P.Gacs’s article [?]) are rather tedious,
and authors are unable to understand and clearly explain this argument, so readers are referred to
the original paper.

110 Prove thatKM (x) 6 KA(x)+O(logKA(x)). [Hint: in fact KM (x|KA(x)) 6 KA(x)+ {km-ka-relation
O(1). Indeed, ifKA(x) = k, thenx at some point appears in the growing subtree of strings whose
a priory complexity is less thank+1; this tree at all times has width (the cardinality of maximal
antichain) at most 2k+1, so looking at the maximal elements of this tree, we cover it by 2k+1

growing branches. For the complete argument see Theorem 102, p. 152.]

122

0 1

p(0) p(1)

p(00) p(01) p(10) p(11)

Figure 12: The construction ofπx. {monotlev-pict1

5.6 Levin–Schnorr theorem
{monotlev}

The definition of a priori complexity guarantees that for anylower semicomputable semimeasure
p the inequalityKA(x) 6 − logp(x)+c holds for somec and for everyx. It turns out that ifp is a
(computable) measure, then this inequality is true not onlyfor a priori complexityKA but also for
a (larger) monotone complexityKM .

{monotlev-upper-bound
Theorem 81 Let µ be a computable probability distribution onΩ. Let p(x) = µ(Ωx). Then there
exists a constant c such that

KM (x) 6 − logp(x)+c

for every string x.

⊳ The idea of the proof can be explained as follows. The difference betweenKM andKA ap-
pears since we are unable to allocate contiguous space to hierarchical users’ requests, since we do
not know which of the current requests will increase in the future. However, if we have a measure
(and not a semimeasure), we can solve this problem and allocate contiguous intervals. (Feel free
to ignore this metaphor if it is confusing: we provide a formal proof in the next paragraphs.)

For each stringx we define an intervalπx inside[0,1]. The intervalπx is defined in such a way
that:

• the length ofπx equalsp(x);

• πΛ = [0,1] (hereΛ is the empty string);

• for each stringx the intervalπx is split by some its point into intervalsπx0 (left part) andπx1
(right part).

(See Figure 12.)
We consider also another family of intervals that correspond to the uniform measure. LetIx

be the interval of reals whose binary representation startswith x. We call the intervalsIx binary
intervals.

Now consider the setG of all pairs〈x,y〉 of strings such that (binary) intervalIx is located inside
the interior ofπy. The setG is enumerable. Indeed, since the functionp is computable, we can
find the endpoints of intervalsπy with arbitrary precision, and if they are greater (less) then some
rational number, this fact will be eventually discovered.

Note also that the property〈x,y〉 ∈G remains true if we replacex by any string that starts withx
(since the segmentIx becomes smaller) or replacey by any prefix ofy (sinceπy becomes larger). If

123

〈x,y1〉 ∈ G 〈x,y2〉 ∈ G, the segmentsπy1 andπy2 have a common interior point (they both contain
Ix), therefore the stringsy1 andy2 are compatible. So Theorem 74 (p. 118) guarantees that there
exists a computable mapping ofΣ into itself whose lower graph isG. We use this mapping as the
decompressor in the definition of monotone complexity. ThenKM D(y) equals to the minus binary
logarithm of the biggest binary interval that is located strictly insideπy. It remains to note that any
open interval of lengthh contains a closed binary interval of lengthh/4, and compareD with the
optimal decompressor.⊲

111 Prove the claim about binary intervals (see above). [Hint: let u be a power of two such
that h/4 6 u < h/2. Then any interval of lengthh intersects at least three consecutive binary
intervals of lengthu and contains the middle one.]

Theorem 81 provides a theoretical justification for the following approach used by A.N. Kol-
mogorov and his students to get upper bounds for the complexity of Russian texts. While reading
the text (one letter at a time), the reader tries to guess the next letter. The guess is formulated as
a probability distribution over the alphabet. Then the nextletter is read and we add− logp to the
complexity, wherep is the probability of that letter with respect to the guesseddistribution.

If we believe that the behavior of the reader is computable, the result is an upper bound for the
complexity. Indeed, the reader provides (some part) of a computable probability distribution on
the set of strings telling the conditional probabilities along some path, and the complexity of text
does not exceed the sum of negative logarithms of these probabilities (Theorem 81).

Of course, it is not practical to require that the reader provides at each step the list of proba-
bilities for all the letters; one can suggest some standard types of answers like “the next letter is
A with probability 0.5, all other vowels are equiprobable and have total probability 0.3, all other
letters are equiprobable”. Note also that we get an upper bound for the conditional complexity of
the text where the condition is the background of the reader.(For example, if reader knows the text
by heart, or just is familiar with the author’s writings, thebound can be very small.)

Now we are ready to formulate the criterion of Martin-Löf randomness that uses monotone
complexity: a sequence is ML-random if the inequality of Theorem 81 becomes an equality for its
prefixes.

Let us formulate this statement precisely. Letµ be a computable probability distribution on the
setΩ of all infinite bit sequences and letp(x) be the measure of the intervalΩx: p(x) = µ(Ωx).

{levin-schnorr1
Theorem 82 (Levin–Schnorr) A sequenceω ∈ Ω is Martin-Löf random with respect to a com-
putable probability distributionµ if and only if

− logp(x)−KM (x) 6 c

for some c and for every prefix x ofω.

⊳ We have to prove theorem in both directions. Let us show first that if (for a given sequence
ω) the difference− logp(x)−KM (x) is unbounded, then this sequence is not ML-random (i.e.,
the set{ω} is an effectively null set).

Fix some constantc and consider all stringsx such that the difference− logp(x)−KM (x)
is greater thanc. (This difference is sometimes calledrandomness deficiency, but this term has

124

different meanings, e.g., in Chapter?? it is used in a different way, so we avoid this name.) This
set is denoted byDc.

The setDc is enumerable (sincep is computable andKM is upper semicomputable, the differ-
ence is lower semicomputable).

Lemma 1. The set of all infinite sequences that have a prefix inDc hasµ-measure at most 2−c.
Informally speaking, this is true because on this set the measureµ is 2c times smaller than the a

priori probability (and the latter does not exceed 1). More formally this argument can be explained
as follows.

We are interested in the measure of the union of intervalsΩx for all x∈ Dc. Without changing
this union, we may keep only minimalx∈ Dc (i.e., stringsx∈ Dc such that no prefix ofx belongs
to Dc). Let x0,x1, . . . be these minimal elements ofDc. (We do not claim the the set of minimal
elements is enumerable, so this sequence may be non-computable.)

For eachxi consider the minimal descriptionpi (according to the definition of the mono-
tone complexity:xi 4 D(pi) whereD : Σ → Σ is the optimal monotone decompressor). Then
l(pi) = KM (xi) < − logp(xi)−c. Moreover, none ofpi is a prefix of another one (otherwise the
correspondingxi would be compatible). Therefore∑i 2

−l(pi) 6 1 (being the sum of uniform mea-
sures of disjoint setsΩpi). The correspondingp(xi) are 2c times smaller, so we get the statement
of Lemma 1.

Our assumption guarantees that the sequenceω has prefixes fromDc for everyc. To prove that
{ω} is an effectively null set, we need to coverω by an enumerable family of intervals with total
measure not exceeding 2−c, and we can use intervals fromDc.

However, we need to be careful here. We know that for intervals from Dc the total measure
(i.e., the measure of their union) does not exceed 2−c (as the Lemma says), but the definition needs
that the sum of measures of all intervals does not exceed 2−c. We cannot solve this problem by
considering only minimal points (maximal intervals), since the set of minimal points is not always
enumerable. Instead we can use the following statement:

Lemma 2. Any enumerable set of stringsx0,x1, . . . can be transformed into an enumerable set
of incompatible strings with the same union∪iΩxi . This transformation is effective (an algorithm
that enumerates the first set can be transformed into an algorithm that enumerates the second one).

Indeed, if during the enumeration we get a string that is an extension of the previously enumer-
ated one, this string can be omitted (since the corresponding interval is already covered). If we get
a stringy that is a (proper) prefix of a stringx enumerated earlier, we have to split the difference
Ωy\Ωx into finite number of disjoint intervals and replacey by strings that define those intervals.
Lemma 2 is proved.

Applying Lemma 2, we get an enumerable set of incompatible strings; these strings may be not
in Dc but that is not important. It is enough to know that they correspond to disjoint intervals that
coverω and the union of these interval hasµ-measure at most 2−c according to Lemma 1.

Proving the converse implication, we need to show that if a sequenceω belongs to an effec-
tively null set then the differences between the negative logarithms of the measure and the mono-
tone complexity ofω-prefixes are unbounded. The idea of this construction may beexplained as
follows: given a set of small measure, we construct a monotone decompressor that treats favorably
the elements of this set (i.e., provides short descriptionsfor their prefixes).

125

Let us provide details now. Assume thatω belongs to a setU which is an effectively null set
(with respect to measureµ). For eachc we can effectively find a family of intervalsΩx0,Ωx1, . . .
that coverU (and thereforeω) and have total measure less than 2−c. If we multiply the measures
of all these intervals by 2c, the sum is still less than 1. Consider the computable sequence pi =
2cµ(Ωxi). Applying Theorem 53 (p. 86), we get a prefix-free decompressor for which the prefix
complexity ofi does not exceed− logµ(Ωxi)−c+2. A composition of this decompressor and the
computable mappingi 7→ xi is a prefix-free decompressorDc such that

KP ′
Dc

(xi) 6 − logµ(Ωxi)−c+2.

(The subscriptc in Dc is used to stress that the construction depends onc.) Monotone complexity
does not exceed the prefix one, so if the difference between the negative logarithm of the measure
and the prefix complexity is large, the same is true for monotone complexity. It remains to combine
the decompressorsDc into one decompressor (not depending onc).

We use the same trick that was was used in the construction of an optimal decompressor. We
want the string ˆcu to be the description of the stringv if u is a description ofv with respect toDc.
Hereĉ is a self-delimited encoding of lengthO(logc) for a natural numberc. If the decompressor
D is constructed in this way, the following inequality holds (for all c):

KP ′
D(xi) 6 − logµ(Ωxi)−c+O(logc)

Since the monotone complexity does not exceed the prefix one,we replaceKP ′
D(xi) by KM (xi)

and conclude that all the stringsxi (for a givenc) have the difference at leastc−O(logc). If an
infinite sequence belongs toU , it has a prefix of this type for anyc, therefore the difference is
unbounded for its prefixes.

Levin–Schnorr theorem is proved.⊲

In fact the proof give us a bit more that we claimed. Here are several modifications of Levin–
Schnorr theorem that can be extracted from it: {levin-schnorr2
Theorem 83 We may replace the monotone complexity KM(x) by the a priori complexity KA(x)
in the statement of the previous theorem.

⊳ The a priori complexity does not exceed the monotone one, so the difference may only
increase. So we need to change only the first part of the proof.It is easy: in the proof of Lemma 1
we should note that∑i 2

−KA(xi) 6 1, since this sum is the some of a priori measures of disjoint
intervalsΩxi . ⊲

{levin-schnorr3
Theorem 84 We can also replace the monotone complexity KM(x) by the prefix complex-
ity KP(x).

⊳ Here we go in the other direction and increase complexity, soonly the second part of the
proof needs to be redone. And this is trivial — recall that in fact we got just an upper bound for
prefix complexity.⊲

Theorem 84 is nowadays the most popular version of Levin–Schnorr randomness criterion
(see, e.g., [?]). However, authors still believe the it is more natural to use monotone (or a priori)
complexity.

126

Indeed, for the monotone complexity the difference betweenthe negative logarithm of the
measure and the complexity is always positive and is boundedif and only if the sequence is random
(To be more precise, the difference is always bounded from below and is bounded from above
if and only if the sequence is random.) If we use prefix complexity instead, the difference can
become negative. For example, in the case of the uniform measure− logµ(Ωx) is just the length
of stringx, and prefix complexity may be greater than the length (the difference can be of order
logn, see Theorem 57, p. 90).

Moreover, the use of the monotone complexity allows us to strengthen the Levin–Schnorr the-
orem as follows:

{levin-schnorr4
Theorem 85 If a sequenceω is not random with respect to measureµ, then the difference
− logp(x)−KM (x) for prefixes x (ofω) is not only unbounded, but also tends to infinity.

⊳ In the proof of theorem 82 we have constructed a prefix-free decompressor that provides
short descriptionspi for stringsxi and guarantees that the prefix complexity ofxi (with respect to
this decompressor) does not exceed− logµ(Ωxi)−c. To get the required bound for the monotone
complexity, we may use (for eachi) the extensions ofpi as descriptions of the extensions ofxi in
such a way that the length of the descriptions corresponds tothe measure of described strings, as
it was done in the proof of Theorem 81 (p. 124).

More formally, we can use the inequalityKM (xy) 6 KP(x)+KM (y|x) (Problem 107) and the
relativized version of Theorem 81 saying thatKM (y|x) 6− logµx(Ωy) for any computable family
of measures that (computably) depends on parameterx. Hereµx is the measure that is concentrated
on the setΩx and is defined as follows:µx(Ωy) = µ(Ωxy)/µ(Ωx).

For the case of the uniform measure (where− logµ(Ωx) = l(x)) we can use a simpler argument
and say thatpiz is a description ofxiz for any stringz. ⊲

We provided some argument in favor of using monotone complexity in the randomness crite-
rion. However, a version that uses prefix complexity has its own advantages. Note that the notion
of a ML-random sequence is invariant under permutation of indices (if the measure is invariant
or is changed according to the permutation), but the notion of a prefix (and therefore the crite-
rion of randomness in terms of prefixes) is not. UsingKP , one can get an invariant criterion of
ML-randomness.

Let F be a finite set of indices (natural numbers) and letω be a binary sequence. Byω(F) we
denote the restriction ofω ontoF , i.e., the binary string formed by bitsωi such thati ∈ F (in the
increasing order of indices).

Let µ be a computable measure onΩ. For every finite setF ⊂ N and stringZ whose length
equals the cardinality ofF, we consider the eventω(F) = Z. Its µ-probability is denoted byµF,Z.

112 Let ω be a ML-random sequence with respect toµ. Prove that

KP(F,ω(F)) > −logµF,ω(F)−c

for somec and for all finiteF.
[Hint: the measure of the set of all sequences for which this inequality does not hold for some

fixed c, does not exceed 2−c multiplied by the sum of a priori probabilities of all pairsF,Z and
therefore does not exceed 2−c.]

127

(Note that ifF is an initial segment ofN, thenF is determined byω(F) and can be eliminated,
so we return to the previous statement.)

In fact, the condition given by the last problem is also sufficient. Moreover, it is enough to
require this inequality for any increasing computable sequence of finite sets that cover the entireN.

113 Assume thatµ is a computable probability distribution onΩ. Let F0 ⊂ F1 ⊂ F2 ⊂ . . . be {levin-schnorr-subset
a computable sequence of finite sets and

⋃
i Fi = N. Assume that

KP(Fi ,ω(Fi)) > − logµFi ,ω(Fi)−c

for somec and for alli. Thenω is ML-random with respect toµ.
[Hint: Using permutation of indices, we may assume thatFi are initial segments ofN. Then we

repeat the proof of Levin – Schnorr theorem using only strings of appropriate length and splitting
other intervals into unions of appropriate intervals.]

This statement implies, for example, that a two-dimensional bit sequence (i.e., a mappingZ2 →
{0,1}) is ML-random with respect to the uniform measure (all bits are independent; 0 and 1 are
equiprobable) if and only ifN×N square centered at the origin has complexityN2−O(1) (for all
oddN).

The case of the uniform measure is rather important; let us write down all what we have proved
for this case:

{levin-schnorr-uniform
Theorem 86 (a) Upper bound:

KA(x) 6 KM (x)+O(1) 6 l(x)+O(1);

for any string x.
(b) Randomness criterion: the sequenceω is ML-random with respect to the uniform measure

if and only if these inequalities become equalities for prefixes ofω:

KA((ω)n) = KM ((ω)n)+O(1) = n+O(1).

(c) If ω is not ML-random with respect to the uniform measure, then the difference n−
KM ((ω)n) (and therefore n−KA((ω)n) tends to infinity as n→ ∞.

(d) The sequenceω is ML-random with respect to the uniform measure if and only if
KP((ω)n) > n−c for some c and for all n.

(e) The sequenceω is ML-random with respect to the uniform measure if and only if
KP(F,ω(F)) > |F|−c for some c and for all finite sets F.

For the case of the uniform measure there exists one more criterion of Martin-Löf randomness.
It is interesting since it uses only plain complexity (and not the prefix or monotone versions). It
is a bit strange that this criterion was discovered only recently (see [?]) since similar suggestions
were considered in the end of 1960ies (see [?, ?]), and the proof of this criterion uses only ideas
and methods well known at that time.

128

{miller-yu-martin-lof
Theorem 87 Assume that f: N → N is a computable total function and the series∑2− f (n) con-
verges. Letω be a ML-random sequence with respect to the uniform measure.Then

KS((ω)n|n) > n− f (n)−O(1)

(i.e., there exists c such that for every n the inequality KS((ω)n|n) > n− f (n)−c holds).

⊳ Assume that the claim is false. This means that for everyc there existsn such that

KS((ω)n|n) < n− f (n)−c.

In other words, for everyc the sequenceω is covered by some intervalΩx such that

KS(x|n) < n− f (n)−c,

wheren is the length ofx. For eachn there are at most 2n− f (n)−c intervals with this property and
their total measure is at most 2− f (n)2−c (for a givenn). The total measure of all such intervals (for
all n) is

2−c
(

∑
n

2− f (n)

)

and the sequenceω forms an effectively null set: choosing an appropriatec we getω ’s cover that
has small measure. Therefore,ω is not ML-random. (Note that the sum of the series∑2− f (n)

may be a non-computable real number; this does not matter since we may use any upper bound for
it.) ⊲

This theorem implies, for example, that for any ML-random sequence (with respect to the
uniform measure) the plain complexity of its prefix of lengthn is at leastn−2logn−O(1) and
evenn− logn−2loglogn−O(1), since the corresponding series converge.

Making function f smaller, we get the claim of the theorem stronger. It turns out that for some
f we get a randomness criterion in this way:

{miller-yu-proper
Theorem 88 There exists a total computable function f: N → N with the following property: if
for some sequenceω and for some c the inequality

KS((ω)n|n) > n− f (n)−c,

holds for all n, thenω is ML-random with respect to the uniform measure.

⊳ We need to prove that every non-random sequence (i.e., everysequence that belongs to the
largest effectively null set) has “simple” prefixes. Note that we also need to choose the functionf .

To explain how to do this, let us assume that we are given a family of intervals with total
measure at mostε. Let F be the set of strings that define these intervals (i.e., the family consists of
intervalsΩx for all x∈ F). Let us sort strings inF according to their length and for each lengthn
consider the total measure of intervals that correspond ton-bit strings inF . Let it be 2− f (n) (by
the definition of f). Then we have∑n2− f (n) 6 ε. On the other hand, the setF contains 2n− f (n)

129

strings of lengthn, and each of these strings can be described (whenn and other parameters of the
construction are given) byn− f (n) bits. This gives an upper bound for the complexity of all the
strings inF. Note also that any infinite sequence that is covered by our intervals has a prefix inF.

Now we return to the proof. Consider the largest effectivelynull set. For eachε > 0 there exists
its covering by interval of total length at mostε, and we can use the construction above to get the
corresponding functionf with ∑n2− f (n) 6 ε. We need to combine those functions for differentε
into one functionf as the theorem requires. This is done as follows.

For eachc = 0,1,2, . . . consider the covering by a family of intervals with total measure not
exceeding 2−3c, the corresponding setFc of strings and the corresponding functionf . Then we
decreasef by 2c and obtain a functionfc such that

∑
n

2− fc(n) < 2−c

(we get 2−c instead of 2−3c since we have decreasedf by 2c). The setFc contains 2n− fc(n)−2c

strings of lengthn, and any non-random sequence has a prefix inFc.
Then f (n) is defined by the equation

2− f (n) = ∑
c

2− fc(n).

This guarantees that

∑
n

2− f (n) = ∑
n

∑
c

2− fc(n) = ∑
c

∑
n

2− fc(n)
6 ∑

c
2−c

6 1.

On the other hand, the setFc is enumerable givenc (according to the definition of an effectively
null set), so any its elementx of lengthn is determined (whenn andc are known) by its ordinal
number (in the enumeration of strings of lengthn in Fc), i.e., byn− fc(n)−2c bits:

KS(x|n,c) 6 n− fc(n)−2c+O(1),

which implies
KS(x|n) 6 n− fc(n)−2c+O(logc) < n− f (n)−c

for anyx∈ Fc of lengthn (for large enoughc).
Now let ω be any non-random sequence. As we have seen, for eachc ω has a prefix inFc. Let

n be the length of this prefix. Then

KS((ω)n|n) < n− f (n)−c

(assuming thatc is large enough), which contradicts our assumption.
However, this does not complete the proof, since we need acomputablefunction f , and the

setFc is only enumerable, so we don’t know when all strings of length n have been appeared, and
therefore cannot computef . To fill this gap, recall that we started with a family of intervals (that
covers the largest effectively null set). In this covering we may split a large intervalΩz into many
small intervalsΩzt (for all stringst of some length). This allows us to makefc computable if we

130

require (without loss of generality) that the length of the intervals in the enumeration can only
increase. The same argument can be applied to allfc in parallel and makesf computable.

Finally, there is a (trivial) technical problem: the statement requiresf to be integer-valued, so
some rounding is needed.⊲

The two last theorems together provide a randomness criterion that uses plain complexity (and
not monotone or prefix complexity). This criterion is “robust”: one can replace the conditional
complexityKS((ω)n|n) by the unconditional one,KS((ω)n), or by conditional prefix complexity,
KP((ω)n|n).

Indeed, this replacement increases complexity, thereforeonly Theorem 88 needs to be verified.
For the prefix complexity version: we use that for any finite set A and for any its elementx the
inequalityKP(x|A) 6 log2 |A|+O(1) holds (we consider a prefix-free encoding by the strings of
length log2 |A|).

The case of the unconditional plain complexity is a bit more difficult. As we do not known, we
need to describe a stringx∈ Fc,n (hereFc,n is the set of all stringsx∈ Fc that have lengthn) by its
ordinal number in the entire setFc (and not by its ordinal number inFc,n as before). Enumerating
Fc in increasing length order, we need

log(|Fc,0|+ |Fc,1|+ . . .+ |Fc,n|)

bits for that, and everything is OK if the last term|Fc,n| is greater than the sum of all preceding terms
(in this case the increase is at most twofold). We can achievethis using the same trick as before:
replacing a string by all its continuations of a greater length. Note that this is done separately for
eachc, so the conditionc remains, but this does not matter since it gives onlyO(logc) additional
bits.

So we get the following result:
{miller-yu-criterion

Theorem 89 A sequenceω is ML-random if and only if for any computable total functionf : N→
N such that∑2− f (n) < ∞ the inequality

KS((ω)n) > n− f (n)−O(1)

holds.

This criterion uses only plain unconditional complexity and is the most popular version of
Miller–Yu theorem.

This criterion has a drawback: there is a quantifier overf . It can be placed differently (there
exists somef that rejects all the non-random sequences, as Theorem 88 says), but still it would
be nice to get rid off completely. It is indeed possible, the price is that we have to reinsert prefix
complexity into the statement:

{miller-yu-prefix
Theorem 90 A sequenceω is ML-random with respect to the uniform measure if and only if

KS((ω)n) > n−KP(n)−O(1).

131

⊳ If the series∑n2− f (n) converges for a computablef , thenKP(n) 6 f (n)+O(1). Therefore
the condition with prefix complexity is stronger than that inTheorem 89.

Therefore, we need to prove only the converse implication: if for everyc there existsn such
that

KS((ω)n) < n−KP(n)−c,

thenω is not ML-random. This can be done in the same way as in Theorem87. We need only to
note that the set of all stringsx such that

KS(x) < l(x)−KP(l(x))−c

(herel(x) stands for the length ofx) is enumerable.⊲
In this theorem we can also replaceKS((ω)n) by KS((ω)n|n).

114 Verify that this is indeed possible.

115 Show that we cannot letf (n) = 2logn in Theorem 88. [Hint: Theorem 87 says that for a
randomω we have a stronger inequalityKS((ω)n) > n− logn−2log logn−O(1). Therefore, if
we computably interleave random sequence with the zero sequence (and zeros are sparse enough),
we get a non-random sequence such thatKS((ω)n) > n−2logn−O(1). Similar argument shows
that we cannot get a computably convergent series 2− f (n) for a function f that makes Theorem 88
true.]

All the results above still do not answer a very natural question: may be one can eliminatef
completely and require thatKS((ω)n) > n−O(1) (similar to monotone complexity criterion)?

Of course, this would be the most natural version of the randomness criterion, so it was tried
in the very beginning. Martin-Löf noticed that this approach does not work: any binary string is a
substring of a random sequence, so any random sequence contains arbitrarily large groups of zeros.
And if a string of lengthn ends withk zeros, then its complexity is at mostn−k+2logk+O(1)
(2 logk bits are needed for a prefix-free encoding ofk andn−k bits for the rest), and the difference
between length and (plain) complexity is at leastk−2logk−O(1).

The following theorem (see [?, ?]) gives a more precise bound for the unavoidable difference
between length and complexity:

{martin-lof-oscillations-b
Theorem 91 There exists some c such that for anyω ∈ Ω the inequality

KS((ω)n) 6 n− logn+c

holds for infinitely many n.

⊳ For eachn let us select1/n-th fraction of all strings of lengthn, i.e., ⌊2n/n⌋ strings of
lengthn. We want to do this in such a way that each infinite sequence hasinfinitely many selected
prefixes (and the set of selected strings is decidable).

Why is this possible? The series∑1/n diverges so we can split its terms into infinitely many
groups, and each group has sum greater than 1. Using one group, we get one layer ofΩ-covering
(this means that each sequenceω ∈ Ω has a prefix among the strings that correspond to that layer).

132

To do this, we consider the strings in the order of increasinglength and select string whose prefixes
are not yet selected. (There is the rounding problem since 2n/n is not an integer, but it can be easily
fixed.)

Every selected string of lengthn can be described (ifn is known) by its ordinal number, and
this requiresn− logn bits. Therefore, the conditional complexity of this string(with conditionn)
is at mostn− logn+ O(1). Moreover, if we make a combined list of all selected strings(in the
order of increasing length), the ordinal number increases by O(1) factor. Indeed, the number of
selected strings grows almost as a geometric sequence, and adding all selected strings of smaller
lengths increases cardinality only byO(1) factor. This implies the statement of Theorem 91.⊲

116 Prove that the statement of Theorem 91 is true not only for some c but for everyc (in-
cluding the negative ones).

[Hint: If the series∑2− f (n) diverges, we can increase a bit the functionf keeping this property:
there exists a functiong such thatg(n)− f (n) → ∞ and∑2−g(n) = ∞.]

117 Show that the statement of Theorem 91 (the conditional complexity version) remains true
if we replace logarithm by any computable functionf such that the series∑2− f (n) diverges.

Martin-Löf claims in [?] that the same generalization is possible for unconditional complexity
(and refers to an unpublished paper for the proof). The same statement (attributed to Martin-Löf)
can be found also in [?]. [It is not clear how to prove it.]

Note also that the statement of Theorem 87 has a slightly different form in [?]:

118 Prove that if a sequenceω is ML-random with respect to the uniform measure, and
f : N → N is a computable total function such that the series∑2− f (n) computablyconverges, then
KS((ω)n|n) > n− f (n) for all sufficiently largen. [Hint: If a series computably converges, and
the inequality is false infinitely many times, the tails of the series can be used to get coverings that
have small measure.]

Another natural question: what happens if we require high complexity not for all (sufficiently
long) prefixes but for infinitely many of them? In the same Martin-Löf paper??paper the following
results are stated:

119 Prove that for almost all (with respect to the uniform measure) sequencesω ∈ Ω there
existsc such thatKS((ω)n|n) > n−c for infinitely manyn.

[Hint: If it is not the case, then for everyc there existsN such thatω-prefix of every length
n > N has complexity less thann− c. For givenc andN the set of allω with this property has
measure at most 2−c. As N increases, this set increases and the union over allN has measure at
most 2−c by continuity.]

120 If for a given sequenceω there exists a constantc such thatKS((ω)n|n) > n− c for
infinitely many n, thenω is ML-random with respect to the uniform measure. [Hint: Ifω is
covered by some interval in a family of total measure less than 2−c, then every sufficiently long
prefix of ω can be described (when length is given) by its ordinal numberin the set of all strings
of this length covered by some interval, and this requires 2 logc+n−c bits.]

121 Prove that the statement of the previous problem remains true if we replace conditional
complexityKS((ω)n|n) by unconditional complexityKS((ω)n).

133

[Hint: Use Problem 6 or, better, Problem 39.]

The last two problems refer to a set of measure 1 that is a subset of the set of all ML-random
sequences. Its complement is a null set; if it were an effectively null set, we would get another
criterion for ML-randomness. However, it is not the case.

Recently in [?, ?] it was shown that this set has a natural description: it is the set of ML-random
sequences relativized to oracle0′; these sequences are sometimes called “2-random” (while ML-
random sequences are called “1-random”).

5.7 The random numberΩ
{chaitin-omega

The following theorem provides an interesting applicationof the randomness criterion given in the
previous section. Letm be a maximal lower semicomputable semimeasure on the set of natural
numbers (e.g, letm(x) be equal to 2−KP(x); we can use also the distribution on the outputs of the
universal probabilistic machine, see Chapter 4). G. Chaitin suggested to consider the number

Ω = ∑
n

m(n)

(the halting probability for the universal probabilistic machine; the sum of the “least convergent”
lower semicomputable series) and made the following interesting observation:

{omega-is-random
Theorem 92 The binary representation ofΩ is Martin-Löf random with respect to the uniform
distribution.

Note that the value ofΩ depends of the choice of a maximal lower semicomputable semimea-
sure, but the statement remains true for every choice.

⊳ Assume that the firstn binary digits ofΩ are given. They form the binary representation of
a numberΩn which is a lower bound forΩ with approximation error at most 2−n. Generate lowers
bounds form(0),m(1),m(2), . . . in parallel until the sum of these lower bounds becomes greater
thanΩn−2−n. This does happen at some point since the sum of the series isΩ and hence is greater
than our threshold. Then make a list of alli that appear in this sum (with a non-zero lower bound
for m(i)).

Note that this list includes alli such thatm(i) > 2 · 2−n (if some i with this property were
omitted, the approximation error would exceed 2−n). Therefore, alli such thatKP(i) < n−c (for
somec that depends on the choice of functionmbut not onn) appear in this list. Thus, the minimal
integer that is not in the list has complexity at leastn− c. This implies that both the list itself
(which determines this minimal integer) and the numberΩn (which allows us to construct the list)
have complexity at leastn− c′ for some otherc′ and for alln. It remains to use the randomness
criterion in its prefix complexity version (Theorems 84 and 86). ⊲

One can define the notion of a (Martin-Löf) random real number directly. A setX of reals is an
effectively null set if there is an algorithm that for any rational ε > 0 enumerates a cover ofX by
intervals with rational endpoints and total measure (length) at mostε. A real number is Martin-Löf
random (with respect to the standard measure onR) if it does not belong to any effectively null set
(=does not belong to the maximal effectively null set).

134

122 Prove that a real number is random (according to this definition) if and only if its binary
representation is a random sequence (with respect to the uniform measure onΩ).

123 Prove that a square (sine, exponent) of a random real is a random real. [Hint: A preimage
of a null set is a null set, and this argument can be effectivized.]

124 Can the sum of two random real numbers be a non-random real? [Hint: the numbers may
be “dependent”.]

The random numberΩ (or, better to say, anyΩ-number, since different maximal lower semi-
computable semimeasures lead to different numbers) has interesting properties that makes it a
rather special random number.

First of all,Ω is lower semicomputable. (Note that the set of lower semicomputable real num-
bers is countable and therefore is a null set, but — as we see — not an effectively null set.) This
property ofΩ has interesting corollaries:

125 Show that ifα is a lower semicomputable real number, then the numberα +Ω is random.

126 Prove that any real number is a sum of two random real numbers.[Hint: It is enough to
know that random numbers form a set of full measure.]

[Here one should also write about Solovay reducibility for reals, the maximal element etc. —
but first we should understand this!] .]

[UsingΩ as an oracle allows us to decide any enumerable set. What elsecan be said aboutΩ?
how theΩ’s for two different optimal semimeasures are related?]

The numberΩ can be considered as an “infinite version” of special objectsof complexityn
that are considered in Theorem 15 (p. 27). Moreover, there isa direct connection between these
notions.

{chaitin-finite-infinite
Theorem 93 Let Ωn be the binary string formed by first n bits of the binary representation of
Ω. ThenΩn has the properties described in Theorem 15; each of the objects listed there, say,
B(n), can be algorithmically obtained fromΩn+O(logn) and vice versa (Ωn can be obtained from
B(n+O(logn)).

⊳ Let us show how knowingΩn we can construct an integerT greater thanB(n−O(logn)).
Generating the better and better approximations forΩ, we stop this process when the approxima-
tions reachΩn (i.e., the firstn bits achieve their “true” values). LetT be the number of steps before
this happens; thisT can be algorithmically found whenΩn is known. Lett be any number greater
thanT; let us show that the complexity oft is greater thann−O(logn). Indeed, id we knowt n,
we may performt approximation steps and findΩn, that has prefix complexity at leastn−O(1)
(Theorem 92) and therefore plain complexity at leastn−O(logn).

Reverse direction: assume thatB(n) andn are known. How to findΩn−O(logn)? We claim that
the current approximation forΩ found afterB(n) steps the firstn−O(logn) bits are true (i.e., they
coincide with the corresponding bits inΩ). If this is not the case then there exists a thresholdβ
that is a finite binary fraction of size 2n−O(logn) bits that separates the current approximation and
Ω. The complexity ofβ is at mostn−O(logn). Knowingβ , we can construct a number greater

135

thanB(n); just count the steps needed to get an approximation greaterthanβ . For a large enough
constant inO(logn) we get a contradiction.⊲

Therefore, recalling Theorem 15 we see that knowingn+O(logn) bits inΩ allows us to answer
any question about the termination of a program of size at most n. Since the question about
the membership in any enumerable set (e.g., questions whether a given statement of sizen is
provable in some fixed formal theory) have this form, we can follow Chaitin and callΩ “the
number of wisdom” which contains information about many important things. (Sounds rather
romantic, indeed.)

5.8 Effective Hausdorff dimension
{monothaus}

The notion of Hausdorff dimension is well known in measure theory (and became popular in
connection with fractals). Here is the definition. Letα > 0 be some real number. We say that a set
A is anα-null set if for anyε > 0 there exists a sequence of intervalsIk that coverA such that

∑
k

µ(Ik)
α < ε.

This definition assumes thatA is a subset of a space where a class of subsets called “intervals” is
chosen and measure of intervals is defined. We restrict ourselves to the case of the setΩ. Here
intervals are the setsΩx (whereΩx is the set of all infinite sequences that start with a binary
stringx). The measure of the intervalΩx equals 2−l(x).

Let us start with a few simple remarks:
(1) Any subset of anα-null set is anα-null set.
(2) Forα = 1 we get the standard definition of a null set (set of measure zero).
(3) Forα > 1 any subsetA⊂ Ω is anα-null set. Indeed, one can coverA by 2n intervals that

correspond to 2n strings of lengthn, and the sum of theirα-measures tends to 0 asn→ ∞.
(4) Assume that 0< α < α ′. Any α-null set is then anα ′-null set (note that measureµ(I) of

any intervalI does not exceed 1 and thereforeµ(I)α > µ(I)α ′
).

127 Give a natural definition for anα-null set of reals and show that a setA⊂ [0,1] is anα-
null set if and only if the set of binary representations of all numbers inA is anα-null set according
to the definition above.

[Hint: We need to verify that the more liberal notion of an interval inR where we do not require
any alignment, does not change the class of null sets.]

Our remarks imply that for any setA ⊂ Ω there exists some thresholdd ∈ [0,1] with the fol-
lowing property: ifα > d, the setA is anα-null set; if α < d it is not. (Forα = d the set may be
anα-null set or not.) This threshold is called theHausdorff dimensionof the setA.

128 The Cantor set is the subset of[0,1] that remains if we take out the middle third
(1/3,2/3), then take out the middle thirds of two remaining segments (i.e., (1/9,2/9) out of
[0,1/3] and(7/9,8/9) out of [2/3,1] etc.). Prove that Cantor set is a compact set homeomorphic
to Ω and has Hausdorff dimension log32.

[Hint: To get an upper bound for Hausdorff dimension one may consider the “standard” inter-
vals, i.e., the intervals that remain untouched after several steps of the Cantor set construction. To

136

get a lower bound we need to consider an arbitrary cover that consists of open intervals. Then we
(1) replace this cover by a finite one using compactness; (2) replace open intervals by closed inter-
vals; (3) if some intervalI from the cover intersects some deleted intervalJ but does not contain
J, makeI smaller (there is no need to coverJ); (4) if some intervalI from the cover contains some
intervalJ that was deleted being the middle third of some intervalI ′, we replaceI by I ′; (5) having
only standard intervals, we note that they correspond to thecovering of the binary tree and get the
desired bound for their measures.]

129 Give a natural definition of Hausdorff dimension for the subsets ofR3. Explain why the
dimension equals 3 for solids, 2 for surfaces, 1 for curves and 0 for isolated points. Show that for
anyd ∈ [0,3] there is a subset ofR3 that has dimensiond.

The effective version of Hausdorff dimension is defined in a natural way. (See [?, ?].) A set
A⊂ Ω is aneffectiveα-null set (for a givenα > 0) if there exists an algorithm that for any given
ε > 0 enumerates a setI0, I1, I2, . . . of intervals that coverA such that∑(µ(Ik))α < ε. (Hereµ is
the uniform measure onΩ).

As in the classical case, the property is monotone (remains true if α increases orA decreases).
The main difference between the classical and effective case is shown by the following theorem:

{effective-hausdorf
Theorem 94 For any rationalα > 0 there exists the largest (with respect to inclusion) effectively
α-null set.

⊳ The proof goes in the same way as for effectively null (=1-null) sets (Chapter 3). The
countable union ofα-null set (in the classical sense) is anα-null set. In the same way the union of
an enumerable family of effectivelyα-null sets is anα-null set. On the other hand, ifα is a rational
number (or even a computable real), we can enumerate all effectively α-null sets (or, better, the
algorithms that serve these sets) by enumerating all algorithms and changing them when too large
intervals are generated.⊲

The following result (A. Khodyrev) is not used in the sequel (for the definition of Hausdorff
dimension rationalα are sufficient) but is interesting in its own right. Letα be an arbitrary real
number.

Theorem 95 The largest effectivelyα-null set exists if and only ifα is lower semicomputable.

⊳ Assume thatα is lower semicomputable. This means that we can generate better and better
approximations from below toα but do not know their precision. If we use these approximation
(instead of trueα) in the requirements for the covering in the definition of an effectively α-null
set, we get stronger requirements. Consider the algorithm of the previous theorem that generates
coverings of the largest effectivelyα-null sets and let it use rational lower approximations ofα
instead ofα. Then modify the algorithm as follows: Do not reject permanently the intervals
that violate these requirements but postpone them and checkagain when new approximation to
α arrives. If a covering satisfies the requirement for the trueα, all its intervals will be printed
eventually.

On the other hand, let us assume that for someα there exists the largest effectivelyα-null set.
Consider the algorithm that generates covers for it. This algorithm can be used to obtain lower

137

bounds forα. Indeed, if for some rationalε the algorithm produces a finite family of intervals (at
some step) andβ -powers of the measures of these intervals exceedε, this means thatβ < α.

It remains to prove that these bounds can be arbitrarily close to α. Assume that it is not the
case and all of them are less than someα ′ < α. In this case every effectivelyα-null set would be at
the same timeα ′-null set, which is not true (there exist sets of any effective Hausdorff dimension,
see below Problem 130, p. 140⊲

Theeffective Hausdorff dimensionof a setA⊂ Ω is now defined as the greatest lower bound
of the set of allα such thatA is an effectiveα-null set. This number belongs to[0,1] and is
obviously greater than or equal to the (classical) Hausdorff dimension. (Initially the definition
of effective Hausdorff dimension was given in a different way, using computable martingales;
see [?, ?], where the properties of effective dimension were established. See also Section??about
computable martingales.)

We have mentioned the paradox: the property of being an effectively null set depends only on
the type of its elements (whether they are random or not); it is not important “how many” elements
are in the set. A similar observation can be done for Hausdorff dimension:

{dimension-sup
Theorem 96 The effective Hausdorff dimension of the set equals the least upper bound of the
effective Hausdorff dimensions of its elements.

(By effective Hausdorff dimension of a pointω ∈ Ω we mean the Hausdorff dimension of the
singleton{ω}.)

⊳ Obviously the (effectively Hausdorff) dimension of a set cannot be less than the dimension
of any its element. It remains to prove the converse statement: if the dimensions of all singletons
formed by elements of a setA are less than some rational numberr, andr ′ > r is another rational
number, then the dimension ofA does not exceedr ′. This is a direct corollary of the previous
statement: all singletons are subsets of the largest effectively null r ′-set, soA is a subset of the
same set and has dimension at mostr ′. ⊲

Therefore we need to understand only what is the (effective Hausdorff) dimension of a single-
ton. It turns out that it has a simple description in terms of Kolmogorov complexity.

{hdim-formula
Theorem 97 The effective Hausdorff dimension of a singleton{ω}, whereω = ω0ω1ω2 . . ., is
equal to

lim inf
n→∞

KS(ω0ω1 . . .ωn−1)

n
.

(The statement uses plain Kolmogorov complexity of the prefixes ofω. However, this is not
important: since the difference between different complexity versions is of orderO(logn) for
strings of lengthn, and we divide the complexity byn, we get a termO(logn)/n that does not
change the limit.)

⊳ We have to prove two inequalities: one for each direction.
Assume that the liminf is less than a rational numberr. We have to verify that the set{ω} is

an effectivelyr ′-null set for any rationalr ′ > r.
For eachn we consider alln-bit strings that have complexity less thanrn. There are at most

O(2rn) such strings. The condition about liminf guarantees that for infinitely manyn the n-bit

138

prefix of ω is in the corresponding list. Consider all intervalsΩz for all z in the list (for some
fixed n), and compute the sum required in the definition of an effectively r ′-null set: there are
O(2rn) terms and each is(2−n)r ′ = 2−r ′n, so the sum is 2(r−r ′)n, which gives a converging geometric
series

∑
n

2(r−r ′)n.

Deleting an initial part of this series (considering only strings of lengthN or more) we make the
sum arbitrarily small (whenN is large enough). At the same time our assumption (about liminf)
guarantees that remaining intervals still from a covering for ω. So one inequality is proved.

Going in the other direction, assume that{ω} has effective dimension less thanr for some
rationalr. Let us show that the liminf does not exceedr.

By definition, for each rationalε > 0 we can generate a sequence of intervals. We know that
one of them containsω and the sum ofr-th powers of the measures does not exceedε. Let us
do this forε = 1,1/2,1/4, In this way we get a sequence of intervals that have finite sumof
r-th powers of their measures, and infinitely many of them cover ω. In other terms, there exists a
computable sequence of intervalsx0,x1,x2, . . . such that:

• ∑2−rl (xi) < ∞;
• xi is a prefix ofω for infinitely manyi.
The first statement implies thatm(i) > c2−rl (xi) for somec and for alli (wherem is the largest

semimeasure on natural numbers considered in Chapter 4). Taking the logarithms, we get the
bound for prefix complexity:

KP(xi) 6 rl (xi)+O(1)

for all i. Note also that the lengths ofxi tend to infinity (since the series in convergent), thanxi is a
prefix ofω for infinitely manyi and that the plain complexity does not exceed the prefix one. (The
definition of liminf guarantees that if a sequence has infinitely many terms that do not exceedr, its
liminf does not exceedr.) ⊲

130 Prove the following corollary: for any realα ∈ [0,1] there exists a set (an even a single-{any-hausdorff-dimension
ton) that has effective Hausdorff dimensionα. [Hint: The complexity of an initial segment can be
increased by adding random bits and decreased by adding zeros.]

131 Prove that for any realα ∈ [0,1] there exists a set that has (classical) Hausdorff dimen-
sionα.

[Hint: Consider the set of all sequences that have zeros at specified places.]

132 Prove that the definition of effective Hausdorff dimension of a setA can be reformulated
in the following equivalent way: there exists a computable sequence of intervals that has finite sum
of r-th powers of the measures and that covers each element ofA infinitely many times.

We return to the notion of effective Hausdorff dimension in Section?? where its relation to
effective martingales is explained; we show there how to translate the proof of Theorem 97 into
the martingale language.

139

5.9 Randomness deficiency using a priori complexity
{monotdef}

The ML-randomness criterion (for a computable measureP) can be reformulated in the following
way. For each stringx consider the difference

dP(x) = − log2P(Ωx)−KA(x).

The sequenceω is ML-random with respect toP if this difference is bounded (by a constant) for
the prefixes ofω. So we may call this difference therandomness deficiencyof a stringx (with
respect to computable measureP): a sequence is random if the deficiencies of its prefixes are
bounded (by a constant).

The name “randomness deficiency” is quite general and may be understood in different ways
in different contexts; see, e.g., Chapter??. However, in this section we study the properties of the
functiondP defined in the above way.

[In would be nice to analyze these definitions systematically, including Levin–Gacs definition
of deficiency for infinite sequences, classes of measures etc. This could be a special section in this
chapter!]

If P(Ωx) = 0 for somex, we letdP(x) = +∞.
The randomness deficiency is always non-negative (up to aO(1) additive term), see Theo-

rem 81). The randomness criterion (Theorems 83 and 85) guarantees that for ML-random se-
quences the deficiency of their prefixes is bounded while for non-random sequences the deficien-
cies tend to infinity. This implies that the intermediate situation is not possible: there in no se-
quence such that deficiencies of its prefixes are not bounded but do not tend to infinity. This
looks rather strange, and one may ask why this happens. The following theorem provides some
explanation.

{monotdef-conservation
Theorem 98 Let P be a computable measure onΩ. There exists a constant c such that for any
string x and for any string y that has x as a prefix the inequality

dP(y) > dP(x)−2logdP(x)−c

holds.

Informally speaking, any continuation of a string with highdeficiency has (almost as) high
deficiency. Or: a prefix of a string that has small deficiency, has (almost as) small deficiency, so
the deficiency function is quasi-monotonic.

⊳ For eachk consider the enumerable set of all finite sequences that havedeficiency greater
thank. All the infinite continuations of these sequences form an open setSk, andP-measure of this
set does not exceed 2−k. Now consider the measurePk on Ω that is zero outsideSk and is equal to
2kP insideSk. That means that for any setU the valuePk(U) is defined as 2kP(U ∩Sk). Actually,
Pk is not a measure according to our definition, sincePk(Ω) is not equal to 1. However,Pk can be
considered as a lower semicomputable semimeasure, if we change it a bit and letPk(Ω) = 1 (this
means that the difference between 1 and the former value ofPk(Ω) is assigned to the empty string).

Now consider the sum

S= ∑
k

1
2k2Pk.

140

It is a lower semicomputable semimeasure (the factor 2 in thedenominator is used to make the
sum∑1/2k2 less than 1); again, we need to increaseSso thatS(Ω) = 1. Then we have

− logS(x) 6 − logP(x)−k+2logk+O(1)

for any stringx that has a prefix with deficiency greater thank. SinceS does not exceed the
maximal lower semicomputable semimeasure on the binary tree (up toO(1)-factor), we get the
desired inequality.

This argument assumes that deficiency ofx is finite (i.e., P(Ωx) 6= 0); if P(Ωx) = 0, then
P(Ωy) = 0 for anyy that has prefixx, and the deficiency ofy is also infinite.⊲

Let us note one more property of the deficiency function that is an immediately corollary of its
definition:

133 Prove that for every stringx the deficiency of at least one of the stringsx0 andx1 does
not exceed the deficiency ofx. (We assume that a computable measureP used in the definition of
the deficiency is fixed.)

This problem shows that we can start with any string and extend it bit by bit not increasing
its deficiency. The randomness criterion guarantees that inthis way we get a ML-random se-
quence with respect to the measure used in the definition of deficiency. (Recall that we assume
thatP(Ωx) > 0 for anyx.)

Now we use the notion of deficiency (as defined in this section)to compare randomness with
respect to different measures.

Let P be a computable probability distribution onΩ and let f : Σ → Σ be a continuous com-
putable mapping. Consider the image of the measureP with respect tof , i.e., a measureQ on the
setΣ such that

Q(U) = P(f−1(U))

for any U ⊂ Σ. In other terms,Q is the probability distribution of the random variablef (ω)
whereω is a random variable that has distributionP. In general case the distributionQ is not
concentrated onΩ and may assign positive probabilities to finite sequences; in our terminologyQ
may be a semimeasure (and this semimeasure is lower semicomputable), not a measure.

Let us assume, however, that it is not the case and thatQ is a measure onΩ. (It is easy to see
that in this caseQ is acomputablemeasure.)

{random-image
Theorem 99 (a) For any sequenceω ∈ Ω that is ML-random with respect to measure P, its image
f (ω) is an infinite sequence that is ML-random with respect to measure Q.

(b) Any sequenceτ that is ML-random with respect to Q can be obtained in this way, i.e., there
exists a sequenceω that is ML-random with respect to P and f(ω) = τ.

The intuitive meaning of this theorem can be explained as follows. Assume that we have a
probabilistic machine that consists of a random bit generator and an algorithm that transforms
random bits into an output sequence. Assume that the random bit generator has distributionP and
the transformation algorithm defines a computable mappingf : Σ → Σ.

Which sequences can appear as the output sequences of this machine? Or, better to say, for
which sequences we can believe that they appeared at the output of this machine? There are two

141

possible answers. First, we can look inside the machine and say that these sequences aref -images
of the ML-random (with respect toP) sequences. On the other hand, we can forget about the
internal mechanisms and look at the output distribution only: then we expect the output sequence
to be ML-random with respect toQ. Our theorem guarantees that these two approaches lead to the
same class of sequences.

⊳ First, let us prove that thef -image of aP-random sequenceω is infinite. If it is not the
case andf (ω) is a finite stringz, consider all infinite sequencesω such thatf (ω) = z (i.e., the
f -preimage of the setΣz\ (Σz0∪Σz1).

The preimage ofΩz is an effectively open set (the union of an enumerable set of intervals),
the preimage ofΣz0∪Σz1 is another effectively open set that is a subset of the first one. To get
the contradiction, we have to prove that the preimage of the difference (=the difference of the
preimages) does not contain random sequences. This is a special case of the following general
statement.

Lemma. LetP be a computable measure onΩ, and letU ⊂V be two effectively open sets such
thatP(V \U) = 0. ThenV \U is an effectively null set (=does not contain random sequences).

Proof of the Lemma. It is enough to consider one intervalI in the setV (and replaceU by its
intersection withI). Enumerating the intervals that form the setU we cover more and more points
in I . By continuity the measure of the covered part converges to the measure of the intervalI (since
V \U has zero measure). Therefore, we can wait until the remaining part of I has measure less
thanε for any givenε and find a cover ofI \U by a (finite) family of intervals with small total
measure. Lemma is proved.

To finish the proof of (a) we have to show that the imagef (ω) of a P-random sequenceω
cannot be an infinite but notQ-random sequence. Indeed, assume that thatf (ω) is infinite but
does not form an effectivelyQ-null set. The preimages of the intervals that coverf (ω) coverω,
and we get an effectively open set that containsω and has small measure (recall thatP-measure of
the preimage of an effectively open set is equal toQ-measure of the set itself). The statement (a)
is proved.

Let us now prove the statement (b) using the notion of the deficiency. Assume that the se-
quenceτ is ML-random with respect to the measureQ. This means that the deficiencies of its
prefixes are bounded (by a constant). Then we apply the following lemma that can be considered
as the “finitary version” of the statement (b):

Lemma. Let u be a string such thatQ(Ωu) > 0. Then there exists a stringv such thatu is a
prefix of f (v) anddP(v) 6 dQ(u)+O(1).

(The constant hidden inO(1) may depend onf , P andQ but not onu.)
Proof of the Lemma. Consider the preimageFu = f−1(Σu) of Σu. This is an effectively open

subset ofΣ. By definition, theP-measure of the setFu (recall that the measureP is concentrated on
infinite sequences) equalsQ(Σu). If the deficiencydQ(u) is small,Q(Σu) cannot be significantly
less than the a maximal (tree) semimeasure ofu.

Now consider the a priori probability (on the binary tree) ofthe setFu, i.e., the probability of
the event “the output of an universal probabilistic machineM belongs toFu”. This event can be
rephrased as follows: the output of the machinef ◦M (that appliesf to the output ofM) starts
with u. Comparing the machinef ◦M and the universal one, we conclude that a priori probability

142

of the setFu can be only constant times bigger that the a priori probability of Σu. The latter can be
only 2dQ(u) times bigger thanQ(Σu), which is equal to theP-measure of the setFu. Therefore we
get an inequality between two measures ofFu (the a priori probabilityA andP):

A(Fu)

P(Fu)
6 O(2dQ(u))

Since the setFu can be represented as the union of a (possibly non-enumerable) family of disjoint
intervals, we conclude that the similar inequality is true for some intervalIv in this family:

A(Σv)

P(Σv)
6 2dQ(u) ·O(1)

SinceΣv ⊂ Fu, we get f (v) < u, and the inequality implies thatdP(v) 6 dQ(u)+O(1). Lemma is
proved.

Now we continue the proof of statement (b). Lettn = (τ)n be the prefix of aQ-random se-
quenceτ that has lengthn. The randomness criterion guarantees thatQ-deficiencies ofti are
bounded. Then Lemma says that there exists a sequence of stringsv0,v1, . . . that have bounded
P-deficiencies such thatf (vi) is an extension ofti.

A standard compactness argument shows that the sequencevi has a subsequence that either
consists of identical strings or converges to some infinite sequenceω. The latter means that any
(finite) prefix ofω is a prefix of all but finitely many strings in the sequence.

In the first case the sequenceτ is the image of the finite stringv that appears infinitely often
in the sequencevi . (This can happen for aQ-random sequenceτ if this sequence, i.e., the corre-
sponding singleton, has a positive measure;τ is computable in this case.) Then we letω be any
P-random continuation of the stringv (we know that it exists, sinceP(Ωv) > 0).

In the second case an infinite subsequence of the sequencevi converges toω. Note that in this
case:

(1) Any prefix of ω is a prefix of somevi , and these strings have boundedP-deficiencies.
Therefore, Theorem 98 guarantees thatP-deficiencies of all prefixes ofω are bounded. So the
sequenceω is ML-random with respect toP.

(2) As we have proved in part (), the sequencef (ω) is infinite.
(3) The sequencef (ω) cannot have a prefix that is not a prefix ofτ. Indeed, in this caseω

would have a prefixu whose image is incompatible withτ; then the stringu is a prefix of almost all
strings in the subsequence that converges toω, but images ofvi have increasing common prefixes
with τ.

This contradiction finishes the proof of part (b).⊲

134 Give a direct proof of (b) using the definition of an effectively null set. [Hint: For a
given ε consider the family of intervalsZε that covers the largest effectivelyP-null set and has
total P-measure less thanε; let F be the (closed) set of non-covered sequences. All sequences
in F are random; it is enough to show that (for anyε) the complement tof -image ofF can be
effectively covered by intervals with small totalQ-measure.

Let us call a stringx “special” if the family Zε together with thef -preimages of all strings
inconsistent withx covers the entireΩ. The set of special strings is enumerable (since every

143

covering ofΩ has a finite subset that coversΩ due to compactness, we can effectively enumerate
all special strings). If a sequencef (ω) has a special prefixx, thenω is covered byZε , therefore
the totalQ-measure of all sequences having special prefixes is less than ε. On the other hand, any
sequenceτ that does not have special prefixes is anf -image of a sequence inF . Indeed, since for
everyk thek-bit prefix of τ is not special, there exists some sequenceωk ∈ F whose image (being
an infinite sequence, sinceωk ∈ F) coincides withτ in the first k bits. Consider a convergent
subsequence of a sequenceω1,ω2, . . .; its limit ω belongs toF (sinceF is a closed set), sof (ω) is
infinite and coincides withτ (continuity).]

135 Prove a statement that can be considered as a finitary versionof the statement (a) of the
last theorem: ifu andv are binary strings such thatu 4 f (v), then

dQ(u) 6 dP(v)+2logdP(v)+O(1).

[Hint: the set of sequences having largeQ-deficiency can be covered by a set of smallQ-measure;
therefore its preimages can be covered by a set of smallP-measure and have largeP-deficiency.
Note that this statement is a generalization of Theorem 98.]

Theorem 99 has some (rather surprising) applications. Hereare two examples:

136 Let ω be a ML-random sequence according to the Bernoulli distribution (independent
coin tosses) where 1 has probability 1/3. Prove that there exists a sequenceω ′ that is random
with respect to the uniform distribution (1 has probability1/2) and can be obtained fromω by
replacing some zeros by ones. [Hint: Consider a ML-random sequence of independent random
reals uniformly distributed in[0,1], or, better to say, the random sequence of bits placed in two-
dimensional table where (infinite) rows are considered as infinite binary fractions. Then convert
this sequence into bit sequence using threshold 2/3. Theorem 99 guarantees that we get a ML-
random sequence with respect to the 1/3-Bernoulli distribution and that any ML-random sequence
with respect to this distribution can be obtained in this way. Then we can change threshold to 1/2.]

137 Consider a computable distribution on pairs of sequences (i.e., on the setΩ×Ω) and the
corresponding notion of ML-randomness on pairs. Show that if 〈ξ ,η〉 is a random pair, thenξ is
a ML-random sequence with respect to the distribution that is a projection of the distribution on
Ω×Ω onto the first coordinate, and that any ML-random sequence isa first component of some
random pair.

An important special case: a distribution onΩ×Ω is a product of two distributions, i.e., the
components of the random pair are independent. In this case astronger claim is true (known as
van Lambalgen theorem, see [?]).

[Where exactly is this is Lambalgen’s thesis? There is a lot of probably related material, but is
this statement explicit somewhere?]

Let P andQ be two computable distributions onΩ. Consider the productP×Q which is a
computable distribution onΩ×Ω (this space is isomorphic toΩ and the definitions of randomness
can be easily extended onto it).

Theorem 100 A pair of sequences〈ξ ,η〉 is ML-random with respect to the distribution P×Q if
and only if the following conditions are both true:

144

(1) ξ is ML-random with respect to P;
(2) η is ML-random relative toξ (with oracleξ) with respect to Q.

Speaking about relativized randomness, we mean that the algorithm that (givenε > 0) enumer-
ates the intervals in the covering now has access toξ as an oracle (so we get more enumerable sets,
more non-random sequences and less random sequences). The use of oracle is crucial, since a pair
〈ξ ,ξ 〉 is rarely random with respect toP×P even whenξ is random with respect toP.

Note also that the conditions (1) and (2) are not symmetric with respect toξ andη. Theorem
implies that the condition (1) can be replaced by a stronger requirement:ξ is random relative toη.
However, the non-symmetric version looks more natural. It can be read as: “to produce a random
pair, first choose a randomξ and then choose a randomη knowingξ (random relative toξ)”.

⊳ Let us prove first that conditions (1) and (2) are true for a random pair〈ξ ,η〉.
(1) If the sequenceξ is not random and may be covered by intervals of small measure, then

the same intervals multiplied byΩ (along the second coordinate) become rectangles (productsof
intervals along both coordinates) that cover〈ξ ,η〉 and have small measure.

(2) Assuming thatη is not random with oracleξ . Then for eachε we can (usingξ as an oracle)
enumerate intervals that coverη and have smallQ-measure. This enumeration process can be run
with any oracle and it will generates some intervals using finite amount of information about the
oracle.

Therefore, we get (for a givenε > 0) a family of rectangles that is enumerable (without oracle)
and has the following property: if the first coordinate is fixed to beξ , the rectangles become a
family of intervals with totalQ-measure at mostε. This family can be easily converted into a
family of rectangles for which all vertical sections (not only ξ -section) have the same property
and all the sections where this inequality was true before the conversion remain untouched. This
contradicts to the randomness of〈ξ ,η〉.

Now let us prove that if the pair〈ξ ,η〉 is not random, then one of the conditions (1) and (2) is
false. Assume〈ξ ,η〉 is not random. LetU be the union of an enumerable family of rectangles in
Ω×Ω of measure at mostε that covers〈ξ ,η〉. For each fixed value of the first coordinatex let
Ux denote thex-section ofU , i.e., the set{y|〈x,y〉 ∈ U}. Consider the values ofx such that that
Q-measure ofUx is greater than

√
ε . We get a set ofP-measure at most

√
ε that is an union of an

enumerable family of intervals.
There are two possibilities: eitherξ is covered by an enumerable family of intervals having

totalP-measure at most
√

ε that we have constructed, or〈ξ ,η〉 is covered by a familyV of rectan-
gles such that theQ-measure ofVξ does not exceed

√
ε. (Other section can have bigger measure,

this does not matter.) In the second caseη is covered by aξ -enumerable family of intervals of
total measure at most

√
ε.

We would like to apply this argument for everyε and conclude that eitherξ is not random or
η is not random with oracleξ . The first conclusion can be drawn if for everyε the first possibility
happens; the second one if the second possibility happens for everyε. But what should we do if
both cases happen for different values ofε?

The following simple trick helps. For everyk = 1,2,3, . . . we perform this construction for
ε = 2−2k. Then for eachk we get a familyV(k) of intervals (along the first coordinate) that have
totalP-measure at most 2−k =

√
2−2k. Now the two possibilities are:

145

(a) the familyV(k) coversξ for infinitely manyk;
(b) for sufficiently largek the familyV(k) does not coverξ .
If (a) happens, for eachK the union ofV(k) for all k > K gives us an enumerable covering of

ξ that has total measure 2·2−K, soξ is not random.
If (b) happens, then for eachk greater than someK one canξ -enumerate a family of intervals

that coversη and has totalQ-measure at most 2−k, soη is notξ -random. (We do not know the
value ofK, but this does not matter.)⊲

[One would like to generalize this theorem for the case of dependent variables, but first we
need to develop theory of conditional probabilities. Or, better, to learn it.]

Let us return to the question that we have already discussed:A probabilistic machine is given;
which sequences seem to be the plausible outputs of this machine (or, better to say, for which se-
quences we agree to believe that they are generated by this machine)? This question is meaningful
for any machine, even for the machine that generates finite sequences with positive probability.

More formally, consider a computable probabilistic distributionP on the setΩ and computable
continuous mappingf : Σ→ Σ. Together they generate some output distributionQ that is the image
of P under f . Now we do not assume thatQ is concentrated on infinite sequences, so we get an
lower semicomputable semimeasureQ which is not necessarily a measure.

On the other hand, we can consider the images (underf) of sequences that are ML-random
with respect toP. The interesting question is: Does this set depend only on the distributionQ?
(This is true for measures, when this set coincides with the set of Q-random sequences.) The
natural conjecture: this set coincides with the set of sequences such that the ratioA/Q (whereA is
the a priori probability on the binary tree) is bounded for their prefixes.

The authors don’t know whether this is true. However, one maynote that this conjecture implies
the following theorem (proved in [?, ?]):

{gacs-reducibility-theorem
Theorem 101 Let α be an arbitrary sequence of zeros and ones. Then there existsa sequenceω
that is ML-random with respect to the uniform measure, and a computable mapping f: Σ → Σ
such that f(ω) = α.

Using the terminology of recursion theory, this statement can be reformulated as follows: any
sequence of zeros and ones is Turing-reducible to some ML-random sequence with respect to the
uniform measure. (We have already mentioned this result on p. 111.)

This theorem is an immediate corollary of the conjecture above: indeed, if f is the universal
machine, thenQ is (up toO(1) factor) the a priori probability on the binary tree, and the ratioA/Q
is bounded everywhere. However, we cannot use our previous arguments in this case (we may find
the preimages ofti that have small deficiency and even find their condensation point, but now the
image of this condensation point can be finite.) So we need another construction.

⊳ We prove a bit stronger statement and construct a computablecontinuous mappingf (the
same for allα) such that the imagef (R) (whereR is the set of all ML-random sequences with
respect to the uniform measures) equalsΩ.

Moreover, for any effectively open setU (i.e., the union of an enumerable family of intervals)
of sufficiently small measure we will construct a computablemappingf such thatf (Ω\U) covers

146

entireΩ. Applying this construction to an effectively open set of small measure that coversR we
get the result.

We enumerate intervals inU one at a time, and constructf watching the growth ofU . At each
step we ensure that the image of the complement ofU (more precisely, the current approximation
toU) is the entireΩ.

Initially the approximation toU is empty, so this goal is trivial: we may letf be the identity
mapping. However, we should have in mind that later some parts of Ω become covered byU
and therefore should be replaced by something else, so we need to reserve some space for future
use. This reserve is easy to provide since the total measure of U is small, so most of the space
will remain usable. However, we should be careful: it is not enough that at every stage of the
construction a given sequenceα has a preimage outsideU ; there must be a sequenceω that is
outsideU at all steps and is (ultimately) mapped toα. We achieve this goal, since the sequence of
preimages has a limit (see below).

More specifically we choose some positive integersk0,k1,k2, . . . and split the sequences inΩ
into blocks of lengthsk0,k1,k2, In other terms, we definef on the tree whose root has 2k0 sons,
each of these sons has 2k1 sons etc. Vertices of these tree are strings of lengths 0,k0,k0 +k1,k0 +
k1+k2 etc. Formally speaking, the algorithm that implements the transformationf will read input
blockwise, not bit by bit.

We may assume without loss of generality that the intervals of setU are also block-aligned
(represent vertices in the subtree):U is an union of intervalsΩx where eachx has lengthk0+ . . .+ki

for somei. (This can be achieved by splitting every interval into smaller intervals; the total length
remains unchanged.)

In this tree (with large branching factor) we select a binarysubtree that will be mapped onto a
standard binary subtree byf . To do this, we select two among 2k0 sons of the root,X0 andX1 (say,
the first two in the lexicographic ordering) and map them onto0 and 1 respectively. This means
that for any sequenceω that starts withX0 (resp.X1) the first bit of f (ω) equals 0 (resp. 1). For
other stringsω (whose first block is neitherX0 norX1) the valuef (ω) is not yet defined. Then for
each stringX0 andX1 we consider two its sons (say, the first two in the lexicographic ordering).
We get four strings of lengthk0+k1 that we denoteX00,X01,X10,X11; they are mapped onto strings
00, 01, 10 and 11 respectively, and so on. Formally, for each binary stringu we consider a string
Xu that consists ofl(u) blocks and is mapped ontou. If u is a prefix ofv, thenXu is a prefix ofXv;
if u is incompatible withv, thenXu is incompatible withXv.

In this way we get a computable mapping that maps the binary subtree of the large tree onto
entireΩ. If U is empty, this is the end of construction. If not, we have to react when a new interval
in U covers some branches of our binary subtree making them unusable. The reaction is that we
reroute our subtree in the (still) free zone and extendf on this zone, so the image of the current
subtree is still entireΩ.

To describe this construction in more details, we need to introduce a notion of a “bad” vertex
(i.e., a bad string of length 0,k0, k0 +k1, etc.) This notion changes during the process: the more
intervals ofU appear, the more bad vertices they create. A vertexx is bad in either of two cases:

• x belongs to some blacklisted interval (i.e., for one of intervalsΩz in U the stringz is a prefix
of x);

147

• all the sons ofx except (may be) one are bad.
As usual, this inductive definition says that we consider theminimal set of vertices that satisfies

these two properties. This definition guarantees that any “good” (=not bad) vertex has at least two
good sons. This property allows us to embed full binary tree in the subtree of good vertices.

Note that the sons of a bad vertices are also bad according to this definition.
Let us compute what minimal part ofΩ needs to be inU to make the tree root a bad vertex.

The root is bad if all its sons except one are bad. So we need a fraction
(

1− 1
2k0

)

of bad vertices on the first level (the sons of the root). To getthat many bad vertices, we need at
least fraction (

1− 1
2k0

)
·
(

1− 1
2k1

)

of bad vertices at the second level. At some level all the bad vertices are insideU -intervals (since
at any time we have a finitely many intervals inU). Therefore we get the following statement:if
the total measure of blacklisted intervals is less than the infinite product

(
1− 1

2k0

)
·
(

1− 1
2k1

)
·
(

1− 1
2k2

)
· . . . ,

that the root remains good at any stage of the construction.
Now the choice ofki is clear: the product above should be positive which is equivalent to the

convergence of the series∑2−ki . For example, we may letki = 2logi (for i > 2).
The set of bad vertices increases as time increases. If it does not damage the current binary

subtree, then we leave the subtree unchanged. But if it does and some branch of the subtree
becomes bad, then we substitute this bad vertex by its good brother (which exists since the father
is good), and then grow the subtree from this good brother. Formally speaking, we modify the tree
starting from the root replacing bad vertices by their good brothers and choosing good sons for
new vertices.

While changing the tree we also extend the mappingf (leaving it unchanged where it was
already defined). The process is effective so it is easy to check that f is computable.

It remains to prove that (forf constructed in this way) every sequenceα ∈Ω has anf -preimage
outsideU . By definition, at any staget of the construction there existsf -preimageωt that is not
covered by the already discovered part ofU . Moreover, ast increases, the pointsωt converge to
some limit sequenceω (we prove the stabilization property at leveli by induction overi; note that
the number of possible changes on leveli is bounded by 2ki). It remains to verify thatω does not
belong toU and thatf (ω) = α.

By way of contradiction, assume thatω is in U . Thenω belongs to some interval that is
discovered on some step. After that the sequencesωt do not belong to this interval, henceω does
not belong either.

Finally, let us verify thatf (ω) = α. Let z be an arbitrary finite prefix ofα; we have to show
that f (ω) starts withz. Let k be the length ofz. At every staget there exists ak-block string in the

148

binary subtree that is mapped toz. Whent increases, this string ultimately achieves its final value
and thereforeω has a prefix that guarantees thatf (ω) starts withz. ⊲

138 Using this argument, prove that for any sequenceα there exists a ML-random sequenceω
such thatα is Turing-reducible toω and this reduction needs only 2nlogn-bit prefix of ω to
generaten-bit prefix of α.

[It seems that this bound can be improved (according to Laurent); one of the possibilities is
to split α into blocks, too — but it is not clear whether this gives the best known result in this
direction.]

One may speculate about the “meaning” of this theorem as follows: For any sequenceα we can
a posterioriexplain how it could appear during an experiment: for a random ω this is the philo-
sophical assumption, and the transformationf is computable and therefore can be implemented.

149

6 General scheme for complexities
{class}

6.1 Decision complexity
{class-decision

We started with plain Kolmogorov complexityKS and then considered also prefix complexityKP
and monotone complexityKM . All three complexities were defined in terms of shortest descrip-
tions, but the notion of description was different in each case. For plain complexity the descrip-
tion modes (decompressors) were just computable functions, for prefix complexity the description
modes were computable continuous mappings of typeΣ → N⊥, for monotone complexity the de-
scription modes were computable continuous mappings of type Σ → Σ.

To be uniform, we may use computable continuous mappings of type N⊥ → N⊥ for plain
complexity. Recall that topology on the setN⊥ (and the set itself) was introduced in Section 4.4.3
(p. 79). It is easy to see that there are two possibilities fora continuous mappingf : N⊥ → N⊥:
either f (⊥) is some natural number (and not⊥), and the mapping is a constant one, orf (⊥) = ⊥
and the valuesf (n) for naturaln can be arbitrary. The mapping of the second type are in a natural
one-to-one correspondence with partial functions of typeN → N if we use⊥ as a replacement
for an undefined value. As before, computability is defined inthe following natural way: the
mapping f : N⊥ → N⊥ is computableif the set of pairs〈x,y〉 such thaty 4 f (x) is enumerable.
All the constant mappings are computable, and for non-constant ones computability means that
corresponding partial function is computable. (Recall that a partial function of typeN → N is
computable if and only if its graph is enumerable.)

So using this “new” definition of a description mode (decompressor) as a computable con-
tinuous mapping of typeN⊥ → N⊥ we get the same plain complexity. Indeed, we add constant
functions that map everything, including the element⊥, to some constantc, but they do not change
complexity more than byO(1). (A pedantic reader will stress that the function that maps every-
thing toc should not be identified with the function that corresponds to a total functionN → N that
maps everything toc since the latter one still maps⊥ to ⊥.)

All this formalism, however, is used only as a motivation forthe following scheme that explains
the origin of the complexities considered (see Figure 13): Each of the three complexities is obtained

N⊥ Σ

N⊥

Σ

KS

KP KM

?

Figure 13:KS, KP andKP revisited. {class-1}

when we consider computable continuous mappings of the description space into the object space
as description modes (decompressors).

This table has an empty cell; for this cell the description modes are computable continuous
mappings of typeN⊥ → Σ. Let us consider the corresponding definition in more details; we call

150

this complexitydecision complexityand denote it byKR (the notationKD were used too, but now
KD is used for the so-called “distinguishing complexity” so weuseKR for decision complexity to
avoid confusion).

Let us define decision complexity using some class of machines. Consider a machine that gets
a binary string as an input (and some end-marker is written onthe tape, so the machine knows
where the input ends) and prints bits on the output tape (one by one). The machine is not obliged
to stop, so for any input stringx we obtain a finite or infinite bit sequence as machine’s output. (If
the output sequence is infinite, it obviously is computable.)

Any machine of the described type defines a mapping of the set of all binary strings (that can
be identified with the natural numbers inN⊥) into a setΣ of all finite and infinite sequences. IfM
is a machine of this type, the complexityKRM(x) of a stringx (with respect to decompressorM) is
defined as the minimal length of a stringy such thatM(y) (the output sequence for inputy) starts
with x.

139 Check that there exists an optimal decompressorM in the described class of decompres-
sors (i.e., the decompressorM that leads to smallestKRM up toO(1) additive term).

140 Give the definition of computable continuous mappingsN⊥ → Σ. What is the difference
between this definition and the class of the machines described above and why it is not important
for the definition of complexity? [Hint: a continuous mapping can map⊥ into some non-empty
string.]

Therefore we can fill the empty cell in our table (Figure 14):

N⊥ Σ

N⊥

Σ

KS

KP KM

KR

Figure 14: Four complexities. {class-2}

The following theorem lists the main properties of the decision complexity:
{decision-complexity

Theorem 102 (a) If a string x is a prefix of a string y, then KR(x) 6 KR(y).
(b) The complexity of prefixes of a sequenceω ∈ Ω (which is a monotone function of the prefix

length) is bounded(by a constant) if and only if the sequenceω is computable.(The limit of the
complexity of prefixes may be called the decision complexityof the sequenceω. This complexity is
finite for computable sequences and infinite for non-computable ones.)

(c) KR(x) 6 KS(x)+O(1) for any string x.
(d) KR(x) 6 KM (x)+O(1) for any string x.
(e) KM (x) 6 KR(x)+O(logKR(x)) for any string x.
(f) KS(x|l(x)) 6 KR(x)+O(1) for any string x.

151

(g) If f : Σ → Σ is a computable continuous mapping, then KR(f (x)) 6 KR(x) + O(1) (the
constant in O(1) may depend on f but not on x).

(h) If f : Σ → N⊥ is a computable continuous mapping, then KS(f (x)) 6 KR(x))+O(1) (the
constant in O(1) may depend on f but not on x).

(i) If f : N⊥ → Σ is a computable continuous mapping, than KR(f (x)) 6 KS(x)+ O(1) (the
constant in O(1) may depend on f but not on x).

(j) Any prefix-free set of strings(none is a prefix of another one) that have decision complexity
less than n, has cardinality less than2n.

(k) The function KR is upper semicomputable(enumerable from above).
(l) The function KR is the smallest(up to a constant) function satisfying last two conditions: if

some function K is upper semicomputable and for every n the cardinality of every prefix-free set of
strings x such that K(x) < n for all elements of this set, is O(2n), then KR(x) 6 K(x)+O(1).

(m) KR(x) 6 KA(x)+O(1) for all strings x.

⊳ (a) An immediate corollary of the definition (description ofa string is at the same time
description of any its prefix).

(b) Assume that sequenceω is computable. Consider the machine that ignores its input and
printsω bit by bit, as a decompressor (description mode). All prefixes of ω have zero complexity
with respect to this decompressor (since the empty strings is their description), and therefore they
haveO(1) complexity (with respect to optimal decompressor), On the other hand, if the complexi-
ties of all prefixes ofω are bounded, some string has to be a description of infinitelymany prefixes,
thereforeω is computable.

(c) Any partial computable function whose arguments and values are binary strings can be
considered asKR-decompressor (don’t output anything before the computation is finished, then
print the result bit by bit).

(d) Any continuous computable mappingΣ → Σ can be considered asKR-decompressor (after
restriction on finite strings; we may say that we type the input string on the keyboard of a robust
machine just after the computation starts and do not touch the keyboard anymore).

(e) LetR : N → Σ be an optimal decompressor used in the definition of decisioncomplexity.
Consider a computable mappinĝR : Σ → Σ defined as follows:R̂(x̂u) = R(x), where ˆx is a self-
delimiting encoding ofx (say, thex itself prepended by the binary encoding ofl(x) with duplicated
bits and the separator 01) andu is any string (needed to ensure the monotonicity).

(f) Let againR : N → Σ be an optimalKR-decompressor. Define the conditional decompressor
S by letting S(y,n) be the firstn bits of the sequenceR(y) (if n exceeds the length ofR(y), then
S(y,n) is undefined).

(g) Consider a newKR-decompressor that is a composition of the optimalKR-decompressor
and the mappingf and compare this new decompressor with the optimal one.

(h) Consider the composition of an optimalKR-decompressor andf as aKS-decompressor.
(i) Consider the composition of an optimalKS-decompressor andf as anKR-decompressor.
(j) Two inconsistent strings cannot share a description (since in this case they would be prefixes

of some sequence, and the shorter string would be a prefix of the longer one). If all elements of a
prefix-free set of strings have complexity less thann, then their descriptions are different strings of
length less thann, and there exist less than 2n such strings.

152

(k) Applying in parallel the optimal description mode to allstrings, we get improving upper
bounds forKR (finding new descriptions from time to time) that converge totheKR.

(l) This is a first interesting claim in this theorem (up to nowwe had only simple variation on
known themes).

Let K be a function that satisfies (i) and (iii). Aiding a constant to K, we may assume without
loss of generality that there are at most 2n pairwise inconsistent stringsx such thatK(x) < n.

We construct a description mode that gives every stringx such thatK(x) < n a description of
length exactlyn. This is done independently (and in parallel) for eachn. Namely, we watch the
decreasing upper bounds forK and fill the (increasing) list of stringsx such thatK(x) < n. Consider
a subtree of a full binary tree that is formed by the strings inthe list and all their prefixes. This is a
growing subtree that has at any time at most 2n leaves. (Indeed, the leaves are inconsistent stringsx
such thatK(x) < n.) Let us attach a label to each leaf; this label is a string of lengthn. When the
subtree grows by adding some new string, this string either extends one of the leaves (no more a
leaf) or creates a new branch (being attached to some internal node). In the first case the new string
is a leaf, and this leaf keeps the label of the superseded one.In the second case we provide a new
label for the new leaf (which is possible since we have less than 2n leaves).

Let us fix a label and look what happens with leaves carrying this label. Initially the label is
unused. It is possible that the label remains unused forever(we do not need that many labels), but
if it is not the case, the label is attached to some leaf and then moves up the tree (next position is
a continuation of the previous one). So this label marks somebranch of the tree (finite or infinite
sequence of zeros and ones). In this way we get a function thatmaps strings of lengthn (i.e.,
labels) toΣ (the strings that are not labels are mapped toΛ, the empty sequence).

Combining these mappings for alln, we get aKR-description mode that provides complexity
at mostn for all stringsx such thatK(x) < n, just as we claimed.

(m) If xi are pairwise inconsistent binary strings, then∑2−KA (xi) 6 1 (since 2−KA(xi) equals a
priori probability of the setΣxi and these sets are disjoint). Therefore we have at most 2n strings
such thatKA(xi) < n and may refer to the previous statement.⊲

141 Prove thatKR(x) can be defined as follows: for any computable functionSof two argu-
ments (the first is a binary string, the second is a natural number; values off are zeros and ones)
let KRS(x) for a stringx = x0 . . .xn−1 as the minimal length of the stringy such thatS(y, i) = xi for
all i = 0,1, . . . ,n−1. Then we choose an optimal function among all function of this class, and it
defines decision complexity.

142 Show that the decision complexity of a stringx equals (up toO(1)) the minimal value of
KS(p) for all programsp (in a given programming language, say,Pascal) that ignore their input
and output the stringx or any its continuation.

[If we replace hereKS by KP , we get in the similar way an upper bound for monotone com-
plexity. Will it be tight? Probably not, but a specific example is needed.]

6.2 Comparing complexities
{classcomp}

There are four complexities in our table (two options for thespace of objects are combined with two
options for the space of descriptions). The following diagram (Figure 15) shows the inequalities

153

between them (up toO(1) additive term):

KR

KP

KS KM

Figure 15: Inequalities between complexities. {class-3}

Some people would like to avoid references to topological notions like continuous mappings,
though these notions are quite relevant here as the theory ofabstract data types (Dana Scott lattices
and related notion off0-spaces in the sense of Ershov), see [?]. These reader will appreciate the
following simplified construction that is still enough to define the four complexities in the table.

Consider the setΞ = B∗ of all binary strings and two binary relations:x = y means that strings
x andy are equal;x≍ y means thatx andy are consistent (one is a prefix of the other one). Letα
andβ be one of these two relations (so there are four combinationsfor the pairα,β).

A set S ⊂ Ξ × Ξ is called α-β -regular if the following condition is true for any
stringsx1,x2,y1,y2:

(x1,y1) ∈ S,(x2y2) ∈ S,x1αx2 ⇒ y1βy2

For example,=-=-regular binary relations are just graphs of functions.

143 (a) Show that every≍-=-regular relation determines a continuous mapping of type{computable-sets
Σ → N⊥.

(b) Show that every≍-≍-regular relation determines a continuous mapping of typeΣ → Σ.
(c) Show that every=-≍-regular relation determines a continuous mapping of typeN⊥ → Σ.

Now byα-β -description modewe mean an enumerableα-β -regular binary relation onΞ×Ξ.
For any description modeSwe define the complexity functionKS: let KS(x) be the minimal length
of a description ofx. i.e., the minimal value ofl(y) for all y such that〈y,x〉 ∈ S.

Theorem 103 For any of the four combinationsα,β ∈ {=,≍} there exists an optimalα-β -
description mode(that provides minimal complexity function up to O(1)) and the corresponding
complexity is one of the four known complexities KS,KP ,KM ,KR .

⊳ In all four cases enumerableα-β -regular relations correspond to computable continuous
mapping of the corresponding sets (see Problem 143), that gives the same complexity function,
and vice versa.⊲

So we can provide new labels for rows and columns of our table (Figure 16):

144 Show how one can define for pairs of strings:
(a) monotone complexity (using computable continuous mappingsΣ → Σ×Σ as decompres-

sors; such mappings are in one-to-one correspondence with pairs of computable mappingsΣ → Σ);

154

= ≍

=

≍

KS

KP KM

KR

Figure 16:α-β -complexities {class-4}

(b) a priori probability (using probabilistic machines that have two output tapes where bits are
printed sequentially);

(c) decision complexity (using computable continuous mappingsN⊥×Σ×Σ).

[There is almost no information about these notions: for example, is it true thatKM (x,y) 6

l(x)+ l(y)?]

Another classification scheme that goes back to [?]) defines each version of complexity as the
smallest upper semicomputable function in some class (of functions that satisfy some restrictions).
We have already considered these restrictions, so we just collect the results obtained and give the
conditions for each complexity version:

• the number of stringsx such thatK(x) < n is O(2n) (plain complexityKS, Theorem 8, p. 21);

• the series∑x2−K(x) converges (prefix complexityKP , Theorem 56, p. 89);

• any prefix-free set of stringsx such thatK(x) < n hasO(2n) elements (decision complexity
KR, Theorem 102, p. 152);

• ∑x∈X 2−K(x) 6 1 for any prefix-free setX of binary strings (a priori complexityKA , Theo-
rem 73, p. 116).

These scheme gives the same four complexities with one important exception: we get a priori
complexity instead of monotone complexity. (There is no problem with prefix complexity, since it
coincides with the negative logarithm of the largest lower semicomputable semimeasure onN.)

Combining these two quadrilaterals, we get a pentagon: (Figure 17):

KR

KP

KS
KM

KA

Figure 17: {class-5}

155

Let us recall basic results that relate complexities in thispentagon. First, all five complexities
differ at most byO(logn) for strings of lengthn. Indeed,KP(x) 6 KS(x)+ O(logKS(x)) (The-
orem 59, p. 92). On the other hand,KS(x) 6 KS(x|l(x))+KS(l(x)) 6 KR(x)+O(logn). So the
two most distant complexities in the pentagon (the upper oneand the lower one) differ at most by
O(logn) for strings of lengthn.

A more complicated picture arises if we want to bound the difference between two complexities
in terms of the complexities itself, not the length (note that complexity can be much less than
length). This is indeed possible for two lines that go in the north-east directions:

KP(x) 6 KS(x)+O(logKS(x))

(see Theorem 59) and
KM (x) 6 KR(x)+O(logKR(x))

(Theorem 102). (The similar inequality withKA instead ofKM follows, as we have already
mentioned in Problem 110, p. 123.) For “north-west” lines the situation is different: Indeed,KM
and KR are bounded for prefixes of a computable sequence (e.g., for strings that contain only
zeros) whileKS andKP are not (the string ofn zeros has the same complexity as the integern,
and can be of order logn for somen). n). We have already discussed this question in Theorem 79
and noted that the difference betweenKP andKM can be of order logn in both directions (for
infinitely manyn and for somex of lengthn). We also noted (without proof) Gacs theorem that
says that the difference betweenKM andKA is not bounded (Theorem 80).

There are rather subtle results about relations between different complexities. For example,
none of the results above guarantees that the difference betweenKP(x) andKS(x) tends to infinity
asx goes to infinity (we consider herex as a natural number). This is indeed true, as the following
theorem shows; this theorem was proved in R. Solovay manuscript written in 1970ies and not
published (though circulated among experts).

{solovay-bound
Theorem 104

KS(x) 6 KP(x)−KP(KP(x))+KP(KP(KP(x)))+O(1)

⊳ As we have seen (Theorem 58, p. 91), the logarithm of the number of stringsx such that
KP(x) < n does not exceedn−KP(n)+ for somec and for alln. We can enumerated all these
strings (givenn), so each of them can be reconstructed if we known and the ordinal number
of the string in the enumeration. This ordinal number can be written as a sequence of exactly
n−KP (n)+ c bits (we add left zeros when needed). So when this ordinal number is given, we
know alreadyn−KP(n) (thec is a constant, so we ignore it), and to restoren we need only to know
KP(n) that can be described by a self-delimiting code of lengthKP(KP(n)). So we concatenate
this self-delimiting code and the ordinal number ofx in the enumeration, and in this way we get
(for anyx such thatKP(x) < n) the description ofx that has lengthKP(KP(n))+n−KP(n)+c.
ThereforeKS(x) 6 n−KP(n)+KP(KP(n))+O(1). Theorem is proved.⊲

[Other results of Solovay should be added.
Any results aboutKM vs. KA?

156

Muchnik result about two sequencesxi andyi such thatKS(xi)−KS(yi) → +∞ but KP(xi)−
KP(yi) →−∞.

Miller KS vs KP here?
Monotone complexity of pairs: is it true thatKM (x,y) 6 KM (x)+KM (y)?
A priori complexity for pairs differs from monotone complexity?]

6.3 Conditional complexities
{classcond}

We have already considered several versions of conditionalcomplexity (of one string relative to
the other one). In Section 2.2 we have defined the conditionalcomplexityKS(x|y) as the minimal
length of a stringp that describesx wheny is given, i.e., a stringp such thatS(p,y) = x. HereS is
the conditional decompressor that is optimal in the class ofall partial computable binary functions.

In Section 4.7 we defined the conditional prefix complexityKP(x|y). In this definition we
requiredS to be prefix-stablewith respect to p: this means that isS(p.y) = x for somep, then
S(p′,y) = x for any stringp′ that has prefixp.

Finally, in the proof of Theorem 85 we mentioned the conditional monotone complexity
KM (x|y). For its definition a description mode (decompressor) is a computable family of com-
putable continuous mappingsDy : Σ → Σ (indexed by stringy). The computability of this family
means that the set of triples〈y,u,v〉 such thatv 4 Dy(u) is enumerable.

The conditional decision complexity can be defined in a similar way.
In these four definition we consider conditions as terminated bit strings, and the behavior of the

decompressor is unrelated for different conditions: if we know thatp is a description ofx relative
to y, this gives us no information about the values of decompressor for any othery.

In other terms, a decompressor (say, for the conditional prefix complexity) can be considered
as a computable mapping

D : Σ×N → N⊥;

in the pair〈p,y〉 ∈Σ×N the stringp is considered as a description (andD is monotone with respect
to p) andy is a condition, and no monotonicity is required.

If we change this and consider conditions also as vertices ofbinary tree requiring monotonicity
over conditions, we get four other versions of conditional complexity. These version are not widely
used ([?] is one of the few exceptions).

In this way we get 8 versions of conditional complexities (for each of three components, i.e.,
conditions, descriptions and objects, we have two possibilities). The most non-technical defini-
tion of these complexities goes as follows. Letα,β ,γ ∈ {=,≍} (see Section 6.2). An(α,β)|γ-
decompressor (description mode) is an enumerable setSof triples〈p,x,y〉, such that

〈p1,x1,y1〉 ∈ S, 〈p2,x2,y2〉 ∈ S, p1α p2, y1γy2 ⇒ x1βx2

The we defineKS(x|y) as the minimal length of a stringp such that〈p,x,y〉 ∈ S.

Theorem 105 In all eight cases there exists an optimal decompressor S that gives the smallest
complexity KS (up to O(1), among all the decompressors of that class).

157

145 Give the detailed proof of this theorem (it follows the same scheme as in the case of plain
or prefix conditional complexity).

In each of eight classes let us fix some optimal(α,β)|γ-decompressor and denote the cor-
responding complexity byK(α,β)|γ . In this notationKP(x|y) (as defined earlier) isK(≍,=)|= and
KS(x|y) is K(=,=)|=.

146 Show that by replacing= by ≍ in the place ofγ we may only increase the complexity.
[Hint: This replacements adds more restrictions for a decompressor, so we get less decompressors.
For the same reasons the plain complexity does not exceed theprefix one.]

[Problem (probably not very difficult): show that this increase is essential (greater thanO(1))
and investigate related questions.]

Let us give an example of a statement that involves conditional complexities as they are defined
above:

147 Prove that

KS(x) 6 K(=,=)|≍(x|y)+KR(y)+O(logKR(y)).

Let us now describe one more approach to the definition of the conditional complexity that
goes bask to Kolmogorov’s interpretation of logical connectives as operations on problems. The
conditional complexity ofx wheny is known can be described as the complexity of the problem:
“transformy into x”; moreover, this problem can be considered as a set of all functions that mapy
into x (any function that mapsy to x is a “solution” of this problem).

More formally, let us consider the spaceF whose elements are all partial functions whose
arguments and values are natural numbers. Let us introduce the following partial order on this set:
f1 4 f2 if f2 is an extension off1 (i.e., f1(y) = x implies f2(y) = x). By finite elementsof F we
mean functions with finite domain. For each finite elementf ∈ F consider its cone, i.e., the set of
all its extensions{y| f 4 y} (both finite and infinite). We call a continuous mappingT : N⊥ → F

computableif the set of pairs〈a, f 〉 such thata∈ N⊥, f is a finite element ofF and f 4 T(a), is
enumerable. Continuous computable mappingsN⊥ → F are used decompressors for function. For
any functionf ∈ F we define the complexity off (with respect to decompressorT as the minimal
length of the string (or, better, the logarithm of the number— recall that we identify strings with
natural numbers)a such thatf 4 T(a).

148 Prove that there exists an optimal decompressor (in this sense) and that the complexity of
the functiony 7→ x (whose domain is a singleton{y} and whose value isx) is KS(x|y)+O(1).

We can give a similar interpretation of all eight conditional complexities defined above: for
every two spacesY,X ∈ {N⊥,Σ} we define the space of functions(Y → X) and then consider
computable mappings of the space of descriptionsP∈ {N⊥,Σ} into the function space(Y → X).
The definition of the function space is given in the spirit of Scott domain theory (or the theory of
f0-spaces in the sense of Ershov, see [?] for details).

A slightly different interpretation of (plain) conditional complexity as the complexity of the
problem “transformy tox” is considered in Chapter??; it does not use the computability in function
spaces.

158

The related notion of complexity for functions was considered by Schnorr[?, ?]. Recall that a
numbering(an important notion on recursion theory) is a mappingν that maps each natural number
n into some (partial) functionνn whose arguments and values are natural numbers. A numbering
ν is computable, if a (partial) function of two arguments

〈n,x〉 7→ νn(x)

is computable. A numberingν is called aGödelnumbering if for any other computable numbering
µ there exists a computable function thatreducesµ to ν in the following sense:µn = νh(n) for
everyn. (In particular, the range of a Gödel numbering is the set ofall computable functions.)

Following Schnorr, we make this condition stronger and require additionally thath(n) = O(n)
(in other terms, the length of the stringh(n) exceeds the length of stringn at most by a constant, if
we identify the natural number with binary strings). If sucha functionhexists for every computable
numberingµ, the numberingν is calledoptimal.

Theorem 106 There are optimal numberings.

⊳ Consider any reasonable programming language for binary functions and let ˆuv be aν-
number of the function obtained by fixing first argument equalto v in the function that has
programu. (Hereu is some self-delimiting encoding ofu, i.e., u with doubled bits and 01 ap-
pended.)⊲

Schnorr [?, ?] has shown that any two optimal numberingsν1 andν2 can be translated into each
other by a computable permutationπ that changes the size at most byO(1) (in both directions):
this means thatν1(n) = ν2(π(n)) for everyn and thatπ(n) = O(n) andπ−1(n) = O(n).

6.4 Complexities and oracles
{classlim}

Relativizationis a well known method in computability theory. We take some definition or state-
ment that involves the class of computable function, and replace computable functions by functions
that are computable with some oracle (computablerelative tothis oracle). Usually the oracle is a
total functionα whose arguments and values are natural numbers and/or binary strings, for exam-
ple, a characteristic function of some setA. An algorithm is allowed to call an “external procedure”
that computes the valueα(n) for a given value of the parametern. If α is a characteristic function
of a setA, this means that we may ask whether somen belongs toA or not. If the functionα
is not computable, this permission to askα-oracle increases our capabilities and we get a class
of α-computablefunctions that contains all computable functions but also some non-computable
ones (e.g.,α).

Then we can develop the general theory of algorithms as usualand define, sayα-enumerable
sets, orα-computable real numbers, or (closer to our subject)α-lower-semicomputable semimea-
sures etc. And practically all the theorems of general theory of algorithms (and their proof) remain
valid, we need just to add “α-” for all the notions. This procedure is called “relativization”.

In particular, for a given setA we may define the notion ofA-relativized Kolmogorov com-
plexity allowing decompressors to use oracleA. This can be done for plain, prefix and all other

159

versions of complexity that we have considered (unconditional or conditional). The use of oracle
is shown by a superscript, so, e.g.,KPA(x) denotes prefix complexity relativized by oracleA.

In fact we can prove a bit more: instead of defining complexityfor a given oracleA up toO(1)
additive term (by proving the existence of an optimalA-decompressor) we may define (with the
same precision) the function of two arguments:

〈A,x〉 7→ KA(x)

(hereK is one of the complexity versions, say,KP or KM).

149 Show that this indeed can be done and that the resulting complexities coincide with the
limits of conditional complexities defined in Section 6.3:

KPA(x) = K≍,=(x) = lim
n→∞

K(≍,=|≍)(x|An),

whereAn is the prefix of lengthn of the characteristic sequence of the setA. (The similar statements
are true for other complexity versions.)

Note that relativized complexity does not exceed the non-relativized one (up toO(1)), since
the algorithm with an oracle is not obliged to use it in any way, so all decompressors areA-
decompressors.

For some oraclesA and some stringsx theA-complexity ofx can be much smaller than oracle-
free complexity. For example, letA be the universal enumerable set This set is usually denoted by
0′. In other words,0′-oracle is an oracle for the halting problem. We may send any program (with
its input) to this oracle and it will tell us whether the program terminates at this input.

Using this oracle, we can find for every stringx its shortest description (in the standard sense,
without oracle) since the oracle tell us which computationsterminate. Therefore, the function|KS
is 0′-computable (the same is true forKP , conditional complexities etc.), and the list of all strings
of complexity less thann (that hasn+O(1) complexity without the oracle), as well as the numbers
B(n) andBB(n) (see Section 1.2) now have0′-complexity onlyO(logn).

On the other hand, most strings of lengthn have0′-complexityn−O(1), and therefore their
0′-complexity is close to their non-relativized complexity (and to their length).

6.4.1 Complexity with large numbers as conditions

Let us define a new type of conditional complexity, i.e., the complexity of a stringx relative to the
setA. Informally speaking, we want to measure the complexity of the following task “obtainx
from any element of the setA”.

This complexity has several equivalent (up toO(1) definitions).
Here is one of them. Fix some reasonable programming language. (Formally speaking, “rea-

sonable” means that the numbering corresponding to this language is a Gödel numbering, i.e., there
exists a translation algorithm from any other programming language, see [?] for the details.) Now
let us define the conditional complexity of an objectx with conditionA and the minimal (plain)
Kolmogorov complexity of a program that mapsevery element ofA into x. (A generalization of
this definition is considered in Chapter??.)

160

The existence of a translation algorithm guarantees that this notion is well-defined, i.e., that the
complexity defined in this way does not depend on the choice ofa programming language (Gödel
numbering).

One should not mix this complexity with a completely different notion: a conditional com-
plexity of x with conditionA given as a list of its elements. In our case we get not the list of
all elements ofA, but only one of them, and should be prepared to deal withany element ofA.
To stress this distinction, we use the notationKS(x‖A) for the new complexity (whileKS(x|A)
denotes the condition complexity ofx if a finite setA is given as a list of its elements).

A different (but equivalent) definition ofKS(x‖A) can be given as follows. LetD (decompres-
sor) be a computable partial function of two arguments. Letx be a binary string and letA be a set
of binary strings. We defineKSD(x‖A) as the minimal length of a stringp such thatD(p,y) = x
for everyy∈ A.

150 Prove that there exists a optimal decompressor in this class(that give the minimal func- {relative-complexity
tion KSD(·‖·) up toO(1) additive term). Prove thatKSD for optimalD coincides (up toO(1)-term)
to the complexity defined above.

For a singletonA = {a} the complexitiesKS(x|A) andKS(x‖A) coincide with the standard
conditional complexityKS(x|a) up toO(1)-term (see Problem 23).

Now letA be the set of all integers greater than some (presumably) large numbern. (As usually,
we identify natural numbers with binary strings.) The complexity of a stringx with respect to this
set we denote byKS(x‖ > n). Obviously, thus complexity does not exceedKS(x) and is a non-
increasing function ofn (and, more generally,KS(x‖A) can only decrease ifA becomes smaller; it
becomesO(1) for the empty setA). So there exists some limit asn→ ∞.

{large-number-condition1
Theorem 107

lim
n→∞

KS(x‖ > n) = KS0′(x)+O(1).

⊳ Assume that the limit equalsk. Then here exists a programp of complexityk that maps all
sufficiently large numbers tox. If an oracle0′ is available, this program can be considered as a
0′-description ofx. Indeed, given this program, we search forN andy such thatp does not map
anyn > N into an object that differs fromy. The emphasized property can be checked by using
0′-oracle since it has an enumerable negation. And our assumption guarantees thaty equalsx.
Therefore,

KS0′(x) 6 lim
n→∞

KS(x‖ > n)+O(1).

On the other hand, lety be a description ofx with respect to a0′optimal decompressor and let
k be the length ofy. Consider a following program that has additional inputN: makeN steps of
the enumeration of the universal set0′ and then use the set of enumerated elements as a oracle for
decompression ofy. This program can be constructed effectively giveny, therefore its complexity
does not exceedKS(y)+O(1) 6 l(y)+O(1) = k+O(1). On the other hand, ifN is large enough,
this program generatesx (since only finite number of oracle calls are performed during the decom-
pression ofy, for all sufficiently largeN these questions get correct answers even if the oracle is
replaced by itsN-approximation).⊲

161

It turns out that a similar question is true if we replaceKS(x‖ > n) by supm>nKS(x|m). Note
that

sup
m>n

KS(x|m) 6 KS(x‖ > n),

since the optimal program in the right-hand side can be used for anym in the left-hand side. This
is easy; the surprising result is that both sides have the same limit asn→ ∞ (up toO(1) term):

{large-number-condition2
Theorem 108

limsup
n→∞

KS(x|n) = KS0′(x)+O(1).

⊳ We have to prove that if (for some stringx and integerk)

KS(x|n) < k for any sufficiently largen,

then 0′-complexity of x does not exceedk+ O(1). The difficulty here is that here (unlike the
previous theorem) the program of length less thank can depend onn, and none of them works for
all sufficiently largen.

Note that there is less than 2k stringsx with this property (for a givenk). Indeed, if we have
more of them, then for sufficiently largen we run out of programs of length less thank.

It would be enough to prove that the set ofx that have this property is a0′-enumerable set
whose enumeration effectively depends onk (in other terms, it would be enough to prove that the
functionx 7→ limsupKS(x|n) is 0′-enumerable from above). However, the natural descriptionof
this set,

∃N(∀n > N) [KS(x|n) < k],

shows only that it is aΣ3-set (the condition in brackets is enumerable and two quantifiers precede
it), so we choose an another approach.

Note that we do not really need that this set is0′-enumerable. It is enough to show that it is a
subset of an0′-enumerable set that contains less than 2k elements for a givenk. This can be done
as follows.

Consider the two-dimensional enumerable set of pairs〈n,x〉 such thatKS(x|n) < k. This set
(for anyk) is “thin” in the following sense: all vertical sections of this set (for fixedn) contain less
than 2k elements.

Consider some point〈n,x〉. Let us try to add a horizontal ray that goes on the right from this
point, to our set (i.e., add all pairs〈m,x〉 for all m> n). The set may remain thin or not, and this
two cases can be distinguished by an0′-oracle. Indeed, the negation of being thin is an enumerable
property (there exists a section that has at least 2k different elements including the added one).

Let us perform this attempts (to add the horizontal ray starting from some pair〈n,x〉) sequen-
tially for all pairs in some order. (If some ray is added successfully, then its elements are taken into
account for all subsequent attempts.) This process is0′-computable and therefore the ordinates of
all added rays form a0′-enumerable set.

This set has less than 2k elements (since we add rays only if the resulting set is stillthin) and
contains everyx such that limsupK(x|n) < k. Indeed, for such anx there is some ray that lies
entirely is the initial set, and this ray can be added at any time.⊲

162

(This proof is a simplified version of the proof given in [?].)
We can also obtain the results for prefix complexity that are similar to Theorem 107 and 108.

However, the definition of a conditional prefix complexity with respect to a set is quite subtle, so
we postpone its discussion and start with the second theorem.

{large-number-condition3
Theorem 109

limsup
n→∞

KP(x|n) = KP0′(x)+O(1)

⊳ Using a priory probabilities (conditional and unconditional), we rewrite the statement as
follows:

liminf
n→∞

m(x|n) = m0′(x)

(the equality is understood up to a bounded factor in both directions).
Let us show first that the left-hand side does not exceed the right-hand side (or, more precisely,

exceeds it at most by aO(1) factor). Indeed, let us consider an0′-oracle probabilistic machine
whose output has distributionm0′. Then for any integern we may run this machine with a changed
oracle: instead of the entire oracle we use its approximation obtained aftern steps. This, of course,
changes the output distribution, however, the liminf of theprobabilities to get somex usingn-
approximation to the oracle (asn→ ∞) is greater than or equal to the probability to getx with the
entire oracle. Indeed, ifx appears in a0′-computation for some combination of random bits, then
this computation depends only on some finite part of the oracle and therefore the same random bits
will give the same outputx if the approximation to the oracle is good enough (i.e.,n is sufficiently
large). (Note that liminf can be bigger than the probabilityto getx with a correct oracle, since
approximate oracles can lead to outputx for a combinations of random bits that do not generatex
with a correct oracle.)

Now let us prove the reverse inequality. This proof resembles the proof of Theorem 108. We
have a lower semicomputable family of semimeasures: for each n the functionx 7→ m(x|n) is a
semimeasure (i.e.,∑xm(x|n) 6 1 for eachn). It follows that the function

m′(x) = lim inf
n→∞

m(x|n)

is also a semimeasure, i.e., the sum∑xm′(x) does not exceed 1. If this function were0′-lower-
semicomputable, this would finish the proof; however, we have the equivalence

r < lim inf
n→∞

m(x|n) ⇔ (∃q > r)∃N (∀n > N) [q < m(x|n)]

where the right-hand side has too many quantifiers (note thatthe property in the brackets is enu-
merable, not decidable). But again we may replace the function m′ by any larger function, so it
remains to construct an0′-lower-semicomputable upper bound form′.

To achieve this goal let us consider triples〈N,x,ε (whereε is a positive rational number). For
a given triple we try to increase the valuesm(·|·) up toε on a ray that consists of pairs〈n,x〉 for
fixed x and for alln > N. This change is performed only if we get semimeasures (i.e.,for everyn
the sum over allx does not exceed 1).

163

As before, we can check whether such an increase is possible using 0′-oracle. (Indeed, the
violation is an enumerable event.) Let us consider sequentially all triples and perform the increase
when possible (the increased values are taken into account on the subsequent steps). Then for each
possible increase we keep the values ofx andε. In other words, we consider a function that on
everyx is equal to the upper bound of allε that are used for increase together with thatx. In this
way we get a0′-enumerable family of semimeasures that is an upper bound for m′. Indeed, ifm′

is greater thanε for somex, the functionm is greater thanε on some ray, increase does not really
change anything and therefore is possible.⊲

To formulate a similar statement forKP(x‖ > n) we should first of all define this prefix com-
plexity relative to a set. Here we have several possibilities, and it is unclear which of the is “the
right thing”.

We may try to defineKP(x‖A) and the minimal prefix complexity of a program that outputsx
when applied to any element ofA. However Problem 79 (p. 94) shows that this definition does
not matchKP(x|a) for singleton conditions, so probably this definition is nota good one.

Another definition is similar to the approach used in Problem150. Consider an arbitrary com-
putable function〈p,x〉 7→ D(p,x) that is prefix-stable with respect to its first argument (if the
second one is fixed). For anyx and for any setA we then defineKPD(k‖A) as the minimal length
of a stringp such thatf (p,n) = k for all n∈ A. The difference (compared to plain complexity) is
that we require the conditional decompressor to be prefix-stable with respect to the first argument.
There exists an optimal decompressor in this class that gives the least functionKPD (up toO(1)
additive term). This function can be called prefix complexity KP(x‖A).

151 Show that the same complexity (up toO(1)) is obtained if decompressors are computable
continuous mappingsΣ → F (hereΣ is the space of finite and infinite sequences of zeros and ones,
andF is the space of partial functions fromN to N) and complexity is a shortest string that is
mapped to some partial function that is equal tox on any element ofA.

We can also define the prefix complexity with set condition using prefix-free functions instead
of prefix-stable ones. Again, in the class of computable prefix-free functions there exists an optimal
one (that gives the smallest complexity functionKP f (x‖A)). In this way we get the definition of
some functionKP ′(x‖A) that resembles the conditional complexityKP ′(k|n) and coincides with
it (up toO(1)) if A = {n}.

Finally one can define a priori probabilitym(x‖A). For that we consider some probabilistic
machine that has inputy and the measure of the set of all sequencesω ∈ Ω that (being used as
random bits) makes the machine transform any inputy ∈ A into x. Again, there exists an opti-
mal machine that maximizes this probability (up toO(1) constant factor) and for singletons this
definition coincide with our definition of the conditional a priori probability.

The inequalities

− logm(k‖A) 6 KP(k‖A)+O(1) 6 KP′(k‖A)+O(1),

can be proved as we did for conditional prefix complexity, butthe argument that showed us that
all three expression coincide does not work as before, and authors do not know whether these
inequalities are strict. But it is easy to see that all three expressions are greater than

− log inf
x∈A

m(k|x) = sup
x∈A

KP(x|a),

164

so any of them can be used in the theorem similar to Theorem 107. In particular forKP(x‖A)
(which seems to be most natural among all three) we get the following result:

{large-number-condition4
Theorem 110

lim
n→∞

KP(x‖ > n) = KP0′(x)+O(1).

[It would be nice to find out whether the inequalities indeed are strict.]

6.4.2 Limit frequencies and 0′-a-priori-probability

We conclude this section by a result from [?]; it relates the frequencies in computable sequences
to the0′-relativized prefix complexity.

Let f (0), f (1), . . . be a computable sequence of natural numbers. For a givenn andk let us
count the appearances ofk among f (0), . . . , f (n−1) and divide the result byn. The ratio can be
called thefrequencyof k among the firstn terms of the sequence.

Now for a fixedk consider the limit inferior of this frequency asn → ∞; we call it lower
frequencyof elementk in the sequencef .

Let pk be a lower frequency ofk in a given sequence. It is easy to check that∑k pk 6 1. Indeed,
if some partial sum of this series exceeds 1, then a finite sum of limit inferiors exceeds 1, and for
sufficiently largen the sum of the frequencies among the firstn terms of the sequence exceeds 1,
which is impossible.

The following statement is true for any computable sequencef :
{zero-prime-semimeasure

Theorem 111 The function k7→ pk is 0′-lower-semicomputable.

(Herepk is lower frequency ofk; the definition of the lower semicomputable function is given
in Section 4.1; now we consider0′-relativized version of this definition.)

⊳ Indeed, the statementr < pk (wherer is some rational number) is equivalent to the following
one:

there exist a rational numberp > r and integerN such thatthe frequency of k among
the first n terms of f exceeds p for any n> N.

The property printed in italics is co-enumerable (has an enumerable negation): if it is not
true, we can establish it by showing the numbern that violates it. Therefore this property is0′-
decidable (we apply the oracle to the algorithm that searches for thatn). So the propertyr < pk is
0′-enumerable.⊲

In fact we use the following general observation:

152 Let rn be a computable sequence of rational numbers. Show that liminf rn is a0′lower-
semicomputable real number and the corresponding0′-algorithm can be effective found given an
algorithm forrn.

By the way, the reverse statement is also true:

153 Any 0′-lower-semicomputable real number is a limit inferior of a computable sequence{liminf-criterion
of rational numbers.

165

[Hint: This number is a supremum of a0′-computable sequence of rational numbersrn. Each
rn is an ultimate values of a stabilizing sequencern,k. Let sk be the maximum ofr0,k, . . . , rt−1,k

wheret is the smallest number such thatrt,k 6= rt,k−1.]

It turns out that for an appropriate sequencef the functionk 7→ pk is a maximal0′-lower-
semicomputable semimeasure. This is a corollary of the following result:

{zero-prime-maximal
Theorem 112 For any 0′-lower-semicomputable sequence q0,q1, . . . of non-negative reals such
that ∑i qi 6 1 there exists a computable sequence f(0), f (1), . . . such that lower frequency of any
k in the sequence f is at least qk.

This allows us to give an equivalent definition of0′-relativized prefix complexity ofk: it is the
negative logarithm of the lower frequency ofk in the optimal sequencef (that gives maximal lower
frequencies up toO(1)-factor).

⊳ Sinceqk is lower semicomputable, the set of pairs〈r,k〉 wherer is a rational number smaller
thanqk is 0′-enumerable. As we know from the general computability theory (see, e.g., [?]), 0′-
enumerable sets areΣ2-sets, i.e., there exists a decidable propertyRsuch that

r < qk ⇔∃u∀vR(r,k,u,v)

We use a slightly different representation ofΣ2-sets: there exists a computable total function
〈r,k,n〉 7→S(r,k,n) with 0/1-values such thatr < qk if and only if the sequenceS(r,k,0),S(r,k,1) . . .
has finite number of zeros. The sequenceS(r,k,0),S(r,k,1) . . . can be constructed as follows: we
consider (sequentially) the valuesu= 0,1,2, . . . and for eachu we search forv such thatR(r,k,u,v)
is false. While searching, we extend the sequence adding zeros; whenv is found, we add 1 to the
sequence and switch to the next value ofu. The number of zeros in the constructed sequence is
finite if and only if the search was unsuccessful for someu, i.e., if r < qk.

It is convenient to visualize this process as follows: from time to time the request “please make
qk greater thanr” appears for somek and r, (and the previous request with the samek and r is
canceled). Then we consider the requests that appear and arenever canceled later; they correspond
to pairs〈r,k〉 such thatr < qk. (The moments when requests appear correspond to zeros in the
sequenceS.) This process is computable. We may also assume without loss of generality that at
any given moment there is only finite number of requests exists. (This does not matter since only
the limit behavior of the sequence is important.)

Recall that we need a computable sequencef (0), f (1), . . . for which the lower frequency ofk
is at leastqk. To achieve this goal, it is enough to represent the given0′-lower-semicomputable
semimeasure as a limit inferior of a computable sequence of measures with rational values, i.e., to
construct a two-dimensional table of rational numbers

p0
0 p0

1 p0
2 . . .

p1
0 p1

1 p1
2 . . .

p2
0 p2

1 p2
2 . . .

.

such that each row has only finite number of non-zero elementsthat have sum 1, and that limit
inferior in thekth column is at leastqk. Indeed, let us assume that such a table is constructed.

166

Without loss of generality we may suppose that in theith row all the numbers are multiples of 1/i
(we can take approximation with precision 1/i not changing the limit). Then the sequencef can
be constructed as follows: first we use the first row as the table of frequencies, then switch to the
second row and use it much longer (to make the influence of the first row negligible), then use the
third row even longer (to make the influence of the first and second rows negligible) etc.

So it remains to construct a tablepi
j with the following property: if some request “please make

qk greater thanr” appears at some moment and is not canceled later, then thatkth column has limit
inferior at leastqk. This is done as follows: constructingnth row (at timen), we try to satisfy all
current requests (that have been appeared and are not canceled) according to their age (the oldest
request is treated first). For each request we increase the correspondingpk up to a givenr if this is
possible (does not make the sum greater than 1). We may assumethat there are many requests and
at some point the sum becomes greater than 1; at that moment wecut the last request (so the sum
is 1) and this finishes the construction ofnth row.

Why this helps? Imagine thatr < qk is true. Then the request “please makeqk greater thanr”
at some moment appears and is never canceled later. (It need not to be the first appearance of this
request.) Let us look at all requests that appear before thisone. Some of them are canceled later
(while others are “final”). Let us wait until all these cancellations happen. After that only “true”
requests (that are never canceled later) are older than our request, and for these true requests we
haver ′ < qk′. Their sum therefore does not exceed 1 together with our request, so the requests with
high priority at that time will not interfere with our request. ⊲

154 Prove that there exists a computable sequence where the lower frequencies coincide
with qk.

[Hint: combine the proof of this theorem with the solution ofProblem 153.]

155 Prove that theorem 112 remains true if we consider partial computable functionsf from
N to N instead of sequences: for any partial computable functionf from N to N there exists a
(total) computable sequenceg(0),g(1), . . . that have the same (or bigger) lower frequencies: for
anyk the lower frequency ofk in g is at least its lower frequency inf (0), f (1), . . . (which is defined
as the limit inferior of the number of appearances ofk among f (0), . . . , f (N−1) divided byN).
[Hint: for everyN the frequencies in the initial segment of lengthN form a lower semicomputable
semimeasure (it was a measure for total sequences); the construction used in the proof of The-
orem 109 allow to find an upper bound for the limit frequenciesby a 0′-lower-semicomputable
semimeasure. Then we apply Theorem 112.]

[Here could be the argument about oracles that do not changeKP and new proof of the exis-
tence of nonT-complete enumerable sets]

167

7 Shannon entropy and Kolmogorov complexity
{entropy}

7.1 Shannon entropy
{entropy-def

Consider an alphabetA that containsk lettersa1, . . . ,ak. We want to encode each letterai by a
binary stringci . Of course, we want allci to be different to avoid confusion. But this is not enough
if we write codewords without any separator. Example: letters A, B and C are encoded by strings
0, 1 and 01. All three codes are different, but two strings ABAB and ABC have identical codes
0101. So additional precautions are needed to guarantee unique decoding.

We want the code to allow unique decoding. At the same time we want it to be space-efficient.
It is good to have the stringsci as short as possible (without violating the unique decodingprop-
erty). And if we cannot make all codewords short, the priority should be given to the frequent
letters. (Similar considerations were taken into account when Morse code was designed.)

7.1.1 Codes
{prefix-codes

Let us give formal definitions now. Acodefor a k-letter alphabetA = {a1, . . . ,ak} consists ofk
binary stringsc1, . . . ,ck. These strings are calledcodewords(for the code considered); letterai has
encoding ci . Any A-string (finite sequence of letters taken fromA) has anencoding; to get it we
encode each letter and write these codes one after another (without separators).

A code isinjective if different letters have different codes. A codes isuniquely decodableif
any two differentA-strings have different codes. Aprefix codeis a code where no codeword is a
prefix of another codeword. (This is a traditional term; however, the more logical name “prefix-free
code” is also used.)

Theorem 113 Every prefix code is uniquely decodable.

⊳ The first codeword (the encoding of the first letter) is determined uniquely (due to the prefix
property), so we can separate it from the rest. Then the second codeword is determined, etc.⊲

156 Show that there exist uniquely decodable codes which are notprefix codes. [Hint. Con-
sider a “suffix” code.]

157 Construct an explicit bijection between the set of all infinite sequences of digits 0,1,2
and the set of all infinite sequences of digits 0,1. [Hint. Use the prefix code 07→ 00, 1 7→ 01,
2 7→ 1.]

158 Consider two prefix codesc1, . . . ,ck (for a k-letter alphabet) andd1, . . . ,dl (for a l -letter
alphabet). Show that stringscid j (concatenations of codewords from these two codes) form a prefix
code for akl-letter alphabet.

Before asking which of two codes is more space-efficient, we should fix frequencies of the
letters. Letp1, . . . , pk be non-negative reals such thatp1 + . . .+ pn = 1. The numberpi will be
called frequencyor probability of letter ai . For each codec1, . . . ,ck (for alphabeta1, . . . ,ak) its
average lengthis defined as

∑
i

pi l(ci)

168

Now we can formulate our goal: for givenp1, . . . , pk we want to find a code of minimal average
length inside some class of codes, e.g., an uniquely decodable code of minimal average length.

159 Which injective code has minimal average length (among injective codes) for
given p1, . . . , pn? [Hint: Put all letters in the decreasing frequency order, and all binary strings
in the increasing length order.]

7.1.2 The definition of Shannon entropy
{entropy-code-length

Shannon entropyprovides a lower bound for the average length of a uniquely decodable code. It is
defined (for given non-negativepi such that∑i pi = 1) as

H = p1(− logp1)+ p2(− logp2)+ . . .+ pk(− logpk)

(We assume thatplogp = 0 for p = 0 making functionplogp continuous at the pointp = 0.)
Some motivation for this definition: letterai appears with frequencypi , and each occurrence of

ai carries− logpi “bits of information”, so the average number of bits per letter isH. But then we
should explain also why we believe that each occurrence of the letter that has frequencypi carries
− logpi bits of information. OK, imagine that somebody has in mind one of 2n possible numbers
and you want to guess this number by asking yes or no questions. Then you needn questions, and
each answer gives you one bit of information; so when event having probability 1/2n happens it
brings usn bits of information.

Of course, the previous paragraph is just a mnemonic rule forthe definition of entropy. The
formal reason to introduce this notion is given by the following theorem:

{prefix-code-length
Theorem 114 Let p1, . . . , pn be non-negative reals such that p1 + . . .+ pn = 1.

(a) The average length of every prefix code c1, . . . ,ck is at least H(the entropy):

∑
i

pi l(ci) > H.

(b) There exists a prefix code such that

∑
i

pi l(ci) < H +1.

⊳ Note that this theorem deals only with the lengths of codewords (but not the codewords
itself). So it is important to know when given integersn1, . . . ,nk could be lengths of codewords in
a prefix code. Here is the criterion:

Lemma (Kraft inequality).Assume that non-negative integers n1, . . . ,nk are fixed and we want {kraft-lemma
to find binary strings c1, . . . ,ck of these lengths(l(ci) = ni) that form a prefix code(i.e., ci is not a
prefix of cj for i 6= j). This is possible if and only if

∑
i

2−ni 6 1.

This statement already appeared, see lemmas in the proofs ofTheorems 50 (p. 82) and 52
(p. 83). It is easy to explain: ifci is never a prefix of other stringc j , then the corresponding

169

intervals of lengths 2−ni are disjoint, and the sum of their lengths does not exceed 1. (Using the
probabilistic language: a random string of 0s and 1 has prefixci with probability 2−ni ; thesek
events are disjoint, so the sum of probabilities does not exceed 1.)

Going in the opposite direction, we can use a simpler argument that was used before (see the
proof of Theorem 52). The simplification is possible since wehave only a finite number (k) of
integers and they are given in advance. We can simply place the corresponding intervals of lengths
2−ni inside[0,1] from left to right going in decreasing length order. Then each interval is properly
aligned and corresponds to a binary string of lengthni .

Let us prove the theorem now. Without loss of generality we may assume that allpi are strictly
positive (since null values change neither Shannon entropynor average code length). The part (a)
of our theorem says that ifni are non-negative integers and∑i 2

−ni 6 1, then∑ pini > 1. It is true
for any realsni (even if they are not integers). Indeed, letqi be equal to 2−ni . In these coordinates
the statement reads as follows: ifqi > 0 and∑qi 6 1, then

∑ pi(− logqi) > ∑ pi(− logpi).

This inequality is sometimes calledGibbs inequality. To prove it, we rewrite the difference be-
tween right-hand side and left-hand side as

∑
i

pi log
qi

pi
(∗)

Then we use the convexity of the logarithm function: the weighted sum of logarithms does not
exceed the logarithm of the weighted sum,∑ pi logui 6 log(∑i piui) (if ui are positive). In our case
we see that(∗) does not exceed

log

(

∑
i

pi
qi

pi

)

= log
(
∑qi

)
6 log1= 0.

The item () is proven.
Let us mention also that the non-negative number

∑
i

pi log
pi

qi

is calledKullback – Leibler distancebetween two probability distributionspi andqi (so we assume
that∑qi = 1), orKullback – Leibler divergence; the latter name is better since this ‘distance” is not
symmetric. The convexity of logarithm (its second derivative is negative everywhere) guarantees
that this distance is always non-negative and equals zero only if pi = qi for all i.

To prove item (b), consider the integersni = ⌈− log2 pi⌉ (where⌈u⌉ is a minimal integer greater
than or equal tou). Then

pi

2
< 2−ni 6 pi

The inequality 2−ni 6 pi allows to use the lemma, so there exist codewords of corresponding
lengths. The inequalitypi/2 < 2−ni implies thatni exceeds(− logpi) less than by 1, and this

170

remains true after averaging: the average code length (∑ pini) exceedsH = ∑ pi(− logpi) less than
by 1. ⊲

In a sentence the idea of the proof can be explained as follows: if we forget that code-lengths
should be integers and allow anyni such that∑i 2

−ni 6 1, the optimal choice isni = − logpi

(convexity of the logarithm function); makingni integers, we lose less than 1.

Theorem 115 The entropy of the distribution p1, . . . , pn (with n possible values) does not exceed
logn. It equalslogn only if all pi are equal.

⊳ If n is a power of 2, the inequalityH 6 logn follows from Theorem 114 (consider a prefix
code wheren codewords have length logn. In general case we use Gibbs inequality forqi = 1/n
(for all i) and recall the this inequality becomes an equality only ifpi = qi . ⊲

7.1.3 Huffman code
{huffman-encoding

We have shown that the average length of an optimal prefix code(for given p1, . . . , pk) is some-
where betweenH andH +1. But how can we find this optimal code?

Let n1, . . . ,nk be the lengths of codewords for and optimal code (for givenp1, . . . , pk). Rear-
ranging the letters, we may assume that

p1 6 p2 6 . . . 6 pk.

It this case
n1 > n2 > . . . > nk.

Indeed, if a letter has longer code than another letter that is less frequent, the codewords exchange
(between these two letters) decreases the average length ofcode.

One can not also thatn1 = n2 for an optimal code (the two less frequent letter have the same
code-length). Indeed, ifn1 > n2, thenn1 is greater than allni. So the first term in the sum∑i 2

−ni is
smaller than all other terms, and the inequality∑i 2

−ni 6 1 cannot be an equality (all terms except
the first one are multiples of the second term) and the difference between its two sides is at least
2−n1. Therefore, we can decreasen1 by 1 and still do not violate the inequality∑i 2

−ni 6 1. This
means that the code is not optimal (in contrary to our assumption).

So we can look for an optimal code among codes that haven1 = n2; this optimal code minimizes
the sum

p1n1+ p2n2+ p3n3+ . . .+ pknk = (p1+ p2)n+ p3n3+ . . .+ pknk

(heren is the common value ofn1 andn2). In the last expression the minimum should be taken
over all sequencesn,n3, . . . ,nk such that

2−n+2−n +2−n3 + . . .+2−nk 6 1.

This inequality can be rewritten as

2−(n−1) +2−n3 + . . .+2−nk 6 1,

171

and the expression that is minimized can be rewritten as

(p1 + p2)+(p1+ p2)(n−1)+ p3n3+ . . .+ pknk.

The term(p1+ p2) is a constant that does not influence the minimal point, so theproblem reduces
to finding an optimal prefix code fork−1 letters that have probabilitiesp1 + p2, p3, . . . , pk.

So we obtain the recursive algorithm that finds the optimal prefix code as follows:
• combine the two most rare letters into one (adding their probabilities);
• find the optimal prefix code for the resulting probabilities (a recursive call);
• replaces codeworx for a “virtual” combined letter by two codewordsx0 andx1 which are

one bit longer (note that this replacement keeps the prefix property).
The optimal code constructed by this algorithm is calledHuffman codefor a given distribution

p1, . . . , pn.

7.1.4 Kraft – McMillan inequality
{kraft-mcmillan

So far we have studied prefix codes. It turns out that they are as efficients as general uniquely
decodable codes, as the following theorem shows.

{mcmillan-inequality
Theorem 116 (McMillan inequality) Let c1, . . . ,ck be a code words of an uniquely decodable
code and ni = l(ci) be their lengths, Then

∑
i

2−ni 6 1.

Therefore (recall the lemma above) for any uniquely decodable code there is a prefix code with
the same code-lengths.

⊳ Let us use lettersu andv instead of digits 0 and 1 when constructing codewords. (E.g.,
the code 0, 01 and 11 is now written asu, uv, vv.) Now take a formal sum(c1 + . . . + ck) of
all codewords and compute itsNth power (for someN that we choose later). Then we open the
parentheses without changing the order of factorsu andv (as ifu andv were two non-commutative
variables). For example, the code above gives (forN = 2) the expression

(u+uv+vv)(u+uv+vv) = uu+uuv+uvv+uvu+uvuv+uvvv+vvu+vvuv+vvvv.

Each term in the right-hand side is a concatenation of some codewords. The unique decoding
property guarantees that all the terms are different. Now welet u = v = 1/2. The left-hand side
(c1 + . . .+ ck)

N becomes(2−n1 + . . .+ 2−nk)N. For the right-hand side we have an upper bound:
if it consisted ofall strings of lengtht, it would contain 2t terms equal to 2−t (each), so the sum
would be equal to 1 (for each lengtht). Therefore, the right-hand side does not exceed the maximal
length of strings in the right-hand side, which equalsNmax(ni).

If ∑2−ni > 1, we immediately get a contradiction, since for large enough N the left-hand side
grows exponentially inN while the right-hand side is linear inN. ⊲

This proof looks as an extremely artificial trick (though a nice one). A more natural proof (or,
better to say, a more natural version of the same proof) is given below, see p. 178.

172

7.2 Pairs and conditional entropy
{entropy-pair

7.2.1 Pairs of random variables
{entropy-pair-definition

Dealing with Shannon entropies, we use the terminology which is standard for probability theory.
Let ξ be a random variable which takes finitely many valuesξ1, . . . ,ξk with probabilitiesp1, . . . , pk.
Then theShannon entropyof a random variableξ is defined as

H(ξ) = p1(− logp1)+ . . .+ pk(− logpk)

This definition allows us to consider the entropy of a pair of random variablesξ andη (that have
a common distribution, i.e., are defined on the same probability space). Indeed, this pair is also a
random variable with a finite range. The following theorem says that the entropy of a pair does not
exceed the sum of entropies of its components:

{entropy-pair-bound
Theorem 117

H(〈ξ ,η〉) 6 H(ξ)+H(η)

We consider random variables with finite ranges, so this is just some inequality involving log-
arithms. Let is write this inequality. Assume thatξ hask valuesξ1, . . . ,ξk andη has l values
η1, . . . ,ηl . Then the maximal possible number of values for the pair〈ξ ,η〉 is kl and these values
are〈ξi ,η j〉 (some of them may never appear or have probability 0). The distribution for 〈ξ ,η〉
is therefore a table that hask rows andl columns. The numberpi j (ith row, jth column) is the
probability of the event “(ξ = ξi) and(η = η j)” (here i = 1, . . . ,k and j = 1, . . . , l). All pi j are
non-negative and their sum equals 1. (Some ofpi j can be equal to 0.)

Adding the numbers in each row, we get the probability distribution forξ : the probability of
valueξi equals∑ j pi j . We denote this sum bypi∗. Similarly,η takes valueη j with probabilityp∗ j

which equals the sum of all numbers injth column.
Therefore, the theorem in question is an inequality that is applicable to any matrix with non-

negative elements and sum 1:

∑
i, j

pi j (− logpi j) 6 ∑
i

pi∗(− logpi∗)+∑
j

p∗ j(− logp∗ j)

(herepi∗ p∗ j are rows’ and columns’ sums).
This inequality again is a consequence of the convexity of logarithm, but it is useful to under-

stand its intuitive meaning. Let us forget for a while that entropy is not exactly equal to the length
of the shortest prefix code (and ignore the difference that does not exceed 1). Then this inequality
can be proven as follows. Assume that space-efficient prefix codes forξ andη are given that have
codewordsc1, . . . ,ck andd1, . . . ,dl respectively. Then consider a code for〈ξ ,η〉 that assigns to
the value〈ξi ,η j〉 the stringcid j (concatenation ofci andd j without separator). We get a prefix
code (indeed, to separate codeword that starts an infinite sequence, we first find prefixci and then
prefix d j in the remaining part; both operation can be performed uniquely). The average length of
this code equals the sum of the average lengths of its components. This code may be non-optimal
(which is natural, since the inequality could be strict), but provides an upper bound for the length
of the optimal code.

173

⊳ Let us transform this informal argument into a proof. Recallthe proof of Theorem 114
(p. 170). We have seen there that the entropy is a minimal value of ∑i pi(− log2qi) taken over all
tuples of non-negative realsqi that have sum 1. In particular, the entropy of the pair (left-hand
side) is the minimal value of

∑
i, j

pi j (− logqi j)

taken over all tuplesqi j of non-negative reals that sum up to 1. Let us restrict our attention to “rank
1” tuples that have the form

qi j = qi∗ ·q∗ j

for some tuples of non-negative realsqi∗ q∗ j (both tuples have sum 1). Then(− logqi j) can be
decomposed into sum(− logqi∗)+ (− logq∗ j), and the entire sum is decomposed into two parts,
which after partial summation over one coordinate become equal to

∑
i

pi∗(− logqi∗)

and

∑
j

p∗ j(− logq∗ j)

respectively. The minimal values of the two parts areH(ξ) andH(η).
Therefore, the left-hand side of our inequality is the minimum over all tuples and the right-hand

side is the minimum over rank 1 tuples, and the inequality is proven.⊲

7.2.2 Conditional entropy
{conditional-entropy-defin

Recall the definition of conditional probability. LetA and B be two events. Theconditional
probability of B with conditionA (denoted as Pr[B|A]) is defined as the ratio Pr[A andB]/Pr[A].
This definition assumes that Pr[A] > 0. The motivation is clear: we look at the fraction of outcomes
whenB happened but restrict our attention to the case whenA happened.

Let A be an event (that has non-zero probability) and letξ be a random variable with finite
rangeξ1, . . . ,ξk. Then we may consider theconditional distributionof ξ whenA happens. We get
a new random variable: nowξi has probability Pr[(ξ = ξi)|A] instead of Pr[ξ = ξi]. The entropy
of this distribution is calledconditional entropy ofξ with condition Aand is denoted byH(ξ |A).
(The distribution itself could be denoted by(ξ |A).)

160 Show thatH(ξ |A) can be greater thanH(ξ) and can be less thenH(ξ). [Hint: the
distribution(ξ |A) has not much in common with the distribution forξ , especially ifA has small
probability.]

Informally speaking,H(ξ |A) is the minimal average code length if average is taken only over
the cases whenA happens.

Now let us consider two random variablesξ andη (as it was done in the previous section).
Let as assume that each value of bothξ andη has non-zero probability (zero-probability outcomes
could be ignored). For each valueη j (for η) consider the eventη = η j . (Its probability was denoted
by p∗ j .) Consider the conditional entropy of variableξ having this event as the condition. In other

174

terms, consider the entropy of the distributioni 7→ pi j /p∗ j . Then we average these entropies, using
probabilities of the eventsη = η j as weights. The resulting average is calledconditional entropy
of ξ with conditionη. It is denoted byH(ξ |η). So by definition

H(ξ |η) = ∑
j

Pr[η = η j]H(ξ |η = η j)

or, using the notation above,

H(ξ |η) = ∑
j

p∗ j ∑
i

pi j

p∗ j

(
− log

pi j

p∗ j

)
.

The following theorem sums up the basic properties of conditional entropy (that are true for
any random variablesξ andη):

{conditional-entropy
Theorem 118 (a) H(ξ |η) > 0;

(b) H(ξ |η) = 0 if and only ifξ = f (η) with probability1 for some function f(in other terms,
we ignore the cases that have zero probability).

(c) H(ξ |η) 6 H(ξ)
(d) H(〈ξ ,η〉) = H(η)+H(ξ |η)

⊳ The item (a) is evident: allH(ξ |η = η j) are non-negative, so the same is true for their
weighted sum.

(b) If the weighted sum of non-negative terms equals zero, then all the terms that have non-zero
weights are equal to zero. So for each valueη j the restricted variable(ξ |η = ηi) has zero entropy,
and therefore has only one value if we ignore values that haveprobability 0.

The statement (c) can be explained as follows:H(ξ |η) is the average length of an optimal code
for ξ if we allow different codes forξ for different values ofη (for each value ofη we consider
the code that is optimal with respect to conditional distribution). This provides some additional
freedom (compared to the case when the same code should be used for all values ofη), and this
freedom can only decrease the optimal code length.

The same argument made formal: for eachj the value ofH(ξ |η = η j) is the minimal value of
the sum

∑
i

pi j

p∗ j
(− logqi j)

taken over all non-negative values of the variablesq1 j +q2 j + . . .+qk j = 1 (we use different vari-
ables for eachj). Therefore,H(ξ |η) is the minimal value of the sum

∑
j

p∗ j ∑
i

pi j

p∗ j
(− logqi j)

taken over all tables that contain non-negative realsqi j and each column has sum 1. If we restrict
ourselves to tables where all columns are equal (qi j = qi), the sum turns into

∑
j

p∗ j ∑
i

pi j

p∗ j
(− logqi) = ∑

j
∑
i

pi j (− logqi) = ∑
i

pi∗(− logqi)

175

and its minimum isH(ξ). ThereforeH(ξ |η) 6 H(ξ).
Finally, item (d) is just an exercise in transformation of logarithms:

∑
i, j

pi j (− logpi j) = ∑
j

p∗ j ∑
i

pi j

p∗ j
(− log

pi j

p∗ j
− logp∗ j) =

∑
j

p∗ j ∑
i

pi j

p∗ j
(− log

pi j

p∗ j
)+∑

j
p∗ j ∑

i

pi j

p∗ j
(− logp∗ j) =

∑
j

p∗ jH(ξ |η = η j)+∑
j

p∗ j(− logp∗ j) = H(ξ |η)+H(η).

Theorem is proven.⊲
This theorem implies Theorem 117 (p. 174). We see also that entropy of the pair of random

variables cannot be less than the entropy of any of variables(since conditional entropy is non-
negative). Thus we easily obtain the following statement:

{no-new-entropy
Theorem 119 Let ξ be a random variable with a finite range and let f be a function defined on
that range. Then

H(f (ξ)) 6 H(ξ),

where f(ξ) is a random variable that is a composition of f andξ (i.e., f is applied to the value
of ξ).

In terms of distribution the transition fromξ to f (ξ) means that we combine several values
into one summing up the corresponding probabilities.

⊳ Indeed, the random variable〈ξ , f (ξ)〉 has the same distribution asξ , and its entropy cannot
be less than the entropy of the second coordinate.⊲

161 Provide an interpretation of this result in terms of minimalaverage length of codes, and
the direct proof.

162 When the inequality of Theorem 119 becomes an equality?

7.2.3 Independence and entropy
{independence-and-entropy

The notion of independent random variables could be easily expressed in terms of entropy. Recall
the variablesξ andη are calledindependentif the probability of the event “ξ = ξi andη = η j ”
is equal to the product of probabilities of the eventsξ = ξi andη = η j . (A reformulation: the
conditional distribution ofξ with conditionη = η j coincides with the unconditional distribution.
Also we can exchangeξ andη and say that conditional distribution ofη with conditionξ = ξi

coincides with the unconditional distribution.)
In the notation used above the independence can be written aspi j = pi∗p∗ j (probability matrix

has rank 1).
{independence

Theorem 120 Random variablesξ andη are independent if and only if

H(〈ξ ,η〉) = H(ξ)+H(η).

176

In other words, we get an independence criterion: the inequality of Theorem 117 becomes an
equality. Using Theorem 118, we can rewrite this criterion as H(ξ) = H(ξ |η) (or, symmetrically,
H(η) = H(η|ξ)).

⊳ Let us use once more that logarithm is a strictly convex function: the inequality

log
(
∑ pixi

)
> ∑ pi logxi ,

holds for all positive weightspi with sum 1 and all positivexi . This inequality becomes an equality
only if all xi are equal.

Therefore, for positivepi with sum 1 the expression

∑ pi(− logqi)

(whereqi are positive and sum up to 1) takes its minimal value only at the pointqi = pi .
Now recall the proof of Theorem 117 above. The minimum over rank 1 matrices (that makes

the right-hand side equal to the sum of entropies) was achieved for

qi j = pi∗ · p∗ j

If this minimum coincides with the minimum taken over all matricesqi j (the latter is achieved for
qi j = pi j), then we have

pi j = pi∗ · p∗ j

and variablesξ andη are independent.⊲

163 Provide an another (though similar) proof using Theorem 118.

164 Prove that three random variablesα,β ,γ are independent (this means that the probability
of the event(α = αi ,β = β j ,γ = γk) equals the product of three probabilities for each of the
variables) if and only if

H(〈α,β ,γ〉) = H(α)+H(β)+H(γ).

Theorems 117 and 120 show that the differenceH(ξ) + H(η)− H(〈ξ ,η〉) is always non-
negative and equals zero if and only ifξ andη are independent. So we can take this difference for
a quantitative measure of dependence betweenξ andη. This difference is denoted byI(ξ : η) and
called themutual informationof two random variablesξ andη. Theorem 118 allows us to rewrite
the definition forI(ξ : η) in the following way:

I(ξ : η) = H(η)−H(η|ξ) = H(ξ)−H(ξ |η).

(mutual information shows how much the knowledge of one random variable decrease the entropy
of the other one).

To see all these notions in action, let us return to the McMillan inequality. Now we change the{macmillan-revisited
order and prove first that a uniquely decodable code for a random variableξ has the average length
of the codeword at leastH(ξ).

177

First note that for an injective code where all codewords have length less thanc the average
length is at leastH(ξ)− logc. Indeed, ifni are the lengths of the codewords, the sum of 2−ni

does not exceedc (for every fixed length the sum does not exceed 1). Therefore,the inequality of
theorem 114 is violated at most by logc.

This is not enough, and to get a tight bound we considerN independent identically distributed
copies of random variableξ . We get a random variable that could be denoted byξ N. Its entropy
is NH(ξ). Let us use our code for each ofN coordinates and then concatenate all the strings. The
unique decoding property guarantees that this is an injective code. Its average length isN times
greater than the average length of initial code forξ (linearity of expectation). And the maximal
length does not exceedcN wherec is an upper bound for the length of the codewords of the
uniquely decodable code we started with. So the previous paragraph gives us

N · (average length of the uniquely decodable code) > NH(ξ)− log(cN)

Now we divide overN and takeN → ∞. Since log(cN)/N → 0 asN → ∞, this gives us the bound
H(ξ) for the average length of an uniquely decodable code.

Now the McMillan inequality is easy. Assume that uniquely decodable code has code-lengths
n1, . . . ,nk and∑2−ni > 1. We start with probabilitiespi = 2−ni and then proportionally decrease
all of them making their sum equal to 1. Consider the random variable that has the distributionpi

(obtained in this way) and its coding by means of our uniquelydecodable code. The average length
is ∑ pini which is less thanH = ∑ pi(− logpi) (recall thatni < − logpi since we have decreased
the valuespi).

165 Look closely at this proof and trace the correspondence between it and the proof given
above.

7.2.4 “Relativization” and basic inequalities
{entropy-relativization

All the statements about entropy have “relativized” (conditional) versions. For example, we could
add some random variableα as a condition in the inequality

H(〈ξ ,η〉) 6 H(ξ)+H(η)

and get its conditional version

H(〈ξ ,η〉|α) 6 H(ξ |α)+H(η|α)

The conditional version is an easy consequence of the unconditional one. Indeed, for each fixed
valueαi of a random variableα we have

H(〈ξ ,η〉|α = αi) 6 H(ξ |α = αi)+H(η|α = αi)

(Theorem 117 is applied to conditional distributions ofξ andη with conditionα = αi). The we
sum up all these inequalities with weights Pr[α = αi].

178

So we get a conditional inequality as a consequence of the unconditional one. Now, going in
the opposite direction and using the equation

H(β |γ) = H(〈β ,γ〉)−H(γ),

we can express all conditional entropies in terms of unconditional ones.
After canceling some terms we get the following inequality:

{basic-shannon
Theorem 121 (basic inequality)

H(ξ ,η,α)+H(α) 6 H(ξ ,α)+H(η,α)

We use a simplified notation and writeH(ξ ,η,α) insteadH(〈ξ ,η,α〉) (or even more formal
H(〈〈ξ ,η〉,α〉)).

The similar “relativization” (adding random variables as conditions) can be applied to the mu-
tual information. For example, we can naturally defineI(α : β |γ) as

H(α|γ)+H(β |γ)−H(〈α,β 〉|γ).

The basic inequality (Theorem 121) says thatI(α : β |γ) > 0 for all random variablesα,β ,γ.

166 Prove thatI(〈α,β 〉 : γ) > I(α : γ)

167 Prove that
I(〈α,β 〉 : γ) = I(α : γ)+ I(β : γ|α).

If I(α : γ|β) = 0, the random variablesα andγ are calledindependent relative toβ (whenβ is
known). Experts in probability theory say in this case thatα,β ,γ form aMarkov chainwhere the
dependence between the “past” (α) and the “future” (γ) is caused only by the “current state” (β).

168 Prove that in this caseI(α : γ) 6 I(α : β), and thereforeI(α : γ) 6 H(β).

To prove all these (and similar) statements one could use thediagrams that are similar to the
diagrams for Kolmogorov complexity discussed in Chapter 2.The diagram for two variables con-
sists of three regions. Each region carries a non-negative value. The sum of these values for two
left regions isH(α) and for two right regions isH(β) (see Fig.18).

H(α|β)
H(β |α)

I(α : β)

α β

Figure 18: Entropies of two random variables. {entropy.1}

For three variablesα,β ,γ we get a more complicated diagram (Fig. 19). The central region
carries a number that is denoted byI(α : β : γ). It can be defined asI(α : β)− I(α : β |γ), or,

179

equivalently, asI(α : γ)− I(α : γ|β) etc. In terms of unconditional entropies we get the following
expression:

I(α : β : γ) = H(α)+H(β)+H(γ)−H(α,β)−H(α,γ)−H(β ,γ)+H(α,β ,γ)

α β

γ

H(α|β ,γ)

I(α : β |γ) H(β |α,γ)

I(α : γ|β)

I(α : β : γ)

I(β : γ|α)

H(γ|α,β)

Figure 19: Entropies of three random variables. {entropy.2}

Note that (unlike other six values shown) the value ofI(α : β : γ) can be negative. For example,
this happens if variablesα areβ independent, but still are dependent whenγ is known.

169 Construct three variablesα,β ,γ with this property. [Hint. Following the example given
on p. 46, consider uniformly distributed independent variablesα andβ with range{0,1} and let
γ = (α +β) mod 2.]

170 (Fano inequality) Prove that if the random variablesα andβ differ with probability at
mostε < 1/2, andα takes at mosta values, then

H(α|β) 6 ε loga+h(ε),

whereh(ε) is the entropy of a random variable with two values and probabilities ε and 1− ε.
[Hint. Let γ be a random variable with two values;γ = 0 whenα 6= β andγ = 1 whenα = β .
ThenH(α|β) 6 H(γ)+H(α|β ,γ). The first term ish(ε), nd the second one can be rewritten as

Pr[γ = 0]H((α|β)|γ = 0)+Pr[γ = 1]H((α|β)|γ = 1),

i.e.,
Pr[α 6= β]H((α|β)|α 6= β)+Pr[α = β]H((α|β)|α = β),

which does not exceedε loga+0.]

171 Assume thatH(α|β ,γ) = 0 andI(β : α) = 0. Prove thatH(γ) > H(α).

180

This problem has the following interpretation. If a spy wants to send to the headquarters a secret
messageα as a plain textβ using a keyγ (that is agreed in advance) and wants the adversary who
does not knowγ to get no information aboutα, then the entropy of keyγ cannot be less than entropy
of the messageα. This statement is sometimes calledShannon theorem on perfect cryptosystems.

172 Prove that {condit-triple-entropy
2H(α,β ,γ) 6 H(α,β)+H(β ,γ)+H(α,γ)

for any three random variablesα,β ,γ. [Hint: see the proof of the corresponding statement about
Kolmogorov complexity, Theorem 26, (p. 44).]

7.3 Complexity and entropy
{complexity-and-entropy

As you surely have noticed, the properties of Shannon entropy (defined for random variables) re-
semble the properties of Kolmogorov complexity (defined forstrings, see Chapter 2). Is it possible
to formalize this similarity by converting it into exact statements?

This question has two interpretations. First, one can provethat Kolmogorov complexity and
Shannon entropy have similar properties (in particular, the same linear inequalities are true for
them, see Section??, p. ??). On the other hand, one may compare the numeric values for com-
plexity and entropy, and this is what we do in this section.

The problem here is that Kolmogorov complexity is defined forstrings while Shannon entropy
is defined for random variable, so how could one compare them?However, sometimes this compar-
ison is possible, as we shall see. Let us start with a very vague and philosophical description of the
results below: Shannon entropy takes into account only frequency regularities while Kolmogorov
complexity takes into account all algorithmic regularities, so in general the latter is smaller. On the
other hand, if an object is generated by a random process in such a way that it has only frequency
regularities, entropy is close to complexity with high probability.

Let us give now some specific results that illustrate this general statement.

7.3.1 Complexity and entropy of frequencies
{frequencies-entropy

Consider an arbitrary finite alphabetA which may contain more than two letters. Kolmogorov
complexity forA-strings can be defined in a natural way. (Note that we have never used that objects
whose complexity is defined arebinary strings. However, it is important thatbinary strings are
considered as descriptions: complexity measured in bytes would be eight time less than complexity
measured in bits!)

Let x be anA-string of lengthN and letp1, . . . , pk be the frequencies of letters inx. All these
frequencies are fractions with denominatorN and integer numerators. The sum of frequencies
equals 1. Leth(p1, . . . , pk) be the Shannon entropy of corresponding distribution.

{complexity-le-entropy
Theorem 122

KS(x)
N

6 h(p1, . . . , pk)+
O(logN)

N
.

181

HereO(logN) means something that does not exceedclogN, where constantc does not depend
on N, x and frequenciesp1, . . . , pk. However, this constant may depend onk (we consider an
alphabet of a fixed size).

⊳ In fact this is a purely combinatorial statement. Indeed,KS(x|N, p1, . . . , pk) does not exceed
logC(N, p1, . . . , pk)+O(1), where

C(N, p1, . . . , pk) =
N!

(p1N)!(p2N)! . . .(pkN)!

is the number ofA-strings of lengthN that have frequenciesp1, . . . , pk. (Each string with given
frequencies can be determined by its ordinal number in this set if the parametersN, p1, . . . , pk are
known, and this ordinal number has logC(N, p1, . . . , pk) bits.)

The numberC(N, p1, . . . , pk) can be estimated using Stirling’s approximation. Ignoringfactors
bounded by a polynomial inN (that appear due to the term

√
2πk in Stirling’s approximation

formula k! ≈
√

2πk(k/e)k), we get exactly 2Nh(p1,...,pk). This computation was performed (for
k = 2) when we proved the strong law of large numbers (Theorem 27,p. 51). The general case (for
arbitraryk) can be treated in the same way.

Finally, note that we need aboutk logN bits to specifyN, p1, . . . , pk (we need to specifyk
integers whose sum isN), so by deleting the condition inKS(x|N, p1, . . . , pk) we increase the
complexity byO(logN) (and the constant inO(logN)-notation is close tok). ⊲

Another proof uses the upper bound for monotone complexity (Theorem 81, p. 124). Con-
sider a probability distribution on infiniteA-sequences that corresponds to independent trials with
probabilitiesp1, . . . , pk in each trial.

The event “a sequence with prefixzappears” wherez is aA-string of lengthN that has frequen-
ciesq1, . . . ,qk, equals

pq1N
1 . . . pqkN

k

(letter ai has probabilitypi and appearsqiN times). The binary logarithm of this probability is
equal to

−N · (q1(− logp1)+ . . .+qk(− logpk)).

For the special caseqi = pi we get−Nh(p1, . . . , pk), therefore monotone complexity has upper
boundNh(p1, . . . , pk). (Recall also that monotone complexity differs from other complexity ver-
sions by a termO(logN) for strings of lengthN.)

In fact, this argument is flawed, When we proved the upper bound for monotone complexity,
we have assumed that distribution is fixed. The constant term, therefore, may depend on the distri-
bution. And now we try to estimateKM (x) using measure that depends on the letter frequencies
in the stringx. So formally Theorem 81 is not applicable. But if we recall its proof, we see that
it provides a bound for “conditional” monotone complexity whenp1, . . . , pk are given. The differ-
ence between this conditional complexity and the unconditional one isO(logN), so we indeed get
another proof for Theorem 122.

173 What is a value of a constant hidden inO(logN) (as a function ofk)? [Hint: both proofs
givek(1+o(1)) logN.]

174 Show that when all frequenciesp1, . . . , pk are not very close to 0, the statement of the
previous problem could be improved up to(k/2+O(1)) logN. [Hint. In the first proof one should

182

take into account the square roots in Stirling’s approximation; most of them are in the denominator.
The second proof can also be modified: instead of exact valuesof frequencies one can consider
approximate frequencies with error of orderO(1/

√
N). This gives a weaker bound, but the differ-

ence is bounded by a constant. (Recall that a smooth functionis quadratic near its minimum.) In
this way we can save half of the bits when specifyingp1, . . . , pk.]

Note that the inequality provided by Theorem 122 may be very far from equality. Indeed, if
A has two letters and they alternate in a stringx, then the right hand size equals 1 and the left-
hand size is of order(logN)/N. This is not surprising and fits well into the general picture: the
complexity is small since it reflects all the regularities (not only frequencies). In the next sections
we prove that the complexity of a randomly generated string is close to the entropy with high
probability.

7.3.2 Expected complexity

Let us fixk, ak-letter alphabetA andk positive numbersp1, . . . , pk whose sum is 1 (for simplicity
we assume that allpi are rational numbers).

Consider a random variableξ , whose values are letters ofA and probabilities arep1, . . . , pk. For
eachN consider a random variableξN consisting ofN independent identically distributed copies
of ξ . Its values areA-strings of lengthN. Now we may ask a question: what is the expected
complexity of a string generated according to this distribution?

{expected-complexity
Theorem 123 The expected values of KP(ξ N|N) is NH(ξ) + O(1) (the constant in O(1) may
depend onξ but not on N).

Note that (for positivepi) all A-strings of lengthN are among the values ofξ N. Some of them
have complexity much greater thanNH (except for the case of uniform distribution), but others
have complexity much less thanNH.

⊳ For eachA-string of lengthN (i.e., for any value ofξN) consider its shortest description
(with respect to some fixed prefix decompressor). These descriptions form a prefix code (in the
sense of Section 7.1.1). The average length of the codeword is exactly the expected value of
KP(ξ N). Therefore Theorem 114 (p. 170) guarantees that this expected value cannot be less than
H(ξ N) = NH(ξ). The lower bound is proved (and even theO(1)-term can be omitted).

The same theorem is useful for the upper bound, too. Indeed, it guarantees that there exist
prefix codes that have average length of a codeword at mostH +1. Such a code can be constructed
by an algorithm ifN (and numberspi , which are fixed) is given. For example, one may use the
construction used in the proof of Theorem 114, or use Huffmancode, or even just try all codes
until a good one is found.

Anyway, the constructed code can be used as a conditional decompressor (withN as the con-
dition) such that average length of the shortest description of ξ N does not exceedH(ξ N)+ 1 =
NH(ξ)+ 1. Replacing this decompressor by an optimal one, we increase the average length by
O(1). ⊲

175 Show that one can slightly improve the upper bound and prove that the average value of
monotone complexityKM (ξ N) does not exceedNH(ξ)+O(1). [Hint. Apply Theorem 81 to the
distribution ofξ ∞.]

183

We assumed thatp1, . . . , pk are fixed rational numbers. One may wish to get a uniform bound
that is true for all tuplesp1, . . . , pk. To this end we should addp1, . . . , pk in the condition and prove
bounds for the expected value ofKP(ξ N|N, p1, . . . , pk) instead ofKP(ξ N|N). The lower bound is
not affected at all, since it is true for any prefix code, and for the code construction the information
in the condition is sufficient. (We assume thatpi are rational numbers; this is not very important,
since one may replace arbitrary reals by their approximations with sufficiently small error.)

176 Formulate the exact statement and prove it.

This theorem says thataveragecomplexity equals entropy though individual values of com-
plexity could be much smaller or much larger. In fact, a stronger statement it true:most values
of ξN have complexity close toNH(ξ). More formally, the event “the complexity of stringξ N

differs significantly fromNH(ξ)” has small probability. This statement could be consideredas an
algorithmic version of the Shannon theorem on (noiseless) channel capacity, and we will return to
this question in Section 7.3.4.

7.3.3 Prefixes of random sequences and their complexity
{complexity-initial-segmen

In this section we consider infinite Martin-Löf random sequences and compare complexities of
their prefixes with the entropy of a generating distribution. Let A again be an alphabet that has
k letters and letp1, . . . , pk be a probability distribution onA. We assume thatp1, . . . , pk are com-
putable positive reals.

Consider the spaceA∞ of infinite A-sequences and the probability distribution on this space
that corresponds to independent identically distributed variables with distributionp1, . . . , pk. This
is a computable probabilistic measure onA∞, so Martin-Löf definition of randomness can be used.
(In fact, we have considered two-letter alphabet, but essentially the same definition can be used for
any finite alphabet.)

{complexity-limit
Theorem 124 Letω be a Martin-L̈of random sequence with respect to this distribution. Let(ω)N

be its prefix of length N. Then

lim
KS((ω)N)

N
= H,

where H is the Shannon entropy, i.e., H= ∑ pi(− logpi).

177 Prove this statement for the uniform distribution this statement as an immediate conse-
quence of the randomness criterion (Theorem 82, p. 125). (Itis a rare occasion when the uniform
case is really special.)

The statement refers to plain complexityKS; however, this is not important, since different
versions of complexity differ only byO(logN) = o(N). So we may use monotone complexity in
the proof, and this is convenient.

⊳ The Schnorr–Levin randomness criterion (Theorem 82, p. 125) says that complexity of a
prefix of a random sequence is close to the minus logarithm of probability that this prefix appears.
The probability refers to the distribution onA∞ considered above, and the minus logarithm equals
N∑qi(− logpi) whereqi is the frequency ofith letter in(ω)N. It remains to use the Strong Law of
Large Numbers that guarantees thatqi tends topi asN → ∞ for a random sequence.⊲

184

Looking at this proof we see that the difference between the complexity (per letter) and en-
tropy has three reasons: first, “the randomness deficiency” from Schnorr–Levin theorem that gives
O(1)/N difference; second, the difference between the plain and monotone complexities (of order
O(logN/N)) and, finally, the difference between frequencies and probabilities which is the most
important term. (The law of iterated logarithm says that this leads to a difference that is a bit larger
thanO(

√
N)/N.)

We have assumed thatpi are computable reals, otherwise the notion of Martin-Löf randomness
cannot be used. If they are not computable, we can still consider the set of sequences such that
complexity of their prefixes (per letter) do not have entropyas limit. Then we can prove that this
set has measure zero (with respect to the corresponding distribution).

178 Prove this statement. [Hint. For an upper bound we can use some approximations for
pi ; the precision 1/N2 is enough if we consider prefixes of lengthN. The additional information
needed to specify these approximate values is of sizeO(logN). The lower bound does not use at
all the algorithmic properties ofpi ; for example, we can get a bound for relativized complexity
with any oracleA that makes allpi computable.]

7.3.4 The complexity deviation
{complexity-deviation

Theorem 124 is asymptotic. One may look for a bound of difference between complexity and
entropy of frequencies for finite sequences. (This follows the example provided by the probability
theory that has Strong Law of Large Numbers for the limit values as well as large deviation bounds
for finite sequences.)

Let A be ak-letter alphabet and letp1, . . . , pk be a distribution onA. Again we assume for
simplicity that pi are rational (or at least computable). Consider the productdistribution onAN

that corresponds toN independent trials with probabilitiesp1, . . . , pk. So eachA-string of length
N has certain probability (and certain complexity). We already know from Theorem 123, that the
average value of complexity isNH, whereH = ∑ pi(− logpi). But we want to know also how far
this complexity deviates from its average value.

The simplest case of two equiprobable letters (which is quite untypical, as we shall see) gives
a uniform distribution on all binary strings of lengthN. We know that all these strings have com-
plexity at mostN + O(1) and the (overwhelming) majority of strings has complexity close toN:
the fraction of strings that have complexity less thanN− c is at most 2−c. So in this case the
significant difference between complexity and entropy has exponentially small probability.

The case of uniform distribution onk-letter alphabet is similar. However, if not all the letters
have the same probability, the situation changes significantly.

Here is the key observation. For any stringx of lengthN we compare probabilitiespi with
“empirical frequencies”qi(x) (frequencies of letters inx). It turns out that with high probability
the complexity of a random (with respect to our distributionon AN) string is close tok(x) =
N∑i qi(x)(− logpi). Indeed, Theorem 81 (p. 124) says that monotone complexity can exceedk(x)
by at mostO(1). On the other hand, the argument used in the proof of Levin–Schnorr theorem
(p. 125, Lemma 1) shows that for anyc the probability of the eventKM (x) < k(x)−c (according
to the distribution considered) does not exceed 2−c.

185

Therefore, the question about the complexity reduces to thequestion about the distribution
of empirical frequencies. This question has been studied inthe probability theory for centuries.
It is known (Moivre–Laplace theorem) that this distribution is close to a normal (Gaussian) one:
the expectation of frequency equals the probability, and the average of the deviation square is
proportional to 1/N. This is the main term, since it is much larger than terms caused byO(logN)
difference between different complexity versions and by usingN as a condition, etc. This argument
(made precise) gives us the proof of the following statement:

{square-root-deviation
Theorem 125 Let ξ be a random variable with k values. For each positiveε > 0 there exists c
such that for all N the probability of the event NH(ξ)−c

√
N < KS(x) < NH(ξ)+c

√
N is at least

1− ε. (Probability is taken over the distribution where N copies ofξ are independent.)

In fact our arguments assumed thatpi are computable. However, this assumption can be
dropped if we replacepi by their approximations with sufficiently small error (the precision 1/N2

is enough and requires onlyO(logN) additional bits).

7.3.5 Shannon coding theorem
{shannon-coding-theorem

The theorem of the last section is a natural translation of classical Shannon results into the com-
plexity language. These results deal with the length of a code that allows us to transmitN-letter
blocks with high probability (according to the given distribution).

Let ξ be (again) a random withk values (letters ofA) and some fixed distribution. LetN
be a positive integer. Byξ N we denote a random variable with rangeAN that is formed byN
independent copies ofξ . We want to encode values ofξ N by m-bit strings (see Figure 20):

ξ N ξ N

m bits
encoder decoder

?

Figure 20: Usingm bits for transmission ofξ N. {entropy.3}

Here “coder” is any mapping of typeAN → Bm, and “decoder” is any mapping of typeBm →
AN. A given value ofξ N causesan error if the input and outputA-strings (of lengthN) differ.
The probability of error is measured according to the distribution of ξ N. The question is: what
conditions onmandN guarantee the existence of a code that has small error probability? First, let
us make the following evident remark:

Theorem 126 For given N,m andε > 0 the code with error probability at mostε exists if and only
if the2m most probable values ofξ N have total probability at least1− ε.

⊳ Indeed, whenm bit are used for encoding, one may transmit (without errors)at most 2m

values. To minimize the error probability, we should choose2m most probable values.⊲
In the next theorem the alphabetA and the random variableξ are fixed.

186

Theorem 127 For eachε > 0 there exists a constant c such that:
(a) The values ofξ N can be encoded/decoded with NH(ξ)+c

√
N bits with error probability

at mostε;
(b) Any code forξ N of length at most NH(ξ)−c

√
N has error probability at least1− ε (i.e.,

the probability of correct decoding is at mostε).

⊳ (a) As we know, for a suitablec the value of random variableξ N has complexity less than
m= NH(ξ)+ c

√
N with probability at least 1− ε. So for these values one can use shortest de-

scriptions (see the definition of plain complexity) as codes. (Formally speaking, we get strings not
of lengthm, but of length less thanm, but there are s less than 2m of them and they can be replaced
by strings of lengthm.)

Note that coding is not performed by an algorithm, but the theorem (as stated) does not say
anything about that, it claims the existence of a code mapping.

(b) Here we need to use some trick. If there exists a code of given length, then such a code can
be constructed algorithmically using the previous theorem(or just by an exhaustive search). Then
the decoding function for this code can be considered as a conditional decompressor (where condi-
tions arepi andN). Therefore, all values ofξ N that are decoded without error, have complexity at
mostNH(ξ)−c

√
N+O(logN) (the latter term corresponds to the complexity of parameters and

can be omitted if we increasec). As we know (Theorem 125, p. 187), the probability of this event
is at mostε. ⊲

179 As before, we assume that probabilitiespi are known exactly, and ifpi are not com-
putable, we get some problems. Correct the argument replacing pi by their approximation with
sufficient precision.

180 Give a statement and proof for a similar result about conditional coding and conditional
entropy. [Hint. Assume that two dependent random variablesξ andη are given. We maken trials,
the value ofηN is known both to the sender and the receiver, and the sender wants to sendm bits
in such a way that receiver could reconstruct the value ofξ N. How large should bem?]

7.4 Markov chains

for the viewpoint of Kolmogorov complexity and entropy (what is known here? Andrey?) lempel-
ziv? how to compute the entropy of a Markov chain?

187

8 Some applinations
{appl}

8.1 There are infinitely many primes
{appl-primes

Let us start with a toy example and prove that there are infinitely many primes.
Assume that there are onlym different prime numbersp1, . . . , pm. Then every positive integer

x has prime decomposition of the form

x = pk1
1 pk2

2 . . . pkm
m

and can be described by the list of powersk1, . . . ,km. Each ofki does not exceed logx (since the
base is at least 2) and has complexity at mostO(loglogx) (its binary representation hasO(loglogx)
bits). Sincem is fixed (i.e., the same for differentx), the complexity of the tuple〈k1,k2, . . . ,km〉 is
O(loglogx) and therefore the complexity ofx (that can be obtained from that tuple) isO(loglogx).
But for a “random” (incompressible)nbit integerx the complexity is close ton and is notO(logn)
as this formula says (the logarithm of an-bit number does not exceedn). Euclid’s theorem is
proven.

What should one say about this argument? It is a real application of Kolmogorov complexity
or just cheating? A skeptical observer would say that we justretell some counting argument in
terms of Kolmogorov complexity. This counting argument is as follows: if there are onlym prime
numbers, then there are t most(logx)m different integers between 1 andx, since any integer in this
range is determined by them powers in its decomposition, and each power is less than logx. This
immediately leads to a contradiction, sincex > (logx)m for largex.

This argument is indeed true: our reasoning using Kolmogorov complexity is a direct transla-
tion of this argument (and is a bit more cumbersome due to asymptotic notation). However, such a
translation may still have sense, since new language provokes new intuition, and this intuition may
be useful even if later the same argument can be translated into the standard language.

We return to this discussion after looking at other applications.

8.2 Moving information along the tape
{appl-tape}

The other toy example is a well knows result saying that duplication of anbit string on the tape of
a Turing machine (with one tape only) requiresεn2 steps in the worst case. This classical result
was obtained in 1960ies using the so-called “crossing sequences”; our proof is just a translation of
this argument into the language of Kolmogorov complexity. (We assume that the reader is familiar
with the basic notions related to Turing machines, see, e.g., [?]).

Consider a zone of sizeb on a tape of an one-tape Turing machine; this zone is considered as a
“buffer” and we want to transmit information through this zone, say, from left (L) to right (R), see
Figure 21.

Initially the buffer zone andR are empty (filled with blanks) are empty, andL is arbitrary. We
want to give an upper bound for the complexity ofRaftert steps. The upper bound is(t logm)/b+
O(logt) wherem is the number of states that our Turing machine has andb is the width of the
buffer zone. Informally the argument is quite simple: each state of the TM carries logm bits of

188

b

L R

Figure 21: A buffer zone of sizeb. {tape-buffer

information, and during one computation step this information can be moved to the neighbor sell,
so moving it at the distanceb requiresb more time.

Now we have to convert this intuitive explanation into a formal argument.

Theorem 128 Let M be a Turing machine that has m states. Then there exists aconstant c such
that for any b and for any computation that starts with empty buffer zone of size b and empty tape
on the right of the buffer zone the complexity of the contentsR(t) of the right part of the tape after
t steps of computation does not exceed

t logm
b

+4logt +c.

⊳ Let us consider some line between cell inside the buffer zoneas a “border”, and let us write
down the state ofM when it crosses the border from left to right (as it was done inthe times of iron
curtain). The sequence of states is called thecrossing sequence. Knowing the crossing sequence,
we can reconstruct the behavior ofM “abroad” (on the right of the border) not using the contents of
the tape on the left. Indeed, we should artificially put the machine into the first state of the crossing
sequence and let it go abroad. WhenM returns back, we put it in the second state of the crossing
sequence and let it go abroad again. In this way we correctly reconstruct the abroad behavior of
the machine (since it does not remember anything except its state when crossing the border). In
particular, at some momentt ′ the tape on the right of the buffer zone containsR(t). Note thatt ′ may
be different fromt since we do not take into account the timeM spends on the left of the border,
but t ′ cannot exceedt. Therefore, to reconstructR(t) we need to now the crossing sequence,t ′ and
the distance between the border andR-zone. So there exists a constantc (depending onM but not
on b andt) such that for any crossing sequenceSand anyb andt we have

KS(R(t)) 6 l(S) logm+4logt +c.

Here we multiply the lengthl(S) of the crossing sequence by logm sinceS is a string in am-letter
alphabet and each letter carries logmbits. To addb′ andt ′ in a self-delimiting encoding we need at
most 2 logb+2logt bits. We may assume thatt > b, otherwiseR(t) is empty since the head never
visitedR. The constantc appears when we switch to the optimal decompressor.

This inequality is true for any contents ofL and for any placement of the border. Now if for a
given contents ofL we consider the shortest crossing sequence, the length of this sequence is less
thent/b (there isb+1 possible positions of the border, and at each step only one of the positions
is crossed, so the sum of the lengths of crossing sequences does not exceedt). In this way we get
the inequality stated by the theorem.⊲

189

n n/2

u u

x

Figure 22: Buffer zone for duplication {tape-copy-buffer

181 Show that this bound can b e improved by replacingb in the denominator by 2b. [Hint:
The return trips need almost the same time (the difference isat mostb).]

The quadratic lower bound for the duplication of an-bit string immediately follows.
Assume that a one-tape Turing machineM duplicates its input: if initially the tape contains a

binary stringx (followed by blanks), at the end of the computation the tape has a second copy ofx
(i.e., containsxx).

Theorem 129 There exists a constantε > 0 such that for every n there exists a n-bit string that
requires at leastεn2 steps to duplicate it.

⊳ For simplicity let us assume thatn is even, and letx be a string whose second halfu has
complexity close to its length (i.e., ton/2). Then apply the inequality we have proven considering
the zone of sizen/2 on the right ofx as the buffer (Figure 22).

Assume that duplication takest steps. Then the complexity ofR zone aftert steps (which is
at leastn/2) does not exceedt logm/b+4logt + , whereb is the size of the buffer zone, i.e.,n/2.
Therefore,

n
2

6
t logm
n/2

+4logt +c,

We may assume without loss of generality thatt < n2 (otherwise the statement is trivial). Then we
replace 4logt by 8logn and conclude that

t >
n2

4logm
−O(nlogn);

the second term is small compared to the first one whenn for largen (we may then formally extent
the result to everyn by decreasing the coefficientε). ⊲

Is the Kolmogorov complexity essential in this proof? The skeptical observer may say again
that we in fact just counted the number of different strings that can be copied in a limited time
(using the fact that different string should have differentcrossing sequences, otherwise the behavior
of the machine at the right of the boundary would be identical). Indeed, the original proof follows
this scheme (in fact, it deals with palindrome recognition,not the duplication, but the technique is
the same). Does the language of complexity make the proof more intuitive and easy to understand?
Probably this is a matter of taste.

Many bounds in the computational complexity theory can be proven in the same way, using
the string of maximal complexity as the “worst case” and proving that the violation of the bound

190

would imply this string to be compressible. Many applications of this type (and further references)
are given in the classical textbook [?]; its authors, Ming Li and Paul Vitanyi, played an important
role in development of this approach, called “incompressibility method”. Note that in many cases
the historically first proof was obtained using Kolmogorov complexity.

In the next section we consider one more application of the incompressibility method. Then we
switch to other applications. The most interesting thing inthese applications is not the statements
in itself but the various methods that allow us to apply Kolmogorov complexity to prove statements
that do not mention it.

8.3 Finite automata with several heads

A finite automaton with k headsis similar to the ordinary one (we assume that the reader is ac-
quainted with basic notions related to finite automata, see,e.g., [?]) but hask one-way read-only
heads. Here “one-way” means that the head can only move from left to right.

Initially all k heads observe the leftmost character of the input string. Ateach step the behavior
of the automaton is determined by its state andk symbols it observes (underk heads): automaton
changes the state and instructs some heads (at least one) to move to the right. Then the automaton
performs the next step, etc.

The input string is followed by a special marker; the automaton terminates if all the heads
observe this marker. (We assume that the head that sees the marker does not move to the right.)
Automatonacceptsthe string if it gets into anacceptingstate after processing this string. We say
that automatonrecognizesthe set of all accepted strings.

Example. Consider the language (=set of strings)x#x wherex is any binary string. It is well
known that this language cannot be recognized by a standard (one-head) automation. However, it
is easily recognized by a two-head automaton. Indeed, we should send one head to look for the
separator #, when the separator is found, two heads move synchronously and check that they read
the same symbol.

So two heads are better than one (more languages can be recognized). It turns out that the same
is true for more heads:k+1 heads are (strictly) better thank heads.

Theorem 130 For every k there exists a language that can be recognized by a(k+ 1)-head au-
tomaton but not by a k-head one.

⊳ For eachm> 1 consider th languageLm that consists of all strings

w1#. . .wm#wm#. . .w1

(for any binary stringsw1, . . . ,wm). Eachwi is repeated twice, and in the right half the stringswi

go in the reversed order (this is crucial for the argument).
A k-head automaton can recognize this language as follows: oneof the heads goes to the right

half, and remainingk−1 heads are placed beforew1, . . . ,wk−1. Then each of thesek−1 heads
checks its string while the first head passes by its copy. After that the firstk−1 strings are checked,
the first head is of no use (it is at the end of the input string),but remainingk−1 heads are useful
since they are on the left of the remaining stringswk,wk+1, Now we repeat the same trick: one

191

of k−1 heads is sent across the right half,k−2 check nextk−2 strings etc. Repeating this, we
can check

(k−1)+(k−2)+ . . .+1 =
k(k−1)

2
= C2

k

string. (Note thatm is fixed, so the search for a substring with a given number the finite memory
is enough.)

Therefore,the languageLm can be recognized by ak-head automaton ifm6 C2
k .

It remains to show thatif m>C2
k , the languageLm cannot be recognized by ak-head automaton.

Assume that is not the case and somek-head automatonM recognizes this language. To get a
contradiction, let us consider independent random stringw1, . . . ,wm of sufficiently large lengthN.
More formally, consider a string of lengthmNand complexity at leastmNand split it intomstrings
of lengthN denoted byw1, . . . ,wm. By assumption, the string

W = w1#. . .wm#wm#. . .w1

is accepted byM; we get a contradiction by showing that eitherw1 . . .wm is compressible or the
automaton does not recognizeLm.

Let us say that a given pair of heads ofM visited wi if at some moment (while processingW
by M) these heads were simultaneously inside two copies ofwi . A key observation:a given pair
of heads cannot visit bothwi andw j for i 6= j. Indeed, consider the moment whenwi was visited.
After that the left heads reads onlyw j with j > i and the right head visits onlyw j with j < i.

By our assumptionm> C2
k ; therefore there existsi such thatwi is not visited by any pair of

heads. Let us show that either this string is compressible orone of its copies can be counterfeited
in such a way thatM will still accept the string (soM does not work correctly).

Let us observe the actions ofM on W. A special attention is needed when one of the heads
enters or leaveswi (any of two copies): we write down the positions of all heads and the state
of M at these moments. The obtained “log-file”P has complexityO(logN) where the hidden
constant depends onk, m and the number of states inM but not onN. Indeed, there are at most 4k
moments to consider (4 per head) and at each moment we record the state of the automaton and
head positions, which isO(logN) bits.

Let us show that (ifM recognizesLm correctly) the stringwi can be uniquely reconstructed if all
otherw j (with j 6= i) andP are given. This implies that the complexity of the stringw1 . . .wm does
not exceed(m−1)N (the number of bits in otherw j) plusO(logN) (the complexity of protocol)
plusO(1), which is less thanmN for largeN, so we get a desired contradiction.

The reconstruction goes as follows: we place all strings of lengthm in place ofwi (keepingw j

with j 6= i intact). For each candidate we runM on the resulting string and check whether we get
the same protocolP. There are three possible cases:

(1) If (for somew) M rejects (does not accept) the string, thenM does not recognize our
language.

(2) M accepts all these strings (for all candidates) and the protocol P appears only once, for
w = wi . Then the reconstruction is possible (andw1 . . .wm is compressible).

(3) M accepts all these strings andP appears both forwi and for somew 6= wi . Let us show that
in this caseM accepts a string not inLm, i.e., the stringW′ that haswi in the left half while in the
right halfwi is replaced byw.

192

Indeed, the are two accepting computation ofM: one if wi is used on both sides and the other
one forw. Let us split both of them into parts; the splitting points are moments when one of the
head enters or leaveswi (or w). The positions of all other heads and the states ofM are recorded
in P so they are the same for both computations. (Note that the moments of time can be different
since they are not recorded. In fact, we may add them also, butthis is not needed.) So we can glue
the computation intervals for both cases; let us show that wecan get an accepting computation of
M on a bad string (the left half haswi while the right half hasw).

By our assumption during the processing ofW there is no moment when both copies ofwi carry
some heads; since the border crossings for both copies is recorded inP, the same is true whenwi

is replaced byw. So for each interval between two protocol events related towi /w there are three
possibilities: (a) there is a head in theith string on the left; (b) there is a head in theith string on
the right; (c) none of the above. Then we can copy-paste the intervals into a new computation: for
(a)-parts we use the computation ofM onW; for b-parts we use the computation ofM of changed
input (wherewi is replaced byw); for (c)-parts we can use either of two (they are the same). Then
we get a computation ofM on a mixed stringW′, soM does not work properly.⊲

8.4 Laws of Large Numbers
{appl-lln}

The Strong Law of Large Numbers was proven in Section 3.2 (Theorem 27, p. 51) without any
references to Kolmogorov complexity, by a straightforwardcounting. We consider (mainly) the
uniform case. In the case the SLLN says that the set of all sequencesω = ω0ω1 . . ., such that the
sequence

pn =
ω0+ω1 + . . .+ωn−1

n
has limit 1/2 asn tends to infinity, has full measure (with respect to the uniform Bernoulli measure
onΩ). In other words, SLLN says that the complement of this set (i.e., the set of sequencesω such
that pn either has no limit or has limit not equal to 1/2) is a null set. Later (Theorem 32 (p. 60) we
have shown that this null set is in fact an effectively null set; this implies that for any ML-random
(with respect to the uniform measure) sequenceω the sequencepn converges to 1/2 (Theorem 33,
p. 60).

However, we can go in the other direction. Namely, we may firstprove that for any ML-random
sequence the frequencies converge to 1/2 using the randomness criterion in terms of complexity
(Theorem 82, p. 125). This criterion says that for a ML-random (with respect to the uniform
Bernoulli measure) sequenceω the monotone complexity of its prefix(ω)n of lengthn is n+
O(1). This property implies that the frequency of 1s in(ω)n (i.e., pn) converges to 1/2. Indeed,
Theorem 122 says that the complexity ofωn does not exceednh(pn,1−pn)+O(logn), soh(pn,1−
pn) = 1+O(logn/n) for any ML-random sequence. (Note that the difference between plain and
prefix complexity ofωn is O(n), so any of them can be used.) This implies thatpn → 1/2 as
n → in f ty (see the graph of entropy function, Figure 8, p. 52). So the SLLN is true for all ML-
random sequence, which form a set of full measure.

The skeptical observer would say that this is not a differentproof, or we have just repeated
the same arguments using different language. And he is probably right: If we recall the proof of
Theorem 122, we see that it uses the same estimate (based on Stirling’s approximation) that was

193

used for the proof of SLLN. (Another argument, where monotone complexity is bounded by a
negative logarithm of the measure, Theorem 81, also has a direct translation in the probabilistic
language; it was discussed in Section 3.2 after the proof of Theorem 27 on p. 51).

So why do we get by using the complexity language? First, we can find a broader class of
sequences that satisfy SLLN:

{lln-complexity-bound
Theorem 131 Let ω be a binary sequence such that KS((ω)n) = n+o(n). Then the sequence pn

(frequency of ones in(ω)n) converges to1/2.

⊳ The proof remains essentially unchanged: in this caseh(pn,1− pn) is still 1+o(1). ⊲

Second, we can not only prove thatpn → 1/2 but also give some estimates for the convergence
speed. The corresponding result in probability theory is called theLaw of Iterated Logarithm, and
Kolmogorov complexity can be used to give a (rather simple) proof of the upper bound provided
by this law.

{iterated-logarithm-upper
Theorem 132 Let ω— be a ML-random sequence with respect to the uniform measure. Let pn be
the frequency of ones in(ω)n. Then for anyε > 0 the inequality

|pn−1/2| 6 (1+ ε)

√
ln lnn

2n

holds for any sufficiently large n.

⊳ Let us look which bound is obtained by the argument above (that uses Kolmogorov com-
plexity). We know that

n−O(1) 6 KM((ω)n) 6 nh(pn,1− pn)+O(logn),

therefore
h(pn,1− pn) > 1−O(logn/n)

The function
p 7→ h(p,1− p) = p(− logp)+(1− p)(− log(1− p))

has maximum atp = 1/2, and the second derivative at this point is non-zero (equals −4/ ln2).
Therefore, Taylor expansion gives us

h(1/2+δ) = 1− 2
ln2

δ 2 +o(δ 2)

asδ → 0, and forδn = pn−1/2 we have

δ 2
n = O(logn/n),

i.e.,

|pn−1/2| = O

(√
logn

n

)
.

194

So we get at least something, though the bound we need is much stronger. (Let us mention that
in the probability theorem the final bound was obtained in many steps. First Hausdorff (1913) has
proven the boundO(nε/

√
n); then Hardy and Littlewood (1914) have improved it to

√
logn; then

Steinhaus (1922) came with the bound(1+ ε)
√

(2lnn)/n, and only later Khinchin (1924) got the
final result. So we are now on the level of Hardy and Littlewoodin this respect — not that bad.)

Let us think about possible improvements for the upper boundthat we had forKM ((ω)n). This
upper bound was obtained by comparingKM ((ω)n) and the negative logarithm of the probability
of the prefix(ω)n with respect to the Bernoulli measure with parameterpn. This logarithm is
exactlynh(pn,1− pn), but the Bernoulli measure used for comparison depends onn, so the con-
struction used in the proof of Theorem 81 needs an additionalterm that isKP(pn) (we start with a
self-delimiting encoding ofpn). HereKP(pn) does not exceed(2+ ε) logn, since both numerator
and denominator of the fractionpn do not exceedn. Altogether we get the bound

2
ln2

(pn−1/2)2 ≈ 1−h(pn,1− pn) 6 (2+ ε) logn/n,

which is still not good enough.
What else can we do? Note that we may already know thatpn is rather close to 1/2: with

denominatorn the numerators differs fromn/2 by
√

n or a bit more. So (when the denominatorn
is knows) we can use less bits to describe the numeration, andthis allows us to replace 2 by 1.5 in
the right-hand side. But this is still not enough for us.

The crucial idea is to use approximations forpn. Let us assume thatpn = 1/2+ δn > 1/2.
Instead ofpn we use (while constructing the Bernoulli measure used to getan upper bound for
complexity) its approximation 1/2+ δ ′

n whereδ ′
n is an approximation toδn from below with a

small (fixed) relative error. For example, let us takeδ ′
n such that 0,9δn < δ ′

n 6 δn. Such aδ ′
n can

be founded among the geometric sequence(0,9)k, and its complexity is about logk, i.e., about
log(− logδn/ log0,9) = log(− logδn)+c. Note that ifδn < 1/

√
n then we have nothing to prove,

do the complexity ofδ ′
n can be upper-bounded by(1+ε) loglogn (for everyε this bound holds for

all sufficiently largen).
This is good news; the bad news is that we have a more complicated bound for the complexity

of (ω)n. Now instead ofh(pn,1− pn) we have

pn[− logp′n]+(1− pn)[− log(1− p′n)], (∗)

wherep′n = 1/2+δ ′
n; recalling our discussion of entropy, we may say that a sequence(ω)n where

frequencies of zeros and ones arepn and 1− pn is encode by a code that is based on simplified
frequenciesp′n and 1− p′n. The expression(∗) can only increase if we replacepn by p′n: since
pn > p′n > 1/2, the second expression in brackets is greater than the firstone, and increasing its
weight by decreasingpn increases the entire expression(∗).

Finally we get the bound

n−O(1) 6 nh(p′n,1− p′n)+(1+ ε) loglogn

for everyε > 0 (the inequality holds for all sufficiently largen). As before, it implies

δ ′
n 6 (1+ ε)

√
ln2 · loglogn/2n.

195

For a “true”δn we get a slightly bigger bound (1/0.9 times bigger); since 0.9 can be replaced by
any number less than 1 we get the desired statement (the factor ln2 is used to convert the binary
logarithm to the natural one, while the replacement of the second binary logarithm by the natural
one can be compensated by a change ofε in the factor(1+ ε)). ⊲

182 Show that this argument can be used to prove the statement of Theorem 132 not only for
ML-random sequence but for every sequenceω such thatn−KM ((ω)n) = o(loglogn).

8.5 Forbidden substrings
{appl-llll}

The statement we prove in this section is interesting as an example of a non-trivial application of
Kolmogorov complexity (that cannot be directly translatedinto a counting argument).

{no-forbidden-strings
Theorem 133 Let α < 1 be a positive real numbers. Assume that for each n some binarystrings
are calledforbiddenstrings and there are at most2αn forbidden strings for any length n. Then there
exists some c and an infinite sequence of zeros and ones that does not have forbidden substrings of
length c or more.

For example, we can declare strings of lengthn and (plain) complexity less thanαn as forbid-
den strings. Then we get the following corollary:

{no-simple-strings
Theorem 134 Let α < 1 be a positive real number. There exists an infinite sequence of zeros and
ones such that any its substring of sufficiently large lengthn has complexity at leastαn.

It is instructive to compare this statement with the randomness criterion for the uniform mea-
sure (Theorem 86, p. 129). In this criterion we considered only the prefixes of the sequence (in-
stead of all substrings); on the other hand the lower bound for complexity wasn−O(1) instead of
a weaker boundαn that we have now. (The boundn−O(1) was for the monotone complexity; it
impliesn−O(logn) bound for plain complexity that we use now). The following problem shows
that such a strong bound cannot be true for all the substrings.

183 For any infinite sequenceω of zeros and ones there existα < 1 and infinitely many
substrings that have complexity per letter (the ratio complexity/length) at mostα. [Hint: Consider
two cases: if the string hasall binary strings as substring, the claim is evident. If it doesnot
contain some stringu of lengthk, we can split long substrings into blocks of lengthk and use
efficient coding that takes into account that blocku is never used and does not need a code; this
gives complexity per letter at most(log(2k−1))/k.]

The proof of Theorem 133 goes in two steps. First we prove its special case, Theorem 134.
Then it turns out (surprisingly) that the general case follows from this special one.

⊳ To prove Theorem 134 let us consider an intermediateβ such thatα < β < 1. Using Theo-
rem 65 (p. 102) we find a numberN with the following property: to each stringx we can append
N bits (on the right) in such a way that prefix complexity of the string increases at least byβN.

Let us use this property iteratively starting from the emptystring. We get an infinite sequence
of N-bit blocks; the prefix complexity increases at least byβN when the next block is appended.

196

This implies that the complexity of any group of consecutivek blocks is at leastβkN−O(1).
Indeed, appending this group we increase complexity byβkN at least, but the inequalityKP(xy) 6

KP(x)+KP(y)+O(1) shows thatKP(y) > KP(xy)−KP(x)−O(1).
This implies that for every substringu (not necessarily block-aligned) the complexity ofu is at

leastβ l(u)−1 since the change in complexity and length due to boundary effects (by cutting the
incomplete block on the border) isO(1). It remains to note that we have some reserve due to the
difference betweenα andβ , and this reserve is enough to compensate both the boundary effects
and the difference between plain and prefix complexities.⊲

184 Give a similar argument that uses plain complexity instead of prefix one. [Hint: Use
Problem 34, p. 38.]

⊳ Now let us prove Theorem 133; the simplest approach in to use relativized complexity. Let
us consider the setF of forbidden strings as an oracle; this means that we consider algorithms
that can ask (for free) whether a given string is forbidden ornot. As usually, this relativization
goes smoothly both in the statement of Theorem 134 and its proof, and this theorem is true for
F-relativized complexity.

Note that now all forbidden strings of lengthn haveF-complexity at mostαn+O(logn), since
each forbidden string can be determined byn and by its ordinal number in the list of all forbidden
strings of lengthn. In fact the stronger boundαn+ O(1) is valid since we can use the list of all
forbidden strings in the order of increasing length, but this does not matter much since a small
change inα covers this difference.⊲

One can also make the following (rather unexpected) observation: Theorem 133 can be derived
from Theorem 134 directly, without any relativization, by using the following statement:

Theorem 135 If for some rationalα and some set F of forbidden strings the statement of Theo-
rem 133 is false(F has less than2αn forbidden strings for any n, but there is no infinite sequence
without long forbidden strings), then the same happens for somedecidableset F.

(Note that for a decidableF the relativization does not change anything; the restriction to
rationalα is also not important, since we can increaseα to a greater rational number.)

⊳ Assume that for someα < 1 and some setF the statement of Theorem 133 is false. Then
for eachc we may find a setFc in such a way that

(a) Fc contains only string of length greater thanc;
(b) Fc contains at most 2αk strings of lengthk (for everyk);
(c) any infinite sequence contains at least one substring that belongs toFc.
(Indeed, we can letFc be the set of all strings inF that have length greater thanc.)
The standard argument (compactness, König’s lemma) showsthat any sufficiently long string

has at least one substring inFc, so one can findfinite Fc with the same properties. Moreover, such
a finite set can be found by an exhaustive search, so we getFc that has these properties and can be
found effectively whenc is given.

(Why do we need first switch to finite sets? to make the search possible.)
Now we construct the sequenceci such thatci+1 is greater than the lengths of all strings inFci .

The union of allFci is a decidable set that violates the statement of Theorem 133. ⊲

197

Note the structure of our arguments: knowing that object with some property exists, we perform
an exhaustive search and effectively find (may be, different) object with the same property. This
observation is often useful when dealing with Kolmogorov complexity.

[Here the argument in the reverse direction can be added: LLLL, application to twodimensional
sequence, the corollary about subsequences (Rumyantsev)]

8.6 A proof of an inequality

As we have said (see p. 15), the inequalities for Kolmogorov complexity have quite unexpected
consequences. In this section we explain one of them (this topic will be continued in Chapter??).

{triple-function-inequalit
Theorem 136 Let X, Y , and Z be finite sets. Let f: X×Y →R, g: Y×Z →R, and h: X×Z→ R

be functions with non-negative values. Then

(

∑
x,y,z

f (x,y)g(y,z)h(x,z)

)2

6

(

∑
x,y

f 2(x,y)

)
·
(

∑
y,z

g2(y,z)

)
·
(

∑
x,z

h2(x,z)

)

⊳ It looks very suspicious, but this inequality in fact is a corollary of the inequality

2KP(x,y,z) 6 KP(x,y)+KP(y,z)+KP(x,z)+O(logn)

for prefix complexity (Theorem 26, p. 44). We wrote the last inequality for prefix complexity, not
the plain one, but this does not matter since the difference is O(logn). (For prefix complexity this
inequality is true up toO(1)-precision, see Problem 84, p. 101; for now theO(logn)-precision is
enough.)

It is convenient to assume that elements of the finite setsX, Y, Z are binary strings. It is enough
to show that if the sums in the right-hand side of the inequality do not exceed 1, the same is true for
the left-hand side. (Indeed we can multiplyf by any constantc, and both sides of the inequality
are multiplied by the same factor, so we can “normalize”f ; the same forg andh.)

Now assume that∑x,y f 2(x,y) = 1 and that the same is true for two other sums. We have to
show that∑x,y,z f (x,y)g(y,z)h(x,z) 6 1.

The idea is simple: the functionf 2 is a probability distribution on pairs(x,y), soKP(x,y) 6

− log f 2(x,y) = −2log f (x,y) (we temporarily ignore the constant in the comparison of this dis-
tribution and the a priori one). Similarly,KP(y,z) 6 −2logg(y,z) andKP(x,z) 6 −2logh(x,z).
Then we apply the inequality forKP(x,y,z) (temporarily ignoring the logarithmic term) and get

KP(x,y,z) 6 − log f (x,y)− logg(y,z)− logh(x,z).

Since the sum of 2−KP (x,y,z) over all triplesx,y,z does not exceed 1 (Theorem 51, p. 82), we get
the desired inequality.

This argument is, of course, too simple to be valid: all our bounds are of asymptotic nature so
we have to switch somehow from individual strings to sequences of strings. Let us show how it
can be done.

198

We start with a simple remark: it is enough to prove the inequality for functions f , g, h with
rational values (by continuity argument).

Let N be an arbitrary natural number (later we take the limits asN tends to infinity). Consider
the setsXN, YN, andZN whose elements areN-tuples (of elements ofX, Y, Z respectively). Con-
sider a probability distribution onXN×YN = (X×Y)N that corresponds toN independent copies of
distribution f 2 onX×Y. (Formally speaking, the probability of a point〈〈x1, . . . ,xN〉,〈y1, . . . ,yN〉〉
is the productf 2(x1,y1) . . . f 2(xN,yN).) We get a family of distributions that computably depends
on N. Therefore, there exists a constantc such that

KP(〈x1, . . . ,xN〉,〈y1, . . . ,yN〉|N) 6 2∑
i
(− log f (xi ,yi))+c

for all N and foe allx1, . . . ,xN,y1, . . . ,yN (we compare our distribution with a priori probability).
We can delete the conditionN in the left-hand side replacingc by clogn in the right-hand side.
Then (as before) we add three inequalities if this type and apply the inequality for complexities.
Then we get

KP(〈x1, . . . ,xN〉,〈y1, . . . ,yN〉,〈z1, . . . ,zN〉) 6

6 ∑
i
(− log f (xi ,yi))+∑

i
(− logg(yi ,zi))+∑

i
(− logh(xi,zi))+clogN

for some constantc and for allN, x1, . . . ,xN, y1, . . . ,yN, z1, . . . ,zN (note that total length of all
the stringsxi ,yi,zi for i = 1, . . . ,N is O(N), so all logarithmic terms are absorbed byclogN).
Combining this bound with the inequality∑u2−KP(u) 6 1, we conclude that for everyN the sum

∑∏
i

f (xi ,yi)g(yi,zi)h(xi ,zi)

(over all tuplesx1, . . . ,xN, y1, . . . ,yN, z1, . . . ,zN) does not exceed 2O(logN), i.e., is bounded by a
polynomial inN. But this sum isNth power of the sum

∑
〈x,y,z〉∈X×Y×Z

f (x,y)g(y,z)h(x,z),

so the polynomial growth is possible only is the latter sum does not exceed 1, and this ends the
proof. ⊲

185 Show that this inequality implies the bound for the volume ofa three-dimensional body
in terms of its two-dimensional projections mentioned on p.15. [Hint: we can letf ,g,h be the
characteristic functions of the projections. This works for the discrete case; for the continuous
case we should either approximate the body using a cube gridsor approximate the integral by
finite sums.]

For comparison let us give two other proofs of the same inequality. Here is the first one
(rather simple) that uses Cauchy inequality that says that(u,v)2 6 ‖u‖2 · ‖v‖2, or, in coordinates,

199

(∑uivi)
2 6 (∑u2

i)(∑v2
i)). We can argue as follows:

(

∑
x,y,z

f (x,y)g(y,z)h(x,z)

)2

6

6

(

∑
x,y

f 2(x,y)

)

∑
x,y

(

∑
z

g(y,z)h(x,z)

)2

6

6

(

∑
x,y

f 2(x,y)

)

∑
x,y

((

∑
z

g2(y,z)

)(

∑
z

h2(x,z)

))

=

=

(

∑
x,y

f 2(x,y)

)(

∑
y,z

g2(y,z)

)(

∑
x,z

h2(x,z)

)

Another proof uses Shannon entropy (and can be considered asa translation of Kolmogorov
complexity argument into the probabilistic version). Assume that∑ f 2 = ∑g2 = ∑h2 = 1. We
want to prove that∑x,y,z p(x,y,z) 6 1, wherep(x,y,z) = f (x,y)g(y,z)h(x,z). Assume that is not the
case and this sum equalsc > 1. Then we can multiply it by 1/c and get a probability distribution
p′ onX×Y×Z:

p′(x,y,z) =
1
c

f (x,y)g(y,z)h(x,z).

The corresponding random variable (whose range isX ×Y×Z) is denoted byξ . It can be con-
sidered as a triple of (dependent) random variablesξx, ξy, ξz. One can also consider the joint
distributionsξxy = 〈ξx,ξy〉 etc. For example, the random variableξxy takes value〈x,y〉 with prob-
ability ∑z p′(x,y,z).

Recall that by definition the Shannon entropy of the distribution (p1, . . . , pk) equals
∑ pi(− logpi); it does not exceed∑ pi(− logqi) for any other distributionq1+ . . .+qk = 1. There-
fore the entropyH(ξxy) can be bounded (from above) by usingf 2(x,y) as the “other” distribution:

H(ξxy) 6 ∑
x,y

(

∑
z

p′(x,y,z)

)

(−2log f (x,y)).

Then we write similar bounds for two other projections and apply the inequality

H(ξ) = H(ξx,ξy,ξz) 6
1
2
(H(ξxy+H(ξyz)+H(ξxz)),

(Problem 172, p. 181). We conclude that

H(ξ) 6 ∑
x,y,z

p′(x,y,z)(− log f (x,y)− logg(y,z)− logh(x,z)) =

= ∑
x,y,z

p′(x,y,z)(− logp(x,y,z)).

By definition H(ξ) = ∑x,y,z p′(x,y,z)(− logp′(x,y,z)), and we get a contradiction, sincep′ is c
times smaller thanp (and therefore− logp′ exceeds− logp by logc).

200

8.7 Lipschitz transformations are not transitive

In this section we apply Kolmogorov complexity to analysis of the properties of infinite sequences.
Let us start with the following definition related to the Cantor(metric) spaceΩ of infinite binary
sequences.

A mapping f : Ω → Ω is aLipschitzone if

d(f (ω1), f (ω2)) 6 cd(ω1,ω2)

for some constantc and for allω1,ω2 ∈ Ω. Hered is the standard distance in the Cantor space
defined as 2−k wherek is the first place where two sequences differ.

Informally speaking, Lipschitz property means that the first n digits of the sequencef (ω) are
determined byn+ O(1) first digits of ω. In particular, all mappings defined by local rules (each
bit in f (ω) is determined by some its neighborhood inω) have Lipschitz property.

We are interested in the following property of a mappingf : for every two sequencesω1, ω2

and for everyε > 0 there exists a numberN and sequencesω ′
1 andω ′

2 such that

ω ′
2 = f (f (f (. . . f (ω ′

1) . . .))) (N iterations)

and
d(ω1,ω ′

1) < ε, d(ω2,ω ′
2) < ε.

(In other terms, for any two open neighborhoods there existsan orbit that starts in the first one and
get inside the second one.) We call this property “transitivity” of f (in this section).

It is easy to check that left shift (that deletes the first bit of the sequence) is transitive: if we
need a sequence that starts withx1 and is transformed (after several shifts) into a sequence that
starts withx2, just take a sequence that starts withx1x2.

Now the question: does the left shift remains transitive if we change the definition and replace
Cantor distanced by the so-calledBesicovitchdistance:

ρ(ω1,ω2) = limsup
n→∞

dn(ω1,ω2)/n,

wheredn is a number of discrepancies among the firstn terms, i.e., the number ofi < n such that
ith terms ofω1 andω2 differ.

It turns out that in this case the left shift is no more transitive (is not “Besicovitch-transitive”).
Moreover, the following statement is true:

{durand-cervelle-bienvenu
Theorem 137 No Lipschitz mapping can be Besicovitch-transitive.

(Speaking about the Lipschitz property, we have in mind the original definition using Cantor
distance.)

The reason is quite simple: the Lipschitz mapping does not increase significantly the complex-
ity of the prefixes of a sequence, sincen bits of the output sequence are determined byn+ O(1)
bits of the input sequence (we assume that transformation rule is computable; if not, we have to

201

relativize complexity by a suitable oracle). On the other hand, if two sequences are Besicovitch-
close, then their prefixes have almost the same complexities(a change in a small fraction among
the firstn bits can be encoded by a short string compared ton).

⊳ For a formal proof it is convenient to use the notion of effective Hausdorff dimension of a
sequence (which is equal to limin f KS(ω0 . . .ωn−1)/n for a singleton{ω}), see Theorem 97 in
Section 5.8, p. 139).

Lemma 1. A computable Lipschitz mapping does not increase the effective Hausdorff dimen-
sion of a sequence.

(Speaking about computability of a Lipschitz mappingf : Ω → Ω, we mean thatn first bits of
f (ω) are effectively determined byn+c first bits ofω for somec.)

Indeed, if f (ω1) = ω2, then the complexity ofn-bit prefix of ω2 does not exceed (up toO(1))
the complexity ifn+c bit prefix of ω1, and for the dimension these constants are not important.

Lemma 2. If Besicovitch distanceρ(ω1,ω2) is less thanε, then effective Hausdorff dimensions
of ω1 andω2 differ at most byH(ε).

(HereH(ε) is the Shannon entropy of a random variable with two values that have probabilities
ε and 1− ε.)

Indeed, if the firstn terms ofω1 andω2 differ in k places, then the complexities differ at most
by the complexity of the bitwise XOR of these two sequence (since knowing one sequence and the
XOR we easily get the other one). And any sequence of lengthn that hask ones has complexity at
mostnH(k/n)+O(logn) (see Section 7.3.1, Theorem 122, p. 182). Lemma 2 is proven.

So if we take a sequence of a zero dimension (say, a computablesequence), then any sequence
that is Besicovitch-close to it has small dimension, and computable Lipschitz mapping does not
increase this dimension, so we can get only sequences of small effective Hausdorff dimension. On
the other hand, any sequence that is Besicovitch-close to a random sequence (that has dimension
1) has dimension close to 1 (Lemma 2 again).

So we have proven our theorem forcomputableLipschitz mappings. It remains to note that all
our arguments are relativizable and that every Lipschitz mapping is computable relative to some
oracle.⊲

[What is the right name for transitivity? What are the correct references? Laurent knows for
sure.]

8.8 Ergodic theorem

Vyugin’s proof? needs to be reconstructed

202

9

() 0′-?

10 , ,

,

, ,
(,) , (-? ?)

203

[]

204

